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ABSTRACT 

In this research paper, we apply the novel Temimi
method to six first order nonlinear partial differential equations
for exact solution namely: Burger’s equation, Fisher’s equation, 
Schrodinger equation, wave equation, advection equation 
KDV equations respectively. Unlike other semi
iterative methods, this method doesn’t require linearization, 
perturbation, discretization, or the calculation of
polynomials for nonlinear terms in the Adomian decomposition 
method (ADM). It gives the closed form solution of the problem 
if it exists in finite steps of a converging series that’s 
computationally convenient, easy to obtained and elegant. It 
solves the inherent problem of dealing with the nonlinear term in 
a straightforward way without stress. The result obtained 
revealed, all the chosen problems give rise to their closed form 
solution in simple steps which confirmed the method is 
powerful, reliable and has wide applicability to other nonlinear 
problems. 
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INTRODUCTION  
Nonlinear partial differential equations technically 
called evolution equations are equations that 
constitute the dissipative term and partial derivative 
of the dependent variable with respect to one or 
more of the independent variables. These equations 
feature prominently in most physical phenomena 
especially in the physical and applied sciences 
(Wazwaz, 2009). They modelled phenomena in the 
field of sciences, engineering, Biology, 
hydrodynamics, chemistry, physics, optical fibre, 
chemical kinetics, plasma physics, 
may others, Bekir, Tascan and Unsad (2015), 
(Feng, 2002). (Ebiwareme, 2021), Ebiwareme
Ndu (2021), (Liberty, 2021). Academics have 
devoted time to extensively studied these equations 
for analytical or approximate solution owing to 
their importance. All though most of the equations 
have closed form solutions, whereas others have 
solution which are difficult to obtained however 
due to the advent of portable computers, the 
solutions can be obtained with less computations.
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Nonlinear partial differential equations technically 
called evolution equations are equations that 

the dissipative term and partial derivative 
of the dependent variable with respect to one or 
more of the independent variables. These equations 
feature prominently in most physical phenomena 
especially in the physical and applied sciences 

They modelled phenomena in the 
field of sciences, engineering, Biology, 
hydrodynamics, chemistry, physics, optical fibre, 

 medicine and 
may others, Bekir, Tascan and Unsad (2015), 

(Ebiwareme, 2021), Ebiwareme and 
Ndu (2021), (Liberty, 2021). Academics have 
devoted time to extensively studied these equations 
for analytical or approximate solution owing to 
their importance. All though most of the equations 
have closed form solutions, whereas others have 

which are difficult to obtained however 
due to the advent of portable computers, the  
solutions can be obtained with less computations.  

 
Some of the methods proposed to study these 
equations include: Tanh-
Vinodh (2017), (Wazwaz, 2
Chebyshev collocation method Gupta and Saha 
(2015), Vaganan and Asokan (2003), Direct 
similarity method, Manafian, Mahrdad and Bekir 
(2016), �/�′ expansion method
(1998), Homogenous balance method, (Wazwaz, 
2007),extended tanh method, Fan and Zhao (2000), 
Gomez and Salas (2010), Variational Iteration 
method, Nourazr, Mohsen, Nazari
Homotopy perturbation method, Hashim, Norami 
and Al-Hadja (2021),Adomian decomposition 
method, Necdet and Konural
Kheybari and Khani (2008),spectral collocation 
method, Khatter and Temsah (2017), linear 
superposition method, Ma and Fan (2011),trial 
equation method, Gurefe, Sonmezoglu and Misirli 
(2011),Fractional sub-equation method, Zhang and 
Zhang (2011),First Integral Method, Zhang, Zhong, 
Shashan, Liu, Feng and Gao (2013), (Feng, 2013), 
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Ebiwareme and Ndu (2021), Banach contraction 
method, (Ebiwareme, 2021). 

Most recently, Temimi and Ansari proposed a semi-
analytical iteration method called (TAM) to 
successfully solve to linear and nonlinear functional 
problems. Unlike the ADM, HAM, VIM and HPM, 
this method solved the difficulties that often arise 
for nonlinear terms by writing it in the form of 
Adomian polynomials (ADM), construction of an 
Homotopy (HAM), calculation of the Lagrange 
multiplier (VIM) and tedious calculation of an 
algebraic calculation from corresponding terms as 
in HPM are overcome. TAM has been successfully 
applied to solve various problem, such as ODEs 
Azeez and Weli (2017), Duffing equation, Al-
Jawary and Al-Razzaq (2016),Chemistry problem, 
Al-Jawary and Raham (2016), Nonlinear ODEs, 
Temimi and Ansari (2015), Thin film flow 
problem, (Al-Jawary, 2017),second order multi-
point boundary value problems, Al-Jawary, Radhi 
and Ravnik (2017), Fokker-Planck’s equation, 
Temimi and Ansari (2011), Linear and nonlinear 
ODEs, Azeez and Weli (2017),Newell-White-head 
equation, Latif, Salim, Nasreen, Alifah and 
Munirah (2020). 

In this present article, our motivation is to apply 
this novel semi-analytical iteration method to solve 
six differentials nonlinear PDEs. To confirm the 
accuracy, reliability, robustness, and efficiency of 
this method, we seek to ascertain whether a closed 
form or analytical or an approximate solution will 
result from this method. The study is organized as 
follows. In section, the introduction of the study 
detailing PDEs and their applications in physical 
phenomena together with methods used hitherto to 
seek for their solutions. The fundamentals of the 
novel Temimi-Ansari method and the condition for 
its convergence is presented in section 2. In section 
3, we apply the AIM to six different nonlinear 
PDEs and seek closed form solutions and finally the 
conclusion of the study is given in section 4. 

BASICS OF THE ANALYTICAL ITERATION 

METHOD (AIM) 

Consider the general functional differential 
equation in operator form as follows 

������	 + ������	 + ���� = 0,   (1) 

� ��, ����� = 0, or ���0� = � and ��′ �0� = �  (2) 

Where � is the independent variable, ���� is an 
unknown function, ���� is a given known function, � is a linear operator, � is a nonlinear operator and � is a boundary operator. 

To implement the TAM method, we first assume 
that����� is an initial guess that satisfy the problem 
in Eq. (1) subject to Eq. (2). 

�������	 + ���� = 0, � ���, ����� � = 0or ���0� =
�	and ��′ �0� = �    (3) 

The next approximate solution is obtained by 
solving the problem 

�������	 + �������	 + ���� = 0, � ���, ����� � =0,	or ���0� = � and ��′ �0� = �   (4) 

The next iterate of the problem become 

�������	 + �������	 + ���� = 0, � ���, ����� � =0,	or ���0� = � and ��′ �0� = �   (5) 

Continuing the same way to obtain the subsequent 
terms, the general equation of the method becomes 

���������	 + �������	 + ���� =
0, � �����, �� !��� � = 0, or �����0� = � and 

����′ �0� = � 

Then the solution of the problem in Eq. (11) is 
given by ���� = lim�→∞ �����    (6) 

From Eq. (6), each &��� is considered alone as a 
solution for Eq. (1). This method easy to 
implement, straightforward and direct. The method 
gives better approximate solution which converges 
to the exact solution with only few members. 

NUMERICAL APPLICATIONS 

In this section, we apply the AIM to solve six 
Partial differential equations that finds usual 
applications in Science and Engineering. They 
include Fishers’ equation, wave equation, advection 
equation, Korteweg-Devries equation (KDV), 
Burger’s equation and Schrödinger equation 
respectively. 

Example 1. Consider the one-dimensional Burger’s 
equation of the form �' + ��� − ��� = 0    (7) 

Subject to the initial condition ���, 0� = 2�     (8) 

Applying TAM to both sides of the equation, we 
get  ���� = �' , ���� = ��� − ��� , ���, *� = 0 

The initial problem to be solved is of the form 

������, *�	 + ���, *� = 0, ����, *� = 2� (9) 

Integrating both sides of the above equation subject 
to the initial condition, we get the initial solution as 

����, *� = 2� 
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The second iterative solution is obtained using the 
equation 

������, *�	 + ������, *�	 + ���, *� =0, ����, *� = 2�     (10) 

Integrating both sides of the above using the initial 
condition yield the integral 

+ ��'��, *�,* = + ����� − ������,*
'
�

'
�

 

Solving the above integral yield, the second 
iterative solution as ����, *� = 2� − 4�*    (11) 

The next iterate of the problem is given by 

������, *�	 + ������, *�	 + ���, *� = 0, ����, *�= 2� 

Taking the inverse operator of both sides of the 
above yield 

. ��'��, *�,* = . ����� − ������,*'
�

'
�  (12) 

Plugging in the derivatives and evaluating, we 
obtain the third iterate as  

����, *� = 2� − 4�* + 8*�� − �0
1 *1� (13) 

Similarly, the next iterate is obtained with the 
problem 

���1��, *�	 + ������, *�	 + ���, *� =0, �1��, *� = 2�    (14) 

Integrating both sides using the initial conditions, 
we get the fourth iterate as follows 

. �1'��, *�,* = . ����� − ������,*'
�

'
�  (15) 

Substituting the derivatives, we obtain the solution 
as 

�1��, *� = 2� − 4�* + 8�*� − 16�*1 + 04
1 �*4 −04

1 �*5 + ��6
7 �*0 −⋯     (16) 

Using the relation, ���, *� = lim�⟶∞ ����, *�,	the 
closed form solution of the problem is obtained ���, *� = 2��1 − 2* + 4*� − 8*1 +⋯� 
���, *� = ��

���'     (17) 

Example 2. Consider the Fisher’s equation as 
follows �' = ��� + ��1 − ��    (18) 

Subject to the initial condition ���, 0� = :     (19) 

To implement TAM, we have the following 

���� = �' , ���� = −���� + ��1 − ��	, ���, *�= 0 

 

The first problem to be solved is given by the 
equation 

������, *�	 + ���, *� = 0, ����, *� = : (20) 

Taking the inverse operator of both sides yield the 
first iterative solution as ����, *� = : 

The second iterative solution is obtained using the 
relation 

������, *�	 + ������, *�	 + ���, *� =0, ����, *� = :    (21) 

Integrating both sides of the above using the initial 
condition yield the integral 

+ ��'��, *�,* = + ����� − ������,*
'
�

'
�

 

Solving the above integral yield, the second 
iterative solution as 

����, *� = : + :�1 − :�*   (22) 

The third iterate is solved using the relation 

������, *�	 + ������, *�	 + ���, *� = 0, ����, *�= : 

Taking the inverse operator of both sides using the 
initial condition, we get 

. ��'��, *�,* = . ����� − ������,*'
�

'
�  (23) 

Solving the above after plugging in the derivatives, 
we get the solution as ����, *� = : + :�1 − :�* + :�1 − :�:�1 −
2:� ';�! + =−:��1 − :�� '

>
1!?   (24) 

The fourth iterative solution is obtained using the 
problem 

���1��, *�	 + ������, *�	 + ���, *� =0, �1��, *� = :    (25) 

Integrating both sides using the given initial 
conditions, we obtained the integral as follows 

. �1'��, *�,* = . ����� − ������,*'
�

'
�  (26) 

Solving the integral above yield the iterative 
solution below. �1��, *� = 	: + :�1 − :�* + :�1 − :�:�1 −
2:� ';�! + :�1 − :��1 − 6: + 6:�� '

>
1! +⋯ (27) 

Continuing in similar fashion the subsequent terms 
will be determined, hence the solution of the 
problem is obtained using the relation ���, *� = lim�⟶∞

����, *� 
���, *� = 	: + :�1 − :�* + :�1 − :�:�1 − 2:� *�2!

+ :�1 − :��1 − 6: + 6:�� *13! + ⋯ 
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���, *� = ABC
�DA�ABC    (28) 

Example 3. Let’s consider the first-order wave 
equation in one-dimension as follows �' + E��� = 0, E > 0    (29) 

Subject to the initial condition 

���, 0� = sin �I�J � , ���0, *� =
�
J cos M

−EI*
J N 

��0, *� = sin �DOP'Q � , �'��, 0� = DOP
Q cos �P�Q �

       (30) 

Applying TAM to both sides, we get the following 
terms 

���� = �' , ���� = E���, ����, 0� = sin �I�J � 

The first iterate is obtained by solving the problem 
of the form 

������, *�	 + ���, *� = 0, ����, *� = sin �P�Q �
       (31) 

Integrating both sides subject to the initial 
condition, we get the initial solution as 

����, *� = sin �I�J � 

The second iterative solution is obtained by solving 
the problem 

������, *�	 + ������, *�	 + ���, *� =
0, ����, *� = sin �P�Q �     (32) 

Integrating both sides of the above using the initial 
condition yield the integral below 

. ��'��, *�,* = . ����� − ������,*'
�

'
�  (33) 

Solving the above integral yield, the second 
iterative solution as 

����, *� = =sin �P�Q � − cos �P�Q �? �OP'Q � (34) 

The next iterate of the problem is given by 

������, *�	 + ������, *�	 + ���, *� = 0, ����, *�
= sin �I�J � 

Taking the inverse operator of both sides of the 
above yield 

. ��'��, *�,* = . ����� − ������,*'
�

'
�  (35) 

Plugging in the derivatives and evaluating, we 
obtain the third iterate as  ����, *� =
sin �P�Q � R1 − �

�! �OP'Q �
�S − cos �P�Q � ROP'Q − �

1! �OP'Q �
1S

      (36) 

Continuing in the same way, the succeeding terms 
are obtained, and the closed form solution of the 
problem is given by 

���, *� = sin �I�J � cos M
EI*
J N

− cos �I�J � sin M
EI*
J N 

Using trigonometric identity, the above reduced to 
the form 

���, *� = sin =I ��DO'Q �?   (37) 

Example 4. Let’s consider the homogenous 
advection equation of the form �' + ��� = 0     (38) 

Subject to the initial condition ���, 0� = −�     (39) 

Implementing TAM on both sides of the equation, 
we have the following terms ���� = �' , ���� = ���, ���, *� = 0 

The first problem to be solved for the first iterate is 
given by 

������, *�	 + ���, *� = 0, ����, *� = −� (40) 

Integrating both sides of the above equation subject 
to the initial condition, we get the initial solution as ����, *� = −�     (41) 

The second iterative solution is obtained using the 
equation 

������, *�	 + ������, *�	 + ���, *� =0, ����, *� = −�    (42) 

Integrating both sides of the above using the initial 
condition yield the integral equation 

+ ��'��, *�,* = −+ �������,*
'
�

'
�

 

Solving the above integral yield, the second 
iterative solution as ����, *� = −� − �*    (43) 

The next iterate of the problem is given by 

������, *�	 + ������, *�	 + ���, *� = 0, ����, *�= −� 

Taking the inverse operator of both sides of the 
above yield 

. ��'��, *�,* = −. �������,*'
�

'
�   (44) 

Plugging in the derivatives and evaluating, we 
obtain the third iterate as  

����, *� = −� − �* − �*� − �
1 �*1  (45) 

Similarly, the next iterate is obtained by solving the 
problem below 

���1��, *�	 + ������, *�	 + ���, *� = 0, �1��, *�= −� 

Integrating both sides using the initial conditions, 
we get the fourth iterate as follows 
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. �1'��, *�,* = −. �������,*'
�

'
�   (46) 

Substituting the derivatives, we obtain the solution 
as 

�1��, *� == −� − �* − �*� − �
1�*1 − �

1 �*4 −⋯
       (47) 

Using the relation, ���, *� = lim�⟶∞ ����, *�,	the 
closed form solution of the problem is obtained ���, *� = −��1 + * + *� + *1 + *4 +⋯� 
���, *� = �

'D�     (48) 

Example 5. Consider the Korteweg-de Vries 
(KDV) equation which takes the form �' − 6��� + ���� = 0   (49) 

Subject to the initial condition 

���, 0� = − O;
� sec ℎ� �O�� �   (50) 

Applying TAM to both sides of the equation yield 
the expressions ���� = �' , ���� = −6��� + ����, ���, *� = 0 

The initial problem to be solved is of the form 

������, *�	 + ���, *� = 0, ����, *� =
− O;

� sec ℎ� �O�� �    (51) 

Integrating both sides of the above equation subject 
to the initial condition, we get the initial solution as 

����, *� = − O;
� sec ℎ� �O�� �   (52) 

The second iterative solution is obtained using the 
relation 

������, *�	 + ������, *�	 + ���, *� =
0, ����, *� = − O;

� sec ℎ� �O�� �   (53) 

Integrating both sides of the above using the initial 
condition yield the integral 

. ��'��, *�,* = . �6����� − ������,*'
�

'
�  (54) 

Solving the above integral yield, the second 
iterative solution as ����, *� =
− O;

� sec ℎ� �O�� � − OV WXYZ;�[\; �� Tan ℎ �O�� � (55) 

The next iterate of the problem is given by 

������, *�	 + ������, *�	 + ���, *� =0, ����, *� = 2�    (56) 

Taking the inverse operator of both sides of the 
above yield 

. ��'��, *�,* = . �6����� − ������,*'
�

'
�  (57) 

Plugging in the derivatives and evaluating, we 
obtain the third iterate as  

����, *� =
− O;

� sec ℎ� �O�� � − OV WXYZ;�[\; �� Tan ℎ �O�� � −O_
6 `abℎ4 =O�� ? �2 − coshdE�e�*� +⋯   (58) 

Continuing in the same, the succeeding term are 
obtained in a similar manner 

Using the relation, ���, *� = lim�⟶∞ ����, *�,	the 
closed form solution of the problem is obtained 

���, *� = − O;
� `abℎ� =O� �� − E�*�?  (59) 

Example 6. Consider the Schrödinger equation 
in the form �' + f��� = 0, ���, 0� = 1 + cos ℎ�2�� (60) 

Applying TAM to both sides of the equation, we 
get the constants ���� = �' , ���� = f���, ���, *� = 0 

The first problem to be solved is given by 

������, *�	 + ���, *� = 0, ����, *� = 1 +cos ℎ�2��     (61) 

Taking the inverse operator of both sides subject to 
the initial condition, we get the initial solution as ����, *� = 1 + cos ℎ�2��   (62) 

The next iterative solution is obtained using the 
equation 

������, *�	 + ������, *�	 + ���, *� = 0, ����, *�= 1 + cos ℎ�2�� 
Integrating both sides of the above using the initial 
condition yield the integral 

. ��'��, *�,* = . �f�����,*'
�

'
�    (63) 

Solving the above integral yield, the second 
iterative solution as ����, *� = 1 + cos ℎ�2�� + 4f cos ℎ �2�� (64) 

The third iterative solution of the problem is given 
by 

������, *�	 + ������, *�	 + ���, *� =0, ����, *� = 1 + cos ℎ�2��   (65) 

Taking the inverse operator of both sides of the 
above yield 

+ ��'��, *�,* = + �f�����,*
'
�

'
�

 

Plugging in the derivatives and evaluating, we 
obtain the third iterate as  

����, *� = 1 + cos ℎ�2�� + 4f cos ℎ �2�� +�4g'�;
�! cos ℎ�2��    (66) 

Similarly, the next iterate is obtained with the 
problem 
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���1��, *�	 + ������, *�	 + ���, *� =0, �1��, *� = 1 + cos ℎ�2��   (67) 

Integrating both sides using the initial conditions, 
we get the fourth iterate as follows 

. �1'��, *�,* = . �f�����,*'
�

'
�    (68) 

Substituting the derivatives, we obtain the solution 
as �1��, *� = 1 + cos ℎ�2�� + 4f cos ℎ �2�� +�4g'�;
�! cos ℎ�2�� + �4g'�>

1! cos ℎ�2��  (69) 

Using the relation, ���, *� = lim�⟶∞ ����, *�,	the 
closed form solution of the problem is obtainedas 

���, *� = 1 + cos ℎ�2�� h1 + �4f*� + �4f*��2!
+ �4f*�13! + �4f*�44! +⋯N 

���, *� = d1 + cos ℎ�2��ea4g'  (70) 

CONCLUDING REMARKS 

In this research article, the closed form, or exact 
solutions for six different nonlinear partial 
differential equation is investigated using the novel 
Analytical Iteration Method (AIM). The efficiency 
of the method is confirmed by solving the Burgers, 
Fisher’s, Advection, Schrödinger, wave and KDV 
equations respectively. The method gives an 
analytical solution which converges rapidly to the 
exact solution with more terms considered. This 
solution is easily verifiable in few steps of iteration 
subject to the initial condition and is 
computationally convenient since it doesn’t require 
perturbation, discretization, and linearization. It is 
observed the method is reliable, efficient, and 
applicable to all class of nonlinear problems in the 
fields of Science and Engineering. 
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