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ABSTRACT 

Since asphalt concrete exhibits elastic, plastic, and viscous properties 
in response to changes in temperature and external influences, 
establishing a relation-ship between stress and deformation is an 
important issue. The study of the elastic and viscosity properties of 
physical bodies began in 1868 with the introduction of the con-cept 
of relaxation by Maxwell. In 1890, Kelvin introduced the concept of 
retardation (subsequent effect). Different models have been proposed 
to establish the above-men-tioned relationship. Models such as 
Maxwell, Kelvin, Jeffries, Lesersich, Bingham, Burgers, Shvedov, 
Hutchek, and Crassus have been proposed. Despite the large num-ber 
of models offered, they are based on and are a combination of Hooke, 
Newton, and Saint-Venan models for elastic, viscous, and plastic 
bodies. 
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INTRODUCTION 

The Maxwell model consisted of the sum of the 
Hooke and Newton models (Fig-ure 1). The Maxwell 
model did not take retardation (delay of deformation) 
into acco-unt when considering relaxation. In the 
Kelvin-Foyxt model (Figure 2), relaxation is not 
observed [2]. Similarly, the advantages and 
disadvantages of the remaining mo-dels can be 
shown.  

   
Fig.1. 

Maxwell 
model. 

Fig.2. Kelvin-
Foyxt model 

Fig.3.Lesersich 
model. 

In 1874, a general linear connection was proposed by 
L.Boltzmann, and all the models shown were 
described by L. Boltzmann. It can be obtained as a 
special case of the Boltzmann’s connection [4]. 
The movement of a viscoplastic medium is 
characterized by peculiar features. Thus, when a 
viscoplastic medium is pushed through a round pipe,  

 
the central part of the flow is not deformed and moves 
like a solid, only a certain annular layer adjacent to 
the pipe walls is deformed. 

The description of complex mechanical properties of 
materials requires the use of mul-tie-lement models 
characterized by a large number of parameters. The models 
discussed in 

  
Fig.4. Fig. 5. 

the previous paragraphs contained two parameters (Е, σs or 
Е, µ or σs , µ). The model shown in Fig. 4. contains three 
parameters E1 Е2, µ1. The deformation law of such a 
medium can be obtained as follows: we write the 
deformation laws of simple elements I, II, III. 
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From here we easily find: 
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An example of a model with four parameters Е1, Е2 , 
µ1 , µ2 is shown in Fig.5. An example of a 2n-
parametric model is shown in Fig.6. 

With a large number of elements of the same type, it 
is convenient to switch to a model with a continuous 
distribution of parameters; deformation of such a 
model will be defined by some integral. 

 
Fig.6. 

The properties of many real materials cannot be 
satisfactorily described using the considered models, 
even with the introduction of a significant number of 
parameters. On the other hand, the use of complex 
multielement models is associated with the 
cumbersomeness of the mathematical apparatus. 

A compact form of the general linear law of 
deformation was proposed by L. Boltzmann. This law 
is based on the principle of superposition of 
deformations. 

Let the stress σ (τ) be applied to the body at the 
moment of time τ during a small time interval ∆τ; the 
latter caused some deformation, which, when the 
stress is removed, will not disappear immediately, but 
will gradually decrease. Let us assume that this 
deformation at an arbitrary moment t> τ is 
proportional to the magnitude of the acting stress σ 
(τ), the duration of the action ∆τ, and some decreasing 
function depending on the time elapsed since the 

moment τ. Thus, at the moment t> τ the deformation 
will have the value 

ττστϕ ∆− )()(t     (4) 

where φ(t-τ) is a monotonically decreasing function 
characteristic of a given material . 

 If, in addition, at the moment t the stress σ (τ) acts on 
the body, then the latter, according to Hooke's law, 
will cause instant deformation; total deformation at 
time t has the form: 
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By virtue of the superposition principle, the influence 
of the stress σ (τ) acting at the moment τ is not 
disturbed by the stresses applied at other moments of 
time. There-fore, if stresses σ (τj) acted at different 
times τj during time intervals ∆τj, then the de-
formation at time t is determined by the sum 
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Today, the above-mentioned complex properties of 
asphalt concrete are almost taken into account in the 
Boguslavsky model (Fig. 8), which generalizes the 
Maxwell (Fig.1), Kelvin-Foyхt model (Fig.2), 
Lesersich (Fig.3), and Burgers (Fig.7) models [3]. 

In the Boguslavsky model, the differential equation 
between the stress and deformation formed in asphalt 
concrete takes the following form [2]: 
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The solution of this equation concerning eating a 
single load is as follows.  

 
Fig.7. Burgers 

model. 
Fig. 8. Generalized model. 
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The quantities involved in this equation and their 
units of measurement are as follows: 

Р1  and 2Р - kinetic characteristics of asphalt 

concrete, 1 / c; 

θτθτ
τθ

θτ
τθ 1

)
5,0

(
5,0

, 2
21 −+±+−=РР  (9) 

θ - relaxation time, с; σ - stress, Mpa; τ  - 
retardation time, с; t - stress expo-sure time, с; −η  

viscosity coefficient n.s / cm2; Пε - plastic 

deformation; ЭКε - elastic- viscous part of 

deformation; −Дε  total deformation; E- modulus of 

elasticity, Мпа ; e- natural logarithm basis.  

The relative deformation after multiple loads is 
determined as follows [3]: 
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rК - coefficient of reduction of vertical stress to 

horizontal stress, Т1 - the number of loads of imported 
vehicles, Т1= К0КП т1 m2 , п- the number of 
downloads per hour, т1- coating temperature 500

С 
and the number of hours per day that are higher, m2 - 
coating temperature in three years 500

С and the 
number of days higher, К0 - co-efficient taking into 
account the number of arrows, КП - a factor that takes 
into account the width of the pavement and the 
location of the plot. λ - rest duration between 

downloads, 'τ - total duration of downloads,  

'τ = tnT1 

21,РР  are the kinetic characteristics of the 

deformation process (9) spreading the equation to 
Taylor's row, dropping infinitely small terms, we 
obtain the following. 
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The result (10) looks like this: 
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After unloading 

0
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This is the denominator under the sum sign in the 

equation 0,5 θ
λ5.0

e  < 1 is a geo-metric progression. 
Use the formula for the sum of the steps, instead (12) 
we create an equation  
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To verify this equation, a sample (similar to practical 
experiments) was calcula-ted by taking the problem. 

,46 c=τ ;4000c=θ  ;003,0
2

1 =
Р

Р
МПаE 70= ; 

8,0=σ Мпа; сМПа ⋅= 280000η  ; t= 0,05c 

(speed 30km / h); 3,0=rК ; n=40/соат ; 

с60=λ ; m1 =2; m2 =124; 501 =T ; 100' =τ  

in values, after some simplification, the numerical 
expression of (12) is equal to: 
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After unloading according to(13), 
0
∑Дε =0,00078+0,00002=0,0008. 

The calculations using the equation (14) overlapped 
with the results of the equ-ation in which the sum was 
involved.  
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