Pharmaceutico-Analytical Study of Tamra Sindoor Prepared with Asta-Samskarita Parada

Dr. Kusum Kumari ${ }^{1}$, Dr. Pradeep Agnihotri ${ }^{2}$, Dr. K. M. Jaggal ${ }^{3}$
${ }^{1}$ Postgraduate Scholar, ${ }^{2}$ Professor, ${ }^{3}$ Professor and HOD,
${ }^{1,2}$ Department of PG Studies in Rasashastra and Bhaishajya Kalpana, Ayurveda Mahavidyalaya Hubballi, Karnataka, India

Abstract

Kupipakwa Rasayana is a category of Rasaushadhies (herbo-mineral medicines) prepared by unique pharmaceutical process explained in the Rasashastra. Manufacturing of quality formulations and to analyze the quality, safety and toxicity concerns are being pharmaceutical and analytical profiles become an important task. Tamra Sindoor is a Kupipkawa Rasayana prepared with Astasamskarita Parada, Shodhita Gandhaka, Shodhita Tamra and indicated in Raktajanya Vikaras, Vata-Kapha Pradhana Mamsarbuda. So the proper scientific Validation of fortify Tamra Sindoor has become one of the focused research work. In the present study keeping the chief aim of elucidating pharmaceutical and physiochemical analysis of fortify Tamra Sindoor are prepared adopting method advocated in Ayurveda Sara Sangrha.

KEYWORDS: Astasamskarita Parada, Analytical, Kupipakwa Rasayana, Pharmaceutical, Rasaushadhies, Tamra Sindoor

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470
information about drug bioavailability and its effect to body. These analytical procedures are more essential in drugs and formulation. However, parameters that are required for different preparation may be different. Analytical standards are the dimensions to evaluate a product. It is compulsory to describe a product in analytical definition especially in the present days.
PARAMETERS:-Fortify Tamra Sindoor analysis was carried out under the following section:-
ORGANOLEPTIC PARAMETERS:-Form, Color, Odour, Taste, Appearance
PHYSICO-CHEMICAL PARAMETERS:-pH analysis, Loss on drying, Loss on ignition, Ash value and Solubility.

OTHER PARAMETERS BY ADVANCED TESTS:Zeta potential, Particle size, SEM-EDX, CHNS, ICPOES.

MATERIAL AND METHODS:-MATERIALS:-

1. Collection of major raw drugs
2. Collection of associated raw drugs
3. Main equipments and associated equipments.
4. COLLECTION OF MAJOR RAW DRUGS:Tamra, Parada, and Gandhaka is the major raw drugs which were having Grahya Lakshanas as mentioned in classical textbooks of Rasashastra were procured from the local market.
5. ASSOCIATED RAW DRUGS:-Other raw drugs used in the present study are Nimbu Swarasa, Godugdha, Tryushana, Lavana, Asuri, Chitraka, Ardraka, Moolaka, and other drugs used in Ashta Samskara of Parada.
6. MAIN EQUIPMENTS AND ASSOCIATED EQUIPMENTS:-
MAIN EQUIPMENTS:-Yantras used in the present study were:-
Khalwa Yantra:-Ardhachandrakar Khalwa, Vartula Khalwa, Tapta Khalwa, Dola Yantra, Patana YantraUrdhwa, Adho, Tiryaka, Damaru Yantra, Darvi, Valuka Yantra,

ASSOCIATED EQUIPMENTS:-Weighing Machine, Steel Vessels, Spoons, Containers, Clothes, Thread, Measuring Jars, Gas Stove, etc.

METHOD:-

PREPARATION OF ASTA SAMSKARITA
PARADA ${ }^{2}$:-
$>$ Ashta Samskaras of Parada was done as per the Rasa Hridaya Tantra.
$>$ The total quantity of Parada taken for Asta Samskara-500gms.
> Weight of Parada obtained after Ashta Samskara - 350gms.
$>30 \%$ of loss was found after Ashta Samskaras.
TAMRA SAMANYA SHODHANA ${ }^{3}$:-Kantakavedhi Tamra Patra of measuring 6* $6^{\prime \prime}$ length and width and 0.5 mm thickness weighing of 5 gms each were taken. Tamra Patra was heated up to red hot on a gas stove then it was quenched in 500 ml of Tila Taila. After 15 minutes, Tamra Patra was taken out from Tila Taila mopped with cotton cloth and dried.
The same procedure was repeated for further 6 times, each time fresh Tila Taila was taken.
After $7^{\text {th }}$ Nirvapa Ushna Jala Prakshalana was done, mopped, and dried.

The same procedure was repeated with other four media viz; Takra, Gomutra, Kanji and Kulattha Kwatha in order.

RESULT:-
 Initial weight of Tamrapatra before Samanya Shodhana:-600gms

Final weight of Tamrapatra after Samanya Shodhana:-406gms

Total weight loss:-194gms

VISHESHA SHODHANA OF TAMRA ${ }^{4}$-Samanya Shodhita Tamra was taken in mud pot along with $1 / 8^{\text {th }}$ part (51gms) of Saindhava Lavana. Then the pot was filled with Gomutra up to the brim and placed over a fire. Swedana was done for 2 Prahara (6hours). Gomutra was added time by time to maintain a sufficient quantity of Gomutra. After 6 hours Tamra was taken out and washed with hot water and dried.

RESULT:-

Initial Weight of Samanya Shodhita Tamrapatra:406 gms

Final Weight of Vishesha Shodhita Tamrapatra:385 gms

Weight loss:-21gms
GANDHAKA SHODHANA ${ }^{5}$:-
Weighted quantity of Ashuddha Gandhaka was taken and finely powdered in Khalwa Yantra. Fine powder of Gandhaka was taken in Loha Darvi smeared with the ghee and was heated at temperature of $110^{\circ} \mathrm{C}$ to melt it completely.
In other steel vessel, 500 ml of Go-Ksheera was taken and its mouth was covered with a piece of cotton cloth properly. Over the vessel, melted Gandhaka was poured slowly. The melted Gandhaka came in contact with Go-Ksheera, Gandhaka again got solidified and remained in granular form. Gandhaka
was removed from the Go-Ksheera, dried and powdered. Same procedure was repeated for another 6 times then Gandhaka washed with hot water mopped with cotton cloth, dried and powdered and store in container for further use.

RESULT:-

Initial weight of Gandhaka:-500gms
Final weight of Gandhaka:-425gms
Total weight loss:-75gms

PREPARATION OF KAJJALI ${ }^{6}$:-

Ashtasamskarita Parada and Gandhaka were taken in equal quantity and triturated in Khalwa Yantra. After 30 minutes of trituration mixture turned to greyish in color. On continuous trituration it turned to blackish color. Trituration was continued till it got jet black color and loss of shining particles (Samyaka Kajjali Lakshana). After 24 hours of trituration it became jet black color (Kajjalabha).

RESULT:-

Duration for Kajjali preparation:-24hours (6 hrs/day)
Weight of Kajjali obtained:-238gms.
Total weight loss:-2gms

KUPI NIRMANA ${ }^{7}$:-

Two green color beer bottles of 650 ml capacity was taken and cleaned properly. A circular and rectangular piece of cotton cloth smeared with Gopichandana was taken and wrapped base and around the bottles properly. Then the bottles inverted over Kupi stand and allowed for drying. Same procedure was repeated for 7 layers and each layer applied only after previous layer dried completely.

TAMRA SINDOOR PREPARATION ${ }^{8}$:-
 METHOD:-Bhairdhooma Kupipakwa

PROCEDURE:-The whole procedure of Tamra Sindoor was divided into 3 phases:

1. Poorva Karma:- a. Preparation of Kachakupi
b. Filling of Kajjali into Kachakupi
c. Placing of Kupi in Valukayantra.
2. Pradhana Karma:- a. Heating schedule (Kramagni)
b. Observation and recording of temperature
c. Corking of Kachakupi
3. Paschat Karma:- a. Removal of Kachakupi from Valuka
b. Breaking of Kupi
c. Collection of final product

Poorva Karma:- Preparation of Cork:-A conical shaped cork made of wooden piece, with a length of 2 inches and thickness according to the mouth of Kupi was made and layered with Gopichandana smeared cloth and dried.
b. Filling of Kajjali into Kachakupi:- Materials:-Kajjali-238gms, Shodhita.Tamra 60gms, weighing machine, Kachakupi, funnel and spoon.

Procedure:-238gms of Kajjali was divided into two equal parts and slowly filled in to two Kachakupi with the help of funnel and spoon. After, 30 gms of Shodhita Tamra in small pieces were added in each bottle.
c. Placement of Kupi in Valuka Yantra:- Materials:Kupi filled with Kajjali, Abhraka Patra and Sand.
Procedure:-At first Abhrakapatra ($8 \times 10 \mathrm{cms}$) was placed over the hole at the bottom of the Valuka Yantra and sand was spread uniformly over it of about 3 Angula. Now over this, Kajjali filled Kupi were kept firmly in center. Remaining portion of the Yantra was filled with sand upto neck of the Kupi.
2. Pradhana Karma:-The Pooja was done after placing the Kupi in Valuka Yantra.
Aghora Mantra was chanted and ignited the fire to wood with the help of camphor, spirit and matchbox. Pyrometer was properly placed i.e. $5-6 \mathrm{~cm}$ away and 4 cm above from level of base of Kupi in Valuka Yantra, with this temperature was recorded at regular interval. Kramagni was maintained according to the classical reference. For first 15 hours Mrudhvagni was given and temperature maintained between 100$250^{\circ} \mathrm{C}$. Next 12 hours Agni was gradually raised to Madhyamagni stage, i.e. $250-500^{\circ} \mathrm{C}$. By this time Sindoor Siddhi Lakshana were observed, corking was done and subjected for Teevragni upto 9 hours and temperature maintained between $500-700^{\circ} \mathrm{C}$. Later the apparatus was allowed for self cooling for complete sublimation of product.
Paschat Karma:-a. Removal of Kupi from Valuka Yantra, Breaking of Kupi and collection of Tamra Sindoor.
Materials:-Knife, thread, sprit, matchbox, wet cloth and Kupi containing final product.
Method:-After complete cooling of the Bhatti, Sand surrounding the Kupi in Valuka Yantra was carefully removed and then Kupi was taken out. The mud smeared cloth layers of Kupi were scrapped out with knife. A jute thread dipped in spirit was tied to the Kupi, $2-3 \mathrm{~cm}$ below the level of sublimated product, and ignited. When the whole thread got burnt off, wet cloth was wrapped around the ignited thread. The bottle got broken into 2 equal halves with a breaking sound. From the neck region Sindoor was collected and at the bottom of Kupi black color Tamra Bhasma was present. By simple tapping Sindoor was collected and stored in clean sterile container.

Result:-Table no.1:-Table showing loss and weight of Tamra Sindoor:-

Total quantity of Ingredients					Weight of	Weight of Talastha Tamra Tamra	Total weight
Total weight of Kajiali	Total weight of Shudha Tamra	Total quantity of loss ingredients	Yindoor	Yhasma			
238 gms	60 gms	298 gms	177 gms	99 gms	276 gms	22 gms	60%

ANALYTICAL STUDY:-

1. Organoleptic Characters:-The specific characters which can be identified by using sense organs are included under organoleptic tests. These tests help in providing basic information regarding drugs.

Table no.2:-Table showing the Organoleptic characters of Tamra Sindoor:-

SL.NO.	Tests	
1.	Form	Fine powder
2.	Color	Reddish
3.	Odor	Characteristic
4.	Taste	Tasteless
5.	Appearance	Red colour fine powder and presence of shining particles

1. Physico-chemical Characters:-

A. $\mathbf{p H}$ value:-

Materials:-

Tamra Sindoor-1gm
pH meter, glass electrode, beaker, distilled water, buffer solution.
Method:-At first the pH glass electrode was immersed in the standard buffer solutions $\mathrm{pH}: 4$ and $\mathrm{pH}: 7$ and the instrument were calibrated. Then the electrode was immersed in the solution of 1 gm of Tamra Sindoor mixed with 5 ml of distilled water. The reading was noted from the display board.

Table no.3:-Table showing the result of pH of Tamra Sindoor:-

SL.NO.	PARAMIETER	RESULT
1.	$\mathrm{pH}(1 \%$ solution $)$	6.7

A. Loss on drying:-This test was conducted to evaluate the moisture content of Tamra Sindoor.

Materials:-Tamra Sindoor-1gm, Weighing machine, Petri dishes and Hot air oven.
Procedure:-A Petri dish was cleaned in distilled water and dried in oven at $110^{\circ} \mathrm{C}$ for 2 hours. 500 mg of Tamra Sindoor was taken in pre-weighed Petri dish. It was kept in oven for drying at $110^{\circ} \mathrm{C}$ for 5 hours. After cooling, the weight was recorded. It was again subjected to drying for an hour and then weight was noted.

Table no.4:-Table showing the results of loss on drying of Tamra Sindoor:-

SL.NO	PARAMETER	RESULT
1.	Loss on drying at $110^{\circ} \mathrm{C}$	1.592%

C. Loss on ignition:-

Materials:-Tamra Sindoor:-1gm, Silica Crucible, Muffle Furnace, Desiccators and Precision Balance
Procedure:-A silica crucible previously ignited for one hour at a temperature not exceeding $500^{\circ} \mathrm{C}$ was weighted and cooled in desiccators. Accurately weighed Tamra Sindoor was transferred to the crucible. The crucible was weighted accurately and loaded crucible placed in the muffle furnace and heated the crucible upto $500^{\circ} \mathrm{C}$ after cooling the loss on ignition was calculated with reference to air dried drug.

Table no.5:-Table showing the result of loss on ignition of Tamra Sindoor:-

SL.NO.	PARAMETER	RESULT
1.	Loss on ignition	99.423%

C. Total ash value:-

Materials:-Tamra Sindoor:-2gm, Silica crucible, Spatula and Muffle furnace.
Procedure:-About 2 gms of Tamra Sindoor was weighted exactly in a pre-tared, ignited and cooled silica crucible and kept inside the muffle furnace and Tamra Sindoor was heated at $550^{\circ} \mathrm{C}$ for 2 hours. After 2 hours,
the furnace was allowed to cool naturally; the crucible was taken out and transferred into a desiccators. After cooling it was weighed at room temperature. The difference in weight was noted and the percentage of total ash was calculated from the formula:-
$\%$ Total ash $=($ weight of the ash obtained $/$ weight of the sample taken $) \times 100$.
Table no.6:-Table showing the result of total ash value of Tamra Sindoor:-

SL.NO.	PARAMETER	RESULT
1.	Ash value	0.195%

C. Solubility test:-

Materials:-Test Tube, solvents like conc. HNo_{3}, Aqua regia, Conc. HCl , Spatula and Stirrer.
Procedure:-Water, conc. HNo_{3}, Aquaregia, conc. HCl , is taken in 4 different test tubes separately, 25 mg of Tamra Sindoor was added to each test tubes and continuously stirred with the help of glass rod till it gets dissolved and solubility is noted.

Table no.7:-Table showing the result for Solubility of Tamra Sindoor:-

SL. No	PARAMIETERS	RESULT
1.	Water	Insoluble
2.	Conc. HNo_{3}	Partially soluble
3.	Conc. HCl	Partially soluble
4.	Aquaregia	Soluble

1. Other advanced parameters:-

i. Zeta potential:-Zeta potential is the potential difference between the dispersion medium and stationary layer of fluid attached to the dispersed particles.

Table no.7:-Table showing Zeta Potential result of Tamra Sindoor:-

Results	Mean $(\mathbf{m V})$	Area (\%)	Width (mV)	
ZetaPotential(mV):--28.6	Peak1:	-28.6	100.0	6.24
Zeta SD (mV): 6.24	Peak 2:	0.00	0.0	0.00
Conductivity (mS/cm):0.0187	Peak3:	0.00	0.0	0.00

ii. Particle size analysis:-

Method:-Laser Diffraction Method:-Sample passes through the laser beam as homogeneous stream of particles and it leads to scattering of light over a wide range of angles. Based on this scattering pattern of sample, particle size distribution is calculated comparing with appropriate optical model.

Particle size has been calculated considering its length density, volume density, and area density. In present study volume density mean is considered for determining the actual particle size of the sample as it covers length and area of the particle. The sizes of particle ranges from $0.0-0.5 \mu \mathrm{~m}$ upto 100% of the Particle size measured and finally mean particle sizes were taken for a particular sample.

Table no.8:-Table Showing particle size analysis result of Tamra Sindoor:-

Result		Size (d.nm):	\% Intensity	St Dev (d.n...
Z-Averae (d.nm):486.3	Peak 1:	586.6	95.2	343.5
PdI:0.342	Peak 2:	5022	4.8	600.2
Intercept:0.730	Peak 3:	0.000	0.0	0.000

Elemental analysis by SEM-EDX:-

The Scanning Electron Microscopy study is a type of electron microscope that images the sample surface by scanning it with a high-energy beam of electron in a Raster pattern. The electrons interact with the atoms that make up the sample producing the signals that contain information about the sample surface topography, composition and other properties such as electrical conductivity. The most common mode of detection is by secondary electrons is mostly conducted by the sample, but on a titled surface, the plume is partially exposed and more electron are emitted by scanning the sample and detecting the secondary electrons, an image displaying the topography of the surface is created.

Table no.9:-Table showing the SEM-EDX result of Tamra Sindoor (atomic \%, weight \% of elements):-

	K Shell		L Shell		K Shell		K Shell		L Shell		K Shell	
Spectrum	S	Wt\%	Hg	Wt\%	Fe	Wt. \%	Al	Wt\%	Pb	Wt. \%	Cu	Wt\%
8	53.1	15.50	45.8	83.61	0.4	0,22	0.4	0.09	0.3	0.59	0.0	0.00
9	44.4	11.61	52.4	85.74	0.0	0.00	1.8	0.40	1.3	2.25	0.0	0.00
10	58.2	18.85	39.4	79.78	0.1	0.06	1.9	0.53	0.4	0.79	0.0	0.00
11	38.3	9.30	59.3	90.06	0.8	0.33	1.6	0.32	0.0	0.00	0.0	0.00
12	47.5	12.79	50.5	85.08	0.0	0.00	0.8	0.18	1.1	1.92	0.1	0.04

CHNS:-Carbon, hydrogen, nitrogen, and sulfur analysis.
Method:-For the CHNS analysis, dried and crushed sample of Tamra Sindoor are weighed ($5-10 \mathrm{mg}$), and mixed with an oxidizer (vanadium pentoxide [V2O5]) in a tin capsule, which is then combusted in reactor at $1000^{\circ} \mathrm{C}$ at this temperature, nitrogen oxides reduced to N_{2}. The $\mathrm{N}_{2}, \mathrm{Co}_{2}$, and So_{2} are transported by the helium to, separate by a chromatographic column and quantify with a thermal conductivity detector (TCD set at $290^{\circ} \mathrm{C}$).

Table no.10-Table Showing the CHNS results of Tamra Sindoor:-

Component Name	Area \%	Element \%
Nitrogen	3.848	0.000
Carbon	0.956	0.030
Sulfur	95.197	33.505

ICP-OES:-

Inductively coupled plasma/optical emission spectrometry is one of the most powerful and popular analytical tool for the determination of trace elements present in the Tamra Sindoor. The technique is based upon the spontaneous emissions of photons from atom and ions that have been excited in radio-frequency discharge (RFD).

Table no.11:-Table showing the ICP-OES result of the Tamra Sindoor:-

Metal Contents	Result (mg/kg)
Aluminium (Al)	171.5
Arsenic (As)	83.1
Copper (Cu)	1464.0
Tellurium (Te)	18.8
Iron (Fe)	187.8
Sulfur (S)	92490.0
Mercury (Hg)	1900.0
Selenium (Se)	ND
Zinc (Zn)	82.7
Gold (Au)	ND

DISCUSSION ON PHARMACEUTICAL STUDY:-

I. PARADA ASTASAMSKARASA:-

1. Swedana Samskara:-

The Kalka Dravyas which were used for preparing Pottali were having Katu, Tikta Rasa and Tikshna, Ushna Guna. The Kanji which was used as Swedya Drava-Dravya is having Amla Rasa. When mild heat is provided in the medium of Kanji the impurities gets loosened. Organic acids present in the Kalka Dravya's, Salts and acidic pH of Kanji helps loosening oxidation layer of Parada, so it eases the removing of Doshas in next Samskaras. There was no weight loss of Parada even after Swedana Samskara (Quantity of Parada-500gms).

2. Mardana Samskara:-

Initial weight of Poorvasamskarita Parada taken for Mardana 500 gms and after Mardana 497 gms was obtained. Weight loss 3 gms may be due to mechanical loss during the Mardana procedure or due to Jala Gati,Dhum Gati and Mala Gati. Mala's which get loosened during Swedana Samskara are removed in Mardana Samskara. In this process every particle of Parada comes in direct contact with the Kshara and Amla Rasa of drug for longer duration. Here trituration was done with carbon containing drugs like, Dagdhorna, Mandira Dhooma, Guda and Brick powder which contain Silica on mild temperature for longer duration; Dagdhorna, Mandira dhooma and Brick powder acts as adsorbent and Guda acts as reducing agent. Mild temperature and pressure
produced during the trituration plays very important role in reaction between the Parada and Dravya used in Mardana Samskara. Hence loosened Malas of Parada gets removed with the drugs used in process after washing with hot water or hot Kanji.

3. Murchana Samskara:-

Initial weight of Mardita Parada taken for Murchana Samskara was 497 gms . In this Samskara of Parada, Kumari Swarsa, Triphala Churna and Chitraka Mula Churna were used. Here Parada was triturated with all these three drugs till it attains the Nashtapishta form i.e. at last Parada will not be differentiated from the Kalka. The weight of Nashtapishta Kalka was 640gms (Parada+Kalka Dravya). All the three Dravyas used in this Samskara are having Katu, Tikta and Kashaya Rasa. Due to Bhedhana, Shoshana, Kshalana and Lekhana properties of Katu and Kashaya Rasa's present in these three Dravyas, may removes Doshas like Visha, Vahni and Mala of Parada.

4. Utthapana Samskara:

The Utthapana Samskara of Parada was performed to regain Parada from dissociated form or Nashtapishta Swarupa into original state. Nashapishta Kalka was subjected for Patana Karma to regain the Parada. This Samskara should be carefully conducted as there is possibility of more amount of loss of Parada. As per opinion of Rasa scholars and practical experience the loss of Parada can be prevented by just drying in sunlight and Patana Karma. It should not be washed with hot water/Kanji to avoid its loss in Jalagati. The Initial weight of Nashtapishta Roopi Kalka taken for Utthapana Samskara was 640 gms , and after Utthapana 485 gms was obtained. Weight loss 11 gms may be due to mechanical loss during the Mardana procedure or may be due to Jala Gati, and Mala Gati.

5. Patana Samskara:

A. Urdhwa Patana Samskara:

In Urdhwa Patana Samskara, Parada was triturated with 1/4th Shuddha Tamra with the help of Nimbu Swarasa and Saindhava Lavana, till formation of amalgam; it was subjected for Urdhwa Patana Karma. It was observed that during amalgamation, use of Nimbu Swarasa and Saindhava Lavana accelerates the formation of Amalgam. This is the 1st Samskara where the Tamra, a metallic substance is used for procedure; this is may be because being higher in place in electro-chemical series, it is highly reactive and forms amalgam very easily when compared with other metals. Tamra having higher boiling point of $2310^{\circ} \mathrm{C}$, and impurities like Naga and Vanga of $325^{\circ} \mathrm{C}$ and $233^{\circ} \mathrm{C}$, gets attached to Tamra and don't sublimate and remain at bottom, thus only

Shuddha Parada gets sublimated. This property of Tamra can be taken as Vishaghna in the classics. Total 6 hrs of heat was given. Maximum temperature maintained was $600^{\circ} \mathrm{C}$. The initial weight of Poorva Samskarit Parada was 485 gms and after Urdhwa Patana 449 gms of Parada obtained. 36 gms weight loss may be due to Jalagati and Malagati.

B. Adha Patana Samskara:

In Adha Patana Samskara, Parada was triturated with 1/16th of Kalka Dravyas and paste was applied to inner side of upper pot and dried completely, other pot was kept below first pot and Sandhibandana was done. From the above, with help of Vanopalas, Agni is given for 6hours with temperature ranging between $300-800^{\circ} \mathrm{C}$. Parada got sublimated then collected in the lower pot leaving behind the Kalkadravya along with Doshas(Bhujakanchuka Nashanam). The Initial weight of Poorva Samskarit Parada was 449 gms and after Adha Patana 413gms Parada obtained. 36gms weight loss may be due to, mechanical loss or Jala Gati, and Mala Gati.

C. Tiryak Patana Samskara:

In Tiryak Patana Samskara, Parada was triturated with equal quantity of Dhanyabhraka along with Kanji till Parada becomes Nashtapishta form. This Kalka was placed in Tiryak Patana Yantra and heat was given and Parada was collected in another flask. This is considered as best among 3 Patanavidhi because; Vaporized and distilled mercury will be completely separated from the Pishti. The Dhanyabhraka (Mica) a mineral contains plenty of trace elements in it and as it is heat stable mineral it allows the Shudha Parada to get distilled completely leaving the impurities behind. Total $3^{1 / 2} \mathrm{hrs}$ of heat was given. Maximum temperature maintained was $700^{\circ} \mathrm{C}$. The initial weight of Poorva Samskarit Parada was 413 gms and after Tiryak Patana 352 gms Parada obtained. 61 gms weight loss may be due to, mechanical loss or Jala Gati, Dhooma Gati, and Mala Gati.

6. Rodhana Samskara:

In Rodhana Samskara, Poorva Samskarita Parada was kept soaked in the Saindhava Jala prepared in the ratio of 1:5 (Saindhava:Jala) for 3 days. Due to Poorva Samskara's Parada becomes inactive (Swarnadi Grasa Shakti becomes reduced). Saindhava acts as catalyst in doing Mukhikarana of Parada because of its Ushna, Tikshna Guna and Deepana and Pachana Karma. Initial weight of Poorvasamskarita Parada taken for Rodhana was 352 gms and after Rodhana 352 gms was obtained. There was no weight loss.

7. Niyamana Samskara:

In Niyamana Samskara of Parada, it was kept in Pottali Containing Kalka of specific drugs, and Dolayantra Swedana is done in Kanji for 1 day. Drugs used for preparation of Kalka are having Ushna, Tikshna Guna due to these properties they are said to be controlling Chapalata /Chanchalata properties of Parada which was increased due to the increased Veerya of Parada during Rodhana Samskara. Initial weight of Poorvasamskarita Parada taken for Niyamana was 352 gms and after 350 gms Parada was obtained. 2 gms weight loss may be due to, Jala Gati, Dhooma Gati, and Mala Gati .

8. Deepana Samskara:

It is the first Samskara in which first time minerals like Sphatika, Kasisa, Tankana along with some herbs have been mentioned. Kalka was prepared along with these drugs and Swedana is done in Dolayantra containing Kanji for 3days. All Dravyas used here have properties like, Kshareeya, Agnideepaka and Pachaka Karma may be due to these properties Intra orbital space of the Mercury increases and helps for increasing Grasa Grahana Shakti in gross digestive capacity of Parada for Suvarnadi Dhatus in it. After all Ashta Samskara's Parada loss was 30% more quantity of Parada was lost during Trividha Patana Samskara. Initial weight of Poorvasamskarita Parada taken for Deepana Samskara was 350 gms and after 350 gms Parada was obtained. There was no weight loss.

II. Gandhaka Shodhana:-

Gandhaka Shodhana was done by Dhalana method, using Go-Dughdha as a media. As Ghrita media makes Gandhaka more Snigdha and thus hinders the sublimation process. Milk reacts with molten sulfur remove arsenic like chemical impurities quickly and rearrange the crystal size. Milk is commonly recommended antidote for poisoning; it might help in neutralizing the sulfur poisoning. The change in color of milk from white to yellow and sulfur smell may indicate the dissolution of fat soluble sulfur content in the milk. Seven times procedure was repeated to remove any remnant Doshas. After completion of procedure Gandhaka was washed with hot water to remove remnants of milk and limpidity. Initial weight of Gandhaka was 500 gms , and after Shodhana 425 gms was obtained. 75 gms weight loss which shows the concentration of physical impurities like clay, mud, sand, threads etc which are removed by Galana procedure. The Chemical impurities like lead, arsenic etc. may be removed by absorbing over to colloidal fatty globules of milk. Smell of Gandhaka was totally lost after Shodhana with milk. Milk reduces Ushna, Tikshna Guna of Gandhaka. The

Shodhita Gandhaka was observed brittle and dull yellow color may be due to the change in crystalline structure (from mono clinic to rhombic), while passing through the stage of melting.

III. Tamra Samanya Shodhana by Nirvapa method in following Drava-Dravyas:-

1. In Tila Taila:-It has Madhura, Tikta, and Kashaya Rasa, Vyavyi, Vikashi, Vishada, Deepana, Lekhana, Ushna, Guru Gunas, by these properties it may causes Snighdhata (softening) and Bhedhana and removal of the Doshas present in Tamra. 600gms of Tamrapatras were taken and after Nirvapa 676 gms Tamrapatras were obtained. There was 76 gms weight gain, may be because of adherence of fatty substances. Color of Tila Taila was changed to golden brown to brown after Nirvapa and pH-5 to 6 may be due to over the surface electro-microscopic study of Samanya Shodhita Tamra has shown the presence of media in the intra-molecular space which suggest that media has definite role to play in Shodhana and Marana to convert it into Bio-available form.
2. In Takra:-It is having Kashaya, Amla Rasa, Ushna, Laghu, Deepana, Grahi Guna. By these properties it may cause Bhedhana (breaking) effect on the material and help to remove the Malas present in the Tamra. 676 gms Tamra patras were taken and after Nirvapa 579 gms Tamra patras were obtained. There was 97 gms weight loss may be because of mechanical loss. Color of Takra was changed to Milky white to Greyish after Nirvapa and pH-4 to 5 may be due to lactic acid could react with the cooper oxides to form cupric lactate $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{CuO}_{3}\right)$ which was then reduced to copper in the quenching process.
3. In Gomutra:-It has Katu, Tikta, Kashaya Rasa, Tikshana, Ushna, Laghu, Deepana, Kshara properties. By these properties it may destroyed many undesired substances from the Tamra. 579 gms Tamra patras were taken and after Nirvapa 523 gms were obtained. 56 gms weight loss may be due to mechanical loss. Color of Gomutra was changed to light brown to dark brown after Nirvapa and pH-8 to 9 may be due to the reaction between ammonia from Gomutra and copper to form the cuprammonium ions $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]$.
4. In Kanji:-It is having Amla Rasa, Tikshana, Ushna, Laghu Guna, Deepana, Bhedana and may cause Doshanirmulana as well as introducing Agneya and Akashiya Gunas in Tamra. 523gms Tamra patras were taken and 434 gms were obtained. 89 gms weight loss may be due to physical loss. Color of Kanji was changed to white to greyish after Nirvapa and $\mathrm{pH}-3$ to 5 may be due to organic acid could chelate the loosened copper and may form precipitate with

Copper ions to change the chemical and structural pattern of copper.
5. In Kulttha Kwatha:-It has Kashaya Rasa, Laghu, Ushna, Vidahana Guna. By this it may cause Bhedhana of Tamra and Tamra became brittle. 434 gms Tamra patras were taken and 406 gms were obtained. 28 gms weight loss may be due to mechanical loss. Color changed from brown to blackish brown and pH-6 to 7 after Nirvapa, may be due to organic acid could chelate the loosened copper and may form precipitate with copper ions to change the chemical and structural pattern of copper.
IV. Tamra Vishesha Shodhana:-Samanya Shodhita Tamra (406gms) was subjected for Vishesha Shodhana by Pachana procedure, Tamra patras were immersed in a vessel containing Gomutra and $1 / 8^{\text {th }}$ part Saindhava Lavana kept over fire for boiling till 6 hours. Saindhava and Gomutra contained Lekhaniya and Kshariya Guna .They may be removing the alkaline soluble impurities along with trace element present in Tamra.
After Vishesha Shodhana, observed weight loss (21 gms) was may be due to the reaction between ammonia from Gomutra and copper to form the cuprammonium ions $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]$, a chemical complex gets washed away during washing with hot water.

V. Preparation of Kajjali:-

Initial weight of Ashta Samskarita Parada was 120 gms , and Shu. Gandhaka 120 gms after the weight of Kajjali obtained 238 gms .2 gms weight loss may be due to performing the confirmatory test or some quantity of Kajjali was adhered to Khalwa.
Kajjali acts as base for subsequent Rasa preparations. Kajjali is a compound of Parada and Gandhaka which was prepared without using Agni, hence it is considered as Sagandha Niragni Murchana Kalpa of Parada. Samaguna Kajjali was prepared by triturating Ashtasamskarita Parada and Shudha Gandhaka. Trituration was continued till it got jet black color and loss of shining particles (Samyaka Kajjali Lakshana). After 24 hours of trituration it became jet black color (Kajjalabha). This black color might be due to formation of black sulfide of mercury.
Constant and consistent pressurized trituration has its definite role to play in pharmo-dynamic properties of Kajjali. It is accountable to the timed release and sustained release of the active molecules of the drug. Trituration was done till the attainment of Nischandratwa. This indicates the reduction in the amount of free mercury in Kajjali.

DISCUSSION ON PROCEDURE OF TAMRA SINDOOR KUPIPKWA RASAYANA:-

I. Preparation of Kupi:-

The Kupi was prepared in Green colored beer bottle as it is chemically inert \& it won't allow the sunrays to enter into it, also prevents any reaction. For withstand heat Gopichandana smeared cloth was wrapped in 7 layers one after the others to the kupi. Application of Gopichandana smeared cloth strengthen the bottle and helps in regulation and maintenance of temperature inside the Kupi to facilitate the chemical reaction as sudden increase or decrease of temperature may also leads the breakage of Kupi.

II. Filling of Kajjali and Shodhita Tamra Pieces into the Kachakupi:-

238 gms of Kajjali was divided into two equal parts and slowly filled in to two Kachakupi with the help of funnel and spoon. After, 30gms of Shodhita Tamra in small pieces were added in each bottle as mentioned in classic. Lower $1 / 3^{\text {rd }}$ of the Kupi (after marking) was filled with ingredients, as large quantity may cause clogging of mouth of Kupi resulting in incomplete sublimation.

III. Placing of Kupi in Valuka Yantra:-

Two Abhraka Patra width of $4-5 \mathrm{~cm}$ and thickness of 0.5 cm were placed over the central hole of Valuka Yantra. Mica is fireproof, incombustible and nonflammable. It has excellent thermal stability and may be exposed to high temperatures without noticeable effect. So, the thin layer of Abhraka patra might help in preventing direct heat to the bottom of the Kupi which may burst the Kupi and dissipate the heat energy appropriately through the sand.

The ingredients (Kajjali and Shu.Tamra pieces) filled Kupi should be placed exactly at the centre of Valukayantra. The remaining portion of the Yantra was filled by the Valuka. The purpose of using the Valuka is to maintain the uniform and sustained heat to the Kupi.

IV. Preparation of Tamra Sindoora:-

Heating pattern in three stages was done because it is the utmost important thing. During graded heating process, control over heating and regulation of temperature according to time duration has to be maintained. The heating pattern followed is - initially gradual increase, then maintenance of the same temperature for specific time, followed by further increase in temperature for sublimation and allowed to self-cooling to room temperature. This heating pattern helps to provide sufficient time for the ingredients to react with each other and form a complex-compound under pressure.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470
V. Shalaka Sanchalana:-During the procedure 2 types of Shalaka are used-
Tapta Shalaka:-To burn extra sulfur deposited at the neck region of Kирi.
Sheeta Shalaka:-To know the state of Kajjali i.e. whether it is in powder form, melted form or boiling.

VI. Melting of Kajjali:-

After $151 / 2$ hrs of heating, when temperature is about $250-264^{0} \mathrm{C}, \mathrm{HgS}$ compound formed in Kajjali might attain the particular temperature of transformation into semisolid form. In the normal pressure, most chemical compounds and elements posses three different states at different temperature. In this case the transition from the solid to the gaseous state requires an intermediate semisolid state.

VII. Chocking of Sulfur at the neck:-

Chocking of the narrow neck of the bottle is observed, because of increased chain reactions and formation of polymorphs of Sulfur. This Sulfur becomes more viscous and produces dense clouds. It chocks the narrow neck of the bottle.

VIII. Boiling of Kajjali:-

Here temperature is around $295-318^{\circ} \mathrm{C}$. Kajjali tends to attain its boiling point and about to sublimate, this is the stage where in the Kajjali from semisolid phase attains the gaseous stage and tends to move towards neck part of Kupi.

IX. Blue flame at neck of Kupi:-

To clear chocking of Sulfur at neck of the Kupi Tapta Shalaka was inserted. This process involves burning of excess of Sulfur at the neck region; here Sulfur burns giving blue flame appearance. As soon as excess of Sulfur is burnt blue flame will disappears, here the temperature range was around $392-400^{\circ} \mathrm{C}$.

X. Copper coin test:-

After compound formation if heat is continued, then mercury will escape. Hence corking should be done at this period. So to check escaping of mercury copper coin was placed on mouth of the Kupi and kept for two minutes, greyish white discoloration of copper coin was observed, it confirms the mercury vapors are coming out means the formed compound has started to disintegrate due to high temperature hence the bottle was corked immediately.

XI. Sublimation of Product at neck of the Kupi:-

Corking was done before the escape of mercury. To facilitate sublimation and collection of the product at cooler part i.e., neck of the Kupi. Valuka was removed from the neck region of Kupi.

XII. Corking of Kupi:-

Copper coin test was done. It was positive. Suryodaya Lakshana was clearly seen in the Kupi, it means compound was started to collect at neck of the Kupi.

Corking was done with the help of Gopichandana smeared cloth. Sand surrounding the neck of the Kupi was removed it facilitate the condensation of sublimated material at a cooler area i.e. neck of the Kupi. At this moment ingredients will convert into gaseous form and starts forming the complex. After corking temperature was maintained between 500$700^{\circ} \mathrm{C}$ \& then allowed for self-cooling. At higher temperature, however, the viscosity of ' S ' decreased as de-polymerization of sulfur occurs that's why the product obtained was in a compact crystalline mass at the neck region of the Kupi without leaving mercury to evaporate.

XIII. Temperature Pattern:-

Kramagni heating pattern was maintained for 36 hours.

Mriduagni:- $150-250^{\circ} \mathrm{C}$ for 15 hrs
Madhyamagni:-250-500 ${ }^{\circ} \mathrm{C}$ for 12 hrs

Teevragni:-500-700 ${ }^{\circ} \mathrm{C}$ for 9 hrs

This is the unique specialty of this preparation in which gradual rise of Agni, maintenance of the same for specific period, further increases in temperature for sublimation and then self cooling, and might help in breaking of the bonds formed in Kajjali and chemical reaction in specific temperature along with re-crystallization.

XIV. Yield of Tamra Sindoor:

Out of 298 gms of ingredients (Kajjali+Shu.Tamra) 177 gms Sindoor was obtained, and Yield was 60%.

In the present study, Kajjali was prepared with Ashtasamskarita Parada and Shu. Gandhaka. Then flakes of Shu. Tamra were added in the Kupi and Kupipakwa was done. Free Parada and Gandhaka together forms enough mercuric sulfide and after sublimation yield in the form of Sindoor is obtained. Since Parada and Gandhaka directly combine to form Kajjali there is a complete chemical bonding between both hence yield is good. Tamra is added as flakes hence its quantity in traces is seen in final product.

DISCUSSION ON ANALYTICAL STUDY:-

I. Zeta potential:-In the present study, Zeta potential of Tamra Sindoor is -28.6 mV , which suggests that Tamra Sindoor carries certain energy may be acquired from Puta process.
II. Particle size:-Particle size is one of the factors which affect dissolution and absorption of drug, solubility increases with decreasing particle size, since dissolution and absorption are inversely proportional to each other. The particle size of Tamra Sindoor is 486.3 nm , as the particle size is less so the
dissolution is fast. That indicate the quality of the Tamra Sindoor was good.
III. SEM-EDX:-SEM-EDX study reveals the accurate elemental analysis of the sample, this study of elements enables us to explore major, minor and trace elements present in the sample. Five different spectrum of different wavelength was studied and it was noted that Aluminium, Sulfur, Iron, Copper were seen in K shell, and Mercury, Lead were seen in L shell. Peaks of Mercury (Hg) and Sulfur (S), is in higher concentration and various small peaks of Iron (Fe), Copper (Cu), Mercury (Hg), Aluminium (Al). Lead (Pb) is seen in minimal concentrations. These small peaks may refer to compounds of Mercury and Copper and their respective elements, which are present in small concentration along with mercuric sulfide which is in higher concentration. The concentration of mercury and sulfur is rich in the peaks amounting to approximately around 98% inferring in a compounding of mercuric sulfide.
It is evident by ICP-OES, which estimates rich quantity of Mercury ($1900.0 \mathrm{mg} / \mathrm{kg}$) and Sulfur ($92490.0 \mathrm{mg} / \mathrm{kg}$) also evident by SEM-EDX.
IV. CHNS:-This test used to determine the organic materials in the sample. The ratio of Carbon and Nitrogen determines the quality of organic matter. In the present study Carbon/Nitrogen is 0.248 which determines the given sample is completely inorganic.
(Carbon-0.956\%, Nitrogen-3.848\%)
V. ICP-OES:-During the preparation of Tamra Sindoor with Ashta Samskarita Parada, Gandhaka and Tamra was used. The Abhraka was made use in Ashta Samskara of Parada during Patana procedures. Hence Aluminium ($171.5 \mathrm{mg} / \mathrm{kg}$), Arsenic ($83.1 \mathrm{mg} / \mathrm{kg}$), Copper ($1464.0 \mathrm{mg} / \mathrm{kg}$), Tellurium $(18.8 \mathrm{mg} / \mathrm{kg})$, Iron $\quad(187.8 \mathrm{mg} / \mathrm{kg})$, Sulfur ($92490.0 \mathrm{mg} / \mathrm{kg}$), Mercury (1900), Selenium (Not detected), Zinc ($82.7 \mathrm{mg} / \mathrm{kg}$), Gold (Not detected), elements were selected to estimate their concentration in final product.

The Tamra Sindoor is a Kantastha Kupipakwa Rasayana. The sublimated product was rich in

Mercury and Sulfur in the proportion of Mercury ($1900.0 \mathrm{mg} / \mathrm{kg}$), Sulfur ($92490.0 \mathrm{mg} / \mathrm{kg}$) respectively and Copper was present with concentration of $(1464.0 \mathrm{mg} / \mathrm{kg})$. Trace of Aluminium ($171.5 \mathrm{mg} / \mathrm{kg}$), Iron $(187.8 \mathrm{mg} / \mathrm{kg})$ was seen may be reflecting the impression of Abhraka during Ashtasamskara. Presence of Arsenic $(83.1 \mathrm{mg} / \mathrm{kg})$, Tellurium $(18.8 \mathrm{mg} / \mathrm{kg})$ may have been contributed from Gandhaka. Zinc ($82.7 \mathrm{mg} / \mathrm{kg}$) in meager quantity is seen may be addition due to Copper.

CONCLUSION:-

Ashta Samskarita Parada is free from Doshas and also makes it easily digestible, absorbable, and easy for assimilation by the tissue and having Sarvarogahara, and Rasayana properties. So because of these properties, to fortify Tamra Sindoor, Ashta Samskara of Parada was done. Ashta Samskaras of Parada was done as per the Rasa Hridaya Tantra. 30% of loss was found after Ashtasamskaras. Gandhaka is $2^{\text {nd }}$ most important drug in Rasashastra. Gandhaka Shodhana was done as per the Rasa Ratna Samucchaya, Go-dughdha was used as a media for Dhalana. 15 \% of loss was found after Shodhana. The Kajjali was prepared as per Rasa Tarangini and Tamra Sindoor was prepared and confirmed for Siddhi lakshana's as per Ayurveda Sara Sangrah. After Kupipakwa preparation 60% yield was obtained.

The Physico- chemical parameters like-pH value, loss on drying, ash value, loss on ignition and solubility were within normal limits as per AFI standards. Particle size of Tamra Sindoor is 486d.nm, Zeta potential of Tamra Sindoor is -28.6Mv, SEM-EDX report shows the atomic\% and weight\% of Sulfur and mercury are more as compared to other trace elements viz. Aluminium, Copper, Iron and Lead.

The CHNS report shows; Carbon/Nitrogen is 0.248 which determines the given sample is completely inorganic. The ICP-OES report shows, presence of Mercury, Sulfur, Copper, Aluminium, Arsenic, Tellurium, Iron and Zinc. The concentration of Mercury, Sulfur and Copper are higher than other trace elements.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

Reports of Physico-Chemical Analysis pH analysis:-

Zeta Potential:- Particle Size:-

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

SEM-EDX:-

International Journal of Trend in Scientific Research and Development＠www．ijtsrd．com eISSN：2456－6470

\＄pertrums 10								
Element	Ine Type	Agpar ent Concentestion	KRatio	W上䠓		Standard Label	$\begin{aligned} & \text { Factory } \\ & \text { standard } \end{aligned}$	Standard Calibration Date
A）	E sertes	0.05	0.00033	053	027	\＄203	Yes	
5		1.74	0.01503	188．85	1.00	1963	$7{ }^{7}$	
Fe	K series	001	0000097	006	0.28	Fe	Yes	
Cu	E series	000	000000	000	0.36	Cu	Yes	
He	tseries	538	0.09061	72.78	1.50	Hete	tes	
P\％	Itseries	0.09	0.00089	079	154	PbTo	Yen	
Tetail				30000				

Spectrumil								
Biement	tine Type	Apparent Concentration	＊Ratio	WW＊	W7\％Sigme	Standard latel	Factory Standard	Standard Calibration Date
A	k．serles	0.02	0.00013	0.32	0.89	A2303	Yes	
5	－5．series	0.36	0.00482	9.30	0.77	Fe52	Yes	
Fe	K－series	0.03	0.00097	0.33	0.37	Fere	Yes	
Cis	K．series	0.00	0.00000	0.00	0.43	Cu	Yes	
He^{4}	1 series	739	0.07139	90.06	0.85	Hepe	Yee	
Pb	1 series	0.00	0.00009	0.00	2.03	PbTe	Yes	
Total				100.00				

Spectrum 12								
Element	Line Type	Apparent Concentratiman	k Ratio	Wis	Wits sigma	Standard Labet	Fsetery seandaral	Standard Callibration Date
为	K series	0.01	0.00010	0.38	0.20	N1203	Yes	
5	k series	1.04	0.00693	12.79	982	Fesa	Ves	
Fit		0.00	0000009	0.00	0.27	Fit	Yes	
Eu	Kiseries	0.00	0.00005	0.04	0.37	Cu	Ves	
He	1 series	9.13	0.08825	$4{ }^{4} 5.08$	1.49	Were	Yes	
亚	1 Leries	021	000198	1.92	1.65	部下	Ves	
Fotal：				160.00				

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470
CHNS:-

ICP-OES:-

TEST RESULTS

Test Parameters Metal Content (mg/kg)	Result	Method of Test	Method Detection Limit
Aluminium (A1)	171.5	DIN EN 16711-1 By microwave digestion followed by ICP-OES (ISO-11885)	$0.33 \mathrm{mg} / \mathrm{kg}$
Arsenic (As)	83.1		$0.1 \mathrm{mg} / \mathrm{kg}$
Coppor (Cu)	1464.0		$0.1 \mathrm{mg} / \mathrm{kg}$
Telhurium (Te)	18.8		$0.12 \mathrm{mg} / \mathrm{kg}$
Iron (Fe)	187.8		$0.1 \mathrm{mg} / \mathrm{kg}$
Sulphur (\$)	92490.0		$1.06 \mathrm{mg} / \mathrm{kg}$
Mercury (He)	1900.0		$0.04 \mathrm{mg} / \mathrm{kg}$
Selenium (So)	ND		$2.09 \mathrm{mg} / \mathrm{kg}$
Zinc (ln)	82.7		$0.16 \mathrm{mg} / \mathrm{kg}$
Giold (An)	ND		$0.3 \mathrm{~mm} / \mathrm{kg}$

ND: Not Detected

AUTHOKISED SICINATORY

> Ome: DIYA LAB C/O Kavita Medical, S-1, Plot No. E-5, Shreeswami Aadhar CHS, Opp. DK Tower, Sector-20, Airoli, Navi Mumbai, Maharashtra, India - 400708 Telt $+91-9821210096,+91-9029315640 . \mathrm{F}-\mathrm{mailt}$ divalabs/femail. oom Wehsiter www. divalah.eom

REFERENCES:-

[1] Dr. Chandrabhushana Jha, Ayurvediya Rasa shastra, 2nd Edition, Varanasi, Chaukhambha Surabharati Prakashan, reprint 2006, p.no.-173.
[2] Srimat Govinda Bhagavatpada’s Rasa Hridaya Tantram with commentary called Mugdhavbodini of Chaturbhuja Mishra, translated by Acharya Daulat Ram Rasashastri, Chaukhambha Orientalia, Varanasi, 1st edition 1989, 2/4, p.no.20-31.
[3] Sri Vagbhatacharya, Rasa Ratna Samucchaya, edited by Pandit Sri Dharmanandana sharma, $2^{\text {nd }}$ edition, Varanasi, Motilal Banarasidas publication, 1996, 5/29, p.no.-79.
[4] Sri Sadananda Sharma, Rasa Tarangini, edited by Kashinatha Shastri, $11^{\text {th }}$ Edition, New Delhi, Motilala Banarasidas publication, 1979, 17/17, p.no.-412.
[5] Vagbhatacharyas, Rasa Ratna Samucchaya, translated with Rasaprabha Hindi commentary by dr. Indradev Tripathi Ayurvedacharya edited by Kapil Dev Giri, Chaukhambha Sanskrit Sansthana Varanasi Reprint 2019, 3/21-22, p.no.-28.
[6] Sri.Sadananda Sharma's Rasa Tarangini, Sri.Hari Datt Shastri's Prasadani, Hindi commentary, edited by Kashinath Shastri Mothilal Banarasidas Publishers New Delhi, reprint 2014, 6/107-111, p.no.-93.
[7] Acharya Shree Vagbhat, Rasaratna Samucchaya, edited by pandit sri Dharmanandana Sharma, $2^{\text {st }}$ edition, Varanasi Motilal banarsidasdas publication 1996, 10/6, p.no.-146.
[8] Vaidya Ramaraksha Patak, Ayurveda Sara Sangraha, 12th edition, Nagpur, Sri Baidyanath Ayurveda Bhavan Pvt. Ltd, 2011, p.no.-221.

