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ABSTRACT 
In this research paper, the Laplace transform method combined 
with the semi-analytical Adomian decomposition method 
(LADM) is proposed to solve the mathematical model of crime 
deterrence in society. The model is solved to obtain analytical 
solution to the governing parameters in the form of a rapidly 
convergent series to illustrate its reliability, capability, and 
efficiency of this hybrid method. The practical result obtained 
reveal, the method is accurate and an efficient tool for solving 
wide variety of several first and higher order models.
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INTRODUCTION 
The term global warming is defined as the unabated 
steady rise in the level of atmospheric carbon (iv) 
oxide gas beyond an allowable threshold. From pre
industrial times, the level of C𝑂  was just 
(Parts per million). This number has r
worrisome level of 395ppm (Parts per 
million).Misra and Verma (2013), Rasool and 
Schneider (1971), (Tennakone, 1990). This rising 
trend of atmospheric carbon (iv) oxide if not 
checked does not bode well for both human and the 
ecosystem balance. Sequel to this, group of 
industrialized nation under the aegis of G
gathered severally to brainstormed on how to 
mitigate the effect of climate change occasioned by 
the ominous rise of carbon (iv) oxide (Pluss, 1956), 
McMichael, Woodruff and Hales (20
efforts have been made by these countries to reduce 
and stabilize the future concentrate C
legislation, Woodwell, Hobbie, Houghton, Melillo, 
Moore, Peterson, and Shaver (1983). Reports 
abound that shows climate change accounts for 
about 90% of health risks or challenges faced by 
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The term global warming is defined as the unabated 
steady rise in the level of atmospheric carbon (iv) 
oxide gas beyond an allowable threshold. From pre-

was just 270ppm 
(Parts per million). This number has risen to a 

ppm (Parts per 
million).Misra and Verma (2013), Rasool and 
Schneider (1971), (Tennakone, 1990). This rising 
trend of atmospheric carbon (iv) oxide if not 
checked does not bode well for both human and the 

equel to this, group of 
industrialized nation under the aegis of G  have 
gathered severally to brainstormed on how to 
mitigate the effect of climate change occasioned by 
the ominous rise of carbon (iv) oxide (Pluss, 1956), 
McMichael, Woodruff and Hales (2006). Concerted 
efforts have been made by these countries to reduce 
and stabilize the future concentrate C0  via 
legislation, Woodwell, Hobbie, Houghton, Melillo, 
Moore, Peterson, and Shaver (1983). Reports 
abound that shows climate change accounts for 

t 90% of health risks or challenges faced by  

 
human. Therefore, if this rise in carbon (iv
not checked, it will portend danger to humans. For 
example, extreme weather conditions such as 
floods, Tsunami, windstorm, and drought are all 
caused by climate change. The attendant effects of 
the above conditions are direct injuries, 
malnutrition, infectious diseases, and airborne 
disease, Marten, Jettsen, Niessen and Rothmans 
(1995). 

Equally, increased in the presence of vectors during 
this period cause vector
malaria, diarrhoea, dengue fever and others 
(Alexiadis, 2007). The accompanying heat waves 
also evoke respiratory and cardiovascular problems 
to humans. Following the above adverse effects of 
carbon (iv) oxide in the atmosphere
understanding behind the factors responsible for the 
increased level of C0  in the atmosphere and their 
effects is needed. Previous studies have shown that 
forest biomass and human population are the 
primary factors responsible for the rise in t
of carbon (iv) oxide. Human activities like 
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human. Therefore, if this rise in carbon (iv) oxide is 
portend danger to humans. For 

example, extreme weather conditions such as 
floods, Tsunami, windstorm, and drought are all 

limate change. The attendant effects of 
the above conditions are direct injuries, 
malnutrition, infectious diseases, and airborne 
disease, Marten, Jettsen, Niessen and Rothmans 

Equally, increased in the presence of vectors during 
vector-borne disease such as 

malaria, diarrhoea, dengue fever and others 
(Alexiadis, 2007). The accompanying heat waves 
also evoke respiratory and cardiovascular problems 
to humans. Following the above adverse effects of 
carbon (iv) oxide in the atmosphere, a better 
understanding behind the factors responsible for the 

in the atmosphere and their 
effects is needed. Previous studies have shown that 
forest biomass and human population are the 
primary factors responsible for the rise in the level 
of carbon (iv) oxide. Human activities like 
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deforestation and burning of fossil fuel triggers the 
level of atmospheric C0 . Upstaging the forest-
biomass carbon (iv) oxide link due to human 
activities also lead to increase in the level of 
atmospheric carbon (iv) oxide, Detwiler and Hall 
(1988), Khasnis and Nettleman (2005), (Kurane, 
2010). 

Volume of studies have been devoted to 
understanding the interaction of human population, 
carbon (iv) oxide and its attendant effects on human 
population and climate change. Caetano, Gherardi 
and Yoneyama (2011) have considered the 
mathematical model that relates atmospheric 
C0 , forest biomass and GDP. In this study, it was 
shown that clean technology and reforestation are 
needed to attain desired C0  level. Malhi and Grace 
(2000), (Ewers, 2006), Kremen, Niles, Dalton, 
Daily, Ehrlich, Fay, Grewal and Culley (2000), 
(Mahar, 1989), Olabisi, Reich, Johnson, 
Kapuscinski, Suh and Wilson (2009) have studied 
the connection between human activities and global 
warming using feedback control. The study reveal 
increased in the level of carbon (iv) oxide has 
destabilizing effect. The biomass-carbon (iv) oxide 
system have been investigated using a mathematical 
model. The study show that excessive deforestation 
destabilizes the biomass-carbon (iv) oxide 
equilibrium.  

The Laplace transformation and Adomian 
decomposition method (LADM) is a hybrid semi-
analytical method which is a fusion of the two 
methods. The method requires taking the Laplace 
transform of both sides of the equation using the 
accompanying initial condition. Thereafter, the 
resulting solution is then written in operator form 
which gives an 𝑛 −fold integral proportional to the 
highest degree of the invertible function. The zeroth 
order and the recursive algorithm are then obtained 
which gives the solution that converges to the exact 
solution if it exists. The LADM originally proposed 

by Khuri, Songen and Mendelson (2003), (Khuri, 
2004), Khuri and Alchikh (2019, 2020) is 
preferable over the famous Adomian decomposition 
method because it converges faster to the exact 
solution. It has been extensively applied in the 
following areas: linear and nonlinear PDEs, 
coupled systems of PDEs, numerical solution of the 
Duffing equation, analytical solution of an HIV 
model, Newell-Whitehead-Segel equation, systems 
of ordinary differential equations, linear and 
nonlinear integral equation with weak kernel, nth-
order integro-differential equations, two-
dimensional viscous fluid with shrinking sheet, 
logistics equation, numerical solution of the crime 
deterrence model, nonlinear function equation and 
convection diffusion-dissipative equations, (Fadaei, 
2011), Khan, Hussain, Jafari and Khan (2010), 
(Yusufoglu, 2006), (Nasser, 1997), (Ongun, 2011), 
(Pue-on, 2013), (Cherrualt, 2002), (Dogan, 2012), 
(Hendi, 2011), (Wazwaz, 1999, 2010), (Waleed, 
2013), (Manafianheris, 2012), Mohamed and Torky 
(2013), Koroma, Widattala, Kamera and Zhang 
(2013), Islam, Khan, Faraz and Austin (2010), 
Yindoula, Youssouf, Bissanga, Bassino and Some 
(2014), (Khuri, 2001), Al-Khaled and Allan (2005), 
(Doan, 2012). 

In this present study, we seek analytical solution to 
the parameters governing the problem using 
Laplace Adomian decomposition method. The 
article is composed as follows: section 1 takes the 
introduction. In section 2, the basics, and 
fundamentals of the Adomian decomposition 
method is extensively discussed. Section 3presents 
an in-depth review of the hybrid Laplace Adomian 
decomposition method. In sections 4 & 5, the Padé 
approximation and application of LADM to the 
model problem is presented. Numerical application 
via simulation is contained in section 6 and finally 
the section 7 gives the concluding remarks. 
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ADOMIAN DECOMPOSITION METHOD (ADM) 
Consider a general nonlinear differential equation of the form 
𝐹[𝑦(𝑥)] = 𝑔(𝑥)          (1) 

Where 𝐹 is a nonlinear operator and 𝑦, 𝑔 are both functions of 𝑥 

Decomposing the nonlinear operator, 𝐹 into two parts comprising a linear and nonlinear operator. 

𝐿[𝑦(𝑥)] + 𝑅[𝑦(𝑥)] + 𝑁[𝑦(𝑥)] = 𝑔(𝑥)       (2) 

Where 𝐿 is the highest order derivative that’s assumed to be invertible, 𝑅 is the linear differential operator 
with order less than that of 𝐿, 𝑁 is a nonlinear term and 𝑔 is the source term 

Rewriting Eq. (2) for 𝐿[𝑦(𝑥)], we obtain 
𝐿[𝑦(𝑥)] = 𝑔(𝑥) − 𝑅[𝑦(𝑥)] − 𝑁[𝑦(𝑥)]       (3) 

Taking the inverse operator, 𝐿  on both sides of Eq. (3), we get 
𝑦(𝑥) = 𝐿 𝑔(𝑥) − 𝐿 𝑅[𝑦(𝑥)] − 𝐿 𝑁[𝑦(𝑥)]       (4) 

Where 𝜙 is the term arising from the integration of the source term.It is obtained using the following 
sequence depending on the order of the given equation. 

𝜙 =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑦(0)                                                                                                               𝑓𝑜𝑟 𝐿 =

𝑑

𝑑𝑥

𝑦(0) + 𝑥𝑦 (0)                                                                                                𝑓𝑜𝑟 𝐿 =
𝑑

𝑑𝑥

𝑦(0) + 𝑥𝑦 (0) +
𝑥

2!
𝑦 (0)                                                                           𝑓𝑜𝑟 𝐿 =

𝑑

𝑑𝑥

𝑦(0) + 𝑥𝑦 (0) +
𝑥

2
𝑦 (0) +

𝑥

3!
𝑦 (0)                                                    𝑓𝑜𝑟 𝐿 =

𝑑

𝑑𝑥
⋮                           
⋮                          

𝑦(0) + 𝑥𝑦 (0) +
𝑥

2!
𝑦 (0) +

𝑥

3!
𝑦 (0) + ⋯ +

𝑥

𝑛!
𝑦( )(0)                  𝑓𝑜𝑟 𝐿 =

𝑑

𝑑𝑥

  

By the standard Adomian decomposition method, we write the unknown solution as an infinite 
decomposition series of the form 
𝑦(𝑥) = ∑ 𝑦 (𝑥)          (5) 

Putting Eq. (5) into Eq. (4), we obtain 
∑ 𝑦 (𝑥) = 𝜙 − 𝐿 𝑅[∑ 𝑦 (𝑥)] − 𝐿 𝑁[∑ 𝑦 (𝑥)]    (6) 

Matching both sides of Eq. (6), we obtain the zeroth order component given by 
𝑦 = 𝜙 

Then the recursive relation is given by 
𝑦 (𝑥) = −𝐿 𝑅[𝑦 ] − 𝐿 𝑁[𝑦 ], 𝑛 ≥ 0       (7) 

The solution of the problem in Eq. (1) is obtain as limit of the decomposing series 
𝑦(𝑥) = lim → 𝑦 (𝑥)          (8) 

Similarly, the nonlinear term can be determined by an infinite series of the Adomian polynomials. That is,  
𝑁[𝑦 , 𝑦 , 𝑦 , … , 𝑦 ] = ∑ 𝐴         (9) 

Then the 𝐴  are obtained from the relation 

𝐴 =
!

[𝑁(∑ 𝜆 𝑦 )] , 𝑛 = 0,1,2,3       (10) 

Using Eq. (9), the first five Adomian polynomials are given as 

𝐴 = 𝑁(𝑦 ) 

𝐴 = 𝑦 𝑁 (𝑦 ) 
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𝐴 = 𝑦 𝑁 (𝑦 ) +
1

2!
𝑦 𝑁 (𝑦 ) 

𝐴 = 𝑦 𝑁 (𝑦 ) + 𝑦 𝑦 𝑁 (𝑦 ) +
1

3!
𝑦 𝑁 (𝑦 ) 

𝐴 = 𝑦 𝑁 (𝑦 ) +
1

2
𝑁 (𝑦 )(2𝑦 𝑦 + 𝑦 ) +

1

2
𝑁 (𝑦 )𝑦 𝑦 +

1

4!
𝑁( )(𝑦 )𝑦  

𝐴 = 𝑦 𝑁 (𝑦 ) +
1

2
𝑁 (𝑦 )(2𝑦 𝑦 + 2𝑦 𝑦 ) +

1

3!
𝑁 (𝑦 )(3𝑦 𝑦 + 3𝑦 𝑦 ) +

4

4!
𝑁( )(𝑦 )(𝑦 𝑦 )

+
1

5!
𝑁( )(𝑦 )𝑦  

𝐴 = 𝑦 𝑁 (𝑦 ) +
1

2!
𝑁 (𝑦 )(2𝑦 𝑦 + 2𝑦 𝑦 + 𝑦 ) +

1

3!
𝑁 (𝑦 )(3𝑦 𝑦 + 𝑦 + 6𝑦 𝑦 𝑦 )

+
1

4!
𝑁( )(𝑦 )(4𝑦 𝑦 + 6𝑦 𝑦 ) +

5

5!
𝑁( )(𝑦 )𝑦 𝑦 +

1

6!
𝑁( )(𝑦 )𝑦  

𝐴 = 𝑦 𝑁 (𝑦 ) +
1

2!
𝑁 (𝑦 )(2𝑦 𝑦 + 2𝑦 𝑦 + 2𝑦 𝑦 ) +

1

3!
𝑁 (𝑦 )(3𝑦 𝑦 + 3𝑦 𝑦 + 3𝑦 𝑦 + 6𝑦 𝑦 𝑦 )

+
1

4!
𝑁( )(𝑦 )(4𝑦 𝑦 + 12𝑦 𝑦 𝑦 + 4𝑦 𝑦 ) +

1

5!
𝑁( )(𝑦 )(5𝑦 𝑦 + 10𝑦 𝑦 )

+
1

6!
𝑁( )(𝑦 )𝑦 𝑦 +

1

7!
𝑁( )(𝑦 )𝑦  

𝐴 = 𝑦 𝑁 (𝑦 ) +
1

2!
𝑁 (𝑦 )(2𝑦 𝑦 + 2𝑦 𝑦 + 2𝑦 𝑦 + 𝑦 )

+
1

3!
𝑁 (𝑦 )(3𝑦 𝑦 + 3𝑦 𝑦 + 3𝑦 𝑦 + 6𝑦 𝑦 𝑦 + 6𝑦 𝑦 𝑦 )

+
1

4!
𝑁( )(𝑦 )(4𝑦 𝑦 + 12𝑦 𝑦 𝑦 + 12𝑦 𝑦 𝑦 + 6𝑦 𝑦 + 𝑦 )

+
1

5!
𝑁( )(𝑦 )(5𝑦 𝑦 + 20𝑦 𝑦 𝑦 + 10𝑦 𝑦 ) +

1

6!
𝑁( )(𝑦 )(𝑦 𝑦 + 15𝑦 𝑦 )

+
7

7!
𝑁( )(𝑦 )𝑦 𝑦 +

1

8!
𝑁( )(𝑦 )𝑦  

LAPLACE ADOMIAN DECOMPOSITION METHOD (LADM) 
In this subsection, we outline the basics of the fundamentals of the fusionLaplace transformation and 
Adomian decomposition method (LADM) 

Consider a functional differential equation of the form 
𝐿[𝑢(𝑥)] + 𝑅[𝑢(𝑥)] + 𝑁[𝑢(𝑥)] = 𝑔(𝑥)       (11) 

Subject to the initial condition 

𝑢(𝑥, 0) = 𝑓(𝑥),
( , )

= ℎ(𝑥)        (12) 

Rearranging the above, we obtain the following relation for 𝐿[𝑢(𝑥)]  
𝐿[𝑢(𝑥)] = 𝑔(𝑥) − 𝑅[𝑢(𝑥)] − 𝑁[𝑢(𝑥)]       (13) 

Applying Laplace transform on both sides of Eq. (11), supposing the highest differential operator is of order 
two and using the differentiation property, we get 

𝑠 ℒ{𝑢(𝑥)} − 𝑠ℎ(𝑥) − 𝑓(𝑥) = ℒ{𝑔(𝑥)} − ℒ{𝑅𝑢(𝑥)} − ℒ{𝑁𝑢(𝑥)} 

𝑠 ℒ{𝑢(𝑥)} = 𝑠ℎ(𝑥) + 𝑓(𝑥) + ℒ{𝑔(𝑥)} − ℒ{𝑅𝑢(𝑥)} − ℒ{𝑁𝑢(𝑥)} 

ℒ{𝑢(𝑥)} =
( )

+
( )

+ ℒ{𝑔(𝑥)} − ℒ{𝑅𝑢(𝑥)} − ℒ{𝑁𝑢(𝑥)}    (14) 

Next, we apply the inverse transform on both sides of Eq. (14), we obtain 

𝑢(𝑥) = 𝜙(𝑥) − ℒ ℒ{𝑅𝑢(𝑥)} − ℒ{𝑁𝑢(𝑥)}        (15) 

Where 𝜙(𝑥) is the term arising from the first three terms on the right-hand side of Eq.   
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Next, we assume the solution as decomposing series in the form 
𝑢(𝑥) = ∑ 𝑢 (𝑥)          (16) 

Similarly, the nonlinear terms are written in terms of the Adomian polynomials 
𝑁𝑢(𝑥) = ∑ 𝐴           (17) 

Where the 𝐴  represents the Adomian polynomials defined in the form 

𝐴 =
!

𝑁 ∑ 𝜆 𝑦 , 𝑛 = 0,1,2,3       (18) 

Plugging Eqs (16) and (17) into Eq. (15), we obtain 

∑ 𝑢 (𝑥) = 𝜙(𝑥) − ℒ ℒ{𝑅 ∑ 𝑢 (𝑥)} − ℒ{𝑁 ∑ 𝐴 }    (19) 

Matching both sides of Eq. (19), we obtain an iterative algorithm in the form 

𝑢 (𝑥) = 𝜙(𝑥) 

𝑢 (𝑥) = −ℒ
1

𝑠
ℒ 𝑅 𝑢 (𝑥) −

1

𝑠
ℒ 𝑁 𝐴  

𝑢 (𝑥) = −ℒ ℒ{𝑅 ∑ 𝑢 (𝑥)} − ℒ{𝑁 ∑ 𝐴 }      (20) 

𝑢 (𝑥) = −ℒ
1

𝑠
ℒ 𝑅 𝑢 (𝑥) −

1

𝑠
ℒ 𝑁 𝐴  

 

𝑢 (𝑥) = −ℒ
1

𝑠
ℒ 𝑅 𝑢 (𝑥) −

1

𝑠
ℒ 𝑁 𝐴  

Then the solution of the differential equation is obtained as the sum of decomposed series in the form 
𝑢(𝑥) ≈ 𝑢 (𝑥) + 𝑢 (𝑥) + 𝑢 (𝑥) + ⋯        (21) 

PADÉ APPROXIMATION 
In Mathematics and other applied sciences, power series representation of a function is usually in truncated 
form. To approximate these functions to an appreciable degree, polynomials are used because their 
singularities are easily noticeable in each finite region. However, the radius of convergence may not be large 
enough to contain two boundaries, for this reason, power series is not always the best method to 
approximate a function. To overcome this inherent hurdle, a new approximation is applied to the solution 
obtained using power series as a quotient of two functions with varying degrees in a finite interval. 

Padé approximation has been widely used to approximate several problems and has tremendous applications 
especially in computer calculation because it gives a better approximation without truncating its power 
series and still in problems where the series diverges. The different Padé approximants are obtained with the 
use of symbolic software Mathematica  

A rational approximation to a function 𝑓(𝑥) on [𝑎, 𝑏] is the quotient of two polynomials, 𝑃 (𝑥) and 𝑄 (𝑥) 
of degrees 𝑁 and 𝑀 respectively. It is denoted by [𝑁 𝑀⁄ ](𝑥) 

That is, [𝑁 𝑀⁄ ](𝑥) =
( )

( )
 , 𝑎 ≤ 𝑥 ≤ 𝑏       (22) 

Now consider the formal power series 
𝑓(𝑥) = ∑ 𝑐 𝑥           (23) 

𝑓(𝑥) =
( )

( )
+ 𝑂(𝑥 )        

Rearranging gives 

𝑓(𝑥) −
( )

( )
= 𝑂(𝑥 )         (24) 
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Multiply both sides of Eq. (24) by a constant keep it unchanged, hence we impose the normalization 
condition. 
𝑄 (0) = 1.0           (25) 

Next, we require that 𝑃 (𝑥) and 𝑄 (𝑥) have non-common factors, so we write the coefficients of the 𝑃 (𝑥) 
and 𝑄 (𝑥) as follows 

  𝑃 (𝑥) = 𝑎 + 𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥

𝑄 (𝑥) = 𝑏 + 𝑏 𝑥 + 𝑏 𝑥 + ⋯ + 𝑏 𝑥
       (26) 

Using Eqs. (25) and (26), we multiply Eq. (23) by 𝑄 (𝑥). This linearizes the coefficient equation. It is given 
in detailed form as 
(𝑎 + 𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 ) = (𝑏 + 𝑏 𝑥 + 𝑏 𝑥 + ⋯ + 𝑏 𝑥 )(𝑐 + 𝑐 𝑥 + 𝑐 𝑥 + ⋯ + 𝑐 𝑥 ) 

Equating the coefficients of 𝑥 , 𝑥 , … , 𝑥 successively to zero, we obtain the system of Equations 

 

𝑏 𝑐 + 𝑏 𝑐 + ⋯ + 𝑏 𝑐 = 0
𝑏 𝑐 + 𝑏 𝑐 + ⋯ + 𝑏 𝑐 = 0
… … … … … … … … … … … … … … … … … … … . .

𝑏 𝑐 + 𝑏 𝑐 + ⋯ + 𝑏 𝑐 = 0

      (27) 

For 𝑗 < 0, we define 𝑐 = 0 for consistency. Setting 𝑏 = 1, Eq. (22) become a set of 𝑀linear equations for 
𝑀 unknown coefficients in the denominator.  

𝑐𝑁−𝑀+1 𝑐𝑁−𝑀+2 … . 𝑐𝑁+1

𝑐𝑁−𝑀+2 𝑐𝑁−𝑀+3……𝐶𝑁+2
… … … … … … … … … …

𝑐𝑁 𝑐𝑁+1……………………..𝐶𝑁+𝑀+1

𝑏𝑀

𝑏𝑀−1
⋮

𝑏1

=

𝐶𝑁+1

𝐶 𝑁+2
⋮

𝐶𝑁+𝑀

       (28) 

Solving the above system in Eq. (28), the coefficients 𝑏  for 𝑖 = 1,2, … . 𝑀 may be found. Since the 
coefficients of the numerator, 𝑐 , 𝑐 , 𝑐 , … . , 𝑐  is known. We equate the coefficients of 1, 𝑥, 𝑥 , … , 𝑥 , 𝑥  
to obtain the remaining coefficients 𝑎 , 𝑎 , 𝑎 , … , 𝑎  

𝑥 : 𝑐 − 𝑎 = 0 
𝑥 : 𝑐 𝑏 + 𝑐 − 𝑎 = 0 
𝑥 : 𝑐 𝑏 + 𝑐 𝑏 + 𝑐 − 𝑎 = 0 
… … … … … … … … … … … … … 
𝑥 : 𝑐 𝑏 + 𝑐 𝑏 + 𝑐 − 𝑎 = 0 
𝑥 : 𝑐 𝑏 + 𝑐 𝑏 + 𝑐 − 𝑎 = 0 

Writing the above in explicit form, we obtain 
𝑎 = 𝑐  
𝑎 = 𝑐 + 𝑏 𝑐  
𝑎 = 𝑐 + 𝑏 𝑐 + 𝑏 𝑐             (29) 

… … … … … … … … … … 
𝑎 = 𝑐 + ∑ 𝑏 𝑐  , 𝑁 = 𝑚𝑖𝑛(𝑁, 𝑀)  

In view of Eqs. (28) and (29), the numerator and denominator of the Pade approximant are all determined 
which agrees with the original series to the order of 𝑥 . 

Now, to solve the system (29) for the set of unknowns, we assume that the Eqs. (28) and (29) are non-
singular, so we can obtain the solution via the determinant. See [42-45]  

[𝑁 𝑀⁄ ] =

     ……..

⋮ ⋮
           …….

⋮

∑ ∑ ∑

…….

⋮
………….
⋮ ⋮

      (30) 

To obtain the diagonal Pade approximants of different orders such as [2 2⁄ ], [4 4⁄ ], [6 6⁄ ], we use symbolic 
software Mathematica   

APPLICATION OF LADM TO THE MODEL 
Given the mathematical model for global warming as follows 
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= 𝑄 + 𝜆𝑁 − 𝛼𝑋 − 𝜆 𝑋𝐹         (31) 

= 𝑠𝑁 1 − − 𝜃𝑋𝑁 + 𝜋𝜙𝑁𝐹        (32) 

= 𝜇𝐹 1 − − 𝜙𝑁𝐹 + 𝜋 𝜆 𝑋𝐹        (33) 

Rearranging the above Eqs(31) − (33), we obtain 

= 𝑄 + 𝜆𝑁 − 𝛼𝑋 − 𝜆 𝑋𝐹         (34) 

= 𝑁(𝐿 − 𝑁) − 𝜃𝑋𝑁 + 𝜋𝜙𝑁𝐹        (35) 

= 𝐹(𝑀 − 𝐹) − 𝜙𝑁𝐹 + 𝜋 𝜆 𝑋𝐹        (36) 

𝑋(0) > 0, 𝑁(0) ≥ 0, 𝐹(0) ≥ 0        (37) 

Where the parameters 𝑋, 𝑁 and 𝐹 have their usual meanings 
𝑋 = amount of 𝐶0  in the atmosphere 
𝑁 = Available human population 
𝐹 = Forest Biomass 

Taking the Laplace Transform of both sides, we get 

ℒ = ℒ{𝑄 } + ℒ{𝜆𝑁} − ℒ{𝛼𝑋} − ℒ{𝜆 𝑋𝐹}      (38) 

ℒ = ℒ{𝑁(𝐿 − 𝑁)} − ℒ{𝜃𝑋𝑁} + ℒ{𝜋𝜙𝑁𝐹}      (39) 

ℒ = ℒ{𝐹(𝑀 − 𝐹)} − ℒ{𝜙𝑁𝐹} + ℒ{𝜋 𝜆 𝑋𝐹}      (40) 

Applying the formula for Laplace transform in the first derivative, we obtain 
𝑤ℒ{𝑋} − 𝑋(0) = ℒ{𝑄 } + 𝜆ℒ{𝑁} − 𝛼ℒ{𝑋} − 𝜆 ℒ{𝑋𝐹}     (41) 

𝑤ℒ{𝑁} − 𝑁(0) = ℒ{𝑁(𝐿 − 𝑁)} − 𝜃ℒ{𝑋𝑁} + 𝜋𝜙ℒ{𝑁𝐹}     (42) 

𝑤ℒ{𝐹} − 𝐹(0) = ℒ{𝐹(𝑀 − 𝐹)} − 𝜙ℒ{𝑁𝐹} + 𝜋 𝜆 ℒ{𝑋𝐹} (43) 

Using the initial condition in Eq. (37), Eqs (41) - (43) reduced to 

𝑤ℒ{𝑋} = + 𝜆ℒ{𝑁} − 𝛼ℒ{𝑋} − 𝜆 ℒ{𝑋𝐹}       (44) 

𝑤ℒ{𝑁} = ℒ{𝑁(𝐿 − 𝑁)} − 𝜃ℒ{𝑋𝑁} + 𝜋𝜙ℒ{𝑁𝐹}      (45) 

𝑤ℒ{𝐹} = ℒ{𝐹(𝑀 − 𝐹)} − 𝜙ℒ{𝑁𝐹} + 𝜋 𝜆 ℒ{𝑋𝐹}      (46) 

Further simplification by dividing both sides by 𝑤, we get 

ℒ{𝑋} = + ℒ{𝑁} − ℒ{𝑋} − ℒ{𝐴}       (47) 

ℒ{𝑁} = ℒ{𝑁(𝐿 − 𝑁)} − ℒ{𝐵} + ℒ{𝐶}      (48) 

ℒ{𝐹} = ℒ{𝐹(𝑀 − 𝐹)} − ℒ{𝐶} + ℒ{𝐴}      (49) 

Where 𝐴 = 𝑋𝐹, 𝐵 = 𝑋𝑁, 𝐶 = 𝑁𝐹        (50) 

By the Laplace transform decomposition method, we represent the solution as infinite series of the form 
𝑋 = ∑ 𝑋 , 𝑁 = ∑ 𝑁 , 𝐹 = ∑ 𝐹        (51) 

Where the terms 𝑋 ,   𝑁  and 𝐹  are to be obtained via the recursive relation. Similarly, the nonlinear 
operators, 𝐴, 𝐵 and 𝐶 are decomposed as follows 
𝐴 = ∑ 𝐴 , 𝐵 = ∑ 𝐵 , 𝐶 = ∑ 𝐶        (52) 

Where 𝐴 , 𝐵  and 𝐶  are the Adomian polynomials. The first eight of these polynomials are given by 
𝐴 = 𝑋 𝐹  

𝐴 = 𝑋 𝐹 + 𝑋 𝐹  

𝐴 = 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹  

𝐴 = 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹  
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𝐴 = 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹         (53) 

𝐴 = 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹  

𝐴 = 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹  

𝐴 = 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹  

𝐴 = 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹 + 𝑋 𝐹  

𝐵 = 𝑋 𝑁  

𝐵 = 𝑋 𝑁 + 𝑋 𝑁  

𝐵 = 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁  

𝐵 = 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁  

𝐵 = 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁        (54) 

𝐵 = 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁  

𝐵 = 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁  

𝐵 = 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁  

𝐵 = 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁 + 𝑋 𝑁  

𝐶 = 𝑁 𝐹  

𝐶 = 𝑁 𝐹 + 𝑁 𝐹  

𝐶 = 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹  

𝐶 = 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹  

𝐶 = 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹        (55) 

𝐶 = 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹  

𝐶 = 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹  

𝐶 = 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹  

𝐶 = 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹 + 𝑁 𝐹  

Putting Eqs. (51) and (52) into Eqs (47) - (49) 

ℒ{∑ 𝑋 } = + ℒ{∑ 𝑁 } − ℒ{∑ 𝑋 } − ℒ{∑ 𝐴 }   (56) 

ℒ{∑ 𝑁 } = ℒ{∑ 𝑁 (𝐿 − ∑ 𝑁 )} − ℒ{∑ 𝐵 } + ℒ{∑ 𝐶 }   (57)  

ℒ{∑ 𝐹 } = ℒ{∑ 𝐹 (𝑀 − ∑ 𝐹 )} − ℒ{∑ 𝐶 } + ℒ{∑ 𝐴 }   (58) 

Matching both sides of Eqs (56) – (58) yield the following iterative algorithms 

ℒ{𝑋 } =
𝑄

𝑤
 

ℒ{𝑋 } = ℒ{𝑁 } − ℒ{𝑋 } − ℒ{𝐴 }  

ℒ{𝑋 } = ℒ{𝑁 } − ℒ{𝑋 } − ℒ{𝐴 }       (59) 

ℒ{𝑋 } = ℒ{𝑁 } − ℒ{𝑋 } − ℒ{𝐴 }  

⋮ 

ℒ{𝑋 } = ℒ{𝑁 } − ℒ{𝑋 } − ℒ{𝐴 }  

 
ℒ{𝑁 } = 0 

ℒ{𝑁 } = ℒ{𝑁 (𝐿 − 𝑁 )} − ℒ{𝐵 } + ℒ{𝐶 }   

ℒ{𝑁 } = ℒ{𝑁 (𝐿 − 𝑁 )} − ℒ{𝐵 } + ℒ{𝐶 }      (60) 

ℒ{𝑁 } = ℒ{𝑁 (𝐿 − 𝑁 )} − ℒ{𝐵 } + ℒ{𝐶 }  

⋮ 
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ℒ{𝑁 } = ℒ{𝑁 (𝐿 − 𝑁 )} − ℒ{𝐵 } + ℒ{𝐶 }  

 
ℒ{𝐹 } = 0 

ℒ{𝐹 } = ℒ{𝐹 (𝑀 − 𝐹 )} − ℒ{𝐶 } + ℒ{𝐴 }  

ℒ{𝐹 } = ℒ{𝐹 (𝑀 − 𝐹 )} − ℒ{𝐶 } + ℒ{𝐴 }      (61)   

ℒ{𝐹 } =
𝜇

𝑤𝑀
ℒ{𝐹 (𝑀 − 𝐹 )} −

𝜙

𝑤
ℒ{𝐶 } +

𝜋 𝜆

𝑤
ℒ{𝐴 } 

   

ℒ{𝐹 } =
𝜇

𝑤𝑀
ℒ{𝐹 (𝑀 − 𝐹 )} −

𝜙

𝑤
ℒ{𝐶 } +

𝜋 𝜆

𝑤
ℒ{𝐴 } 

NUMERICAL APPLICATION 
In this section, we apply the LADM to the numerical solution of the model using simulation. 

Applying the inverse Laplace transform to both sides of Eqs (59) – (61) gives 

ℒ{𝑋 } =  , ℒ{𝑁 } = , ℒ{𝐹 } =         (62) 

Substitution of Eq (62) into the second equations in Eqs (59) – (61), we get 

ℒ{𝑋 } =
𝜆

𝑤
−

𝛼𝑄

𝑤
+

𝜆 𝑄

𝑤
 

ℒ{𝑁 } =
( )

− +          (63) 

ℒ{𝐹 } =
𝜇

𝑤𝑀

𝑤𝑀 − 1

𝑤
−

𝜙

𝑤
+

𝜋 𝜆 𝑄

𝑤
 

Putting the values of ℒ{𝑋 }, ℒ{𝑁 } and ℒ{𝐹 } into the second Eqs. (59) – (61), we obtain 

ℒ{𝑋 } =
𝜆

𝑤
−

𝛼𝑄

𝑤
+

𝜆 𝑄

𝑤
 

ℒ{𝑁 } =
( )

− +          (64) 

ℒ{𝐹 } =
𝜇

𝑤𝑀

𝑤𝑀 − 1

𝑤
−

𝜙

𝑤
+

𝜋 𝜆 𝑄

𝑤
 

Evaluating the Laplace transform of the quantities on the RHS of Eqs. (62) – (64), and applying the inverse 
Laplace transform, we obtain the values, 𝑋 (𝑡), 𝑁 (𝑡), 𝐹 (𝑡)and 𝑋 (𝑡), 𝑁 (𝑡), 𝐹 (𝑡). Similarly, the other 
higher order solutions 𝑋 (𝑡), 𝑋 (𝑡), … . , 𝑋 (𝑡), 𝑁 (𝑡), 𝑁 (𝑡), … . , 𝑁 (𝑡),  𝐹 (𝑡), 𝐹 (𝑡), … . , 𝐹 (𝑡) are obtained 
recursively in a similar fashion using Eqs. (59) – (61) 

Now to obtain the solution of the parameters of interest in explicit form, we apply LADM to the model by 
taking the following values via simulation. We take 𝑋(0) = 1, 𝑁(0) = 1, 𝐹(0) = 1, for the three 
components of the model. Next, we take 𝑄 = 1, 𝜆 = 0.05, 𝛼 = 0.03, 𝜆 = 0.0001, 𝑠 == 0.01, 𝐿 =
1000, 𝜃 = 0.00001, 𝜇 = 0.2, 𝑀 = 2000, 𝜋 = 0.01, 𝜙 = 0.0002, 𝜋 = 0.01. A few first approximations for 
𝑋(𝑡), 𝑁(𝑡) and 𝐹(𝑡) are calculated and presented below using LADM as follows. 

ℒ{𝑋 } =  , ℒ{𝑁 } =  , ℒ{𝐹 } =         (65) 

ℒ{𝑋 } =
0.05

𝑤
−

0.03

𝑤
+

0.0001

𝑤
 

ℒ{𝑁 } =
.

−
.

+
.

        (66) 

ℒ{𝐹 } =
0.00999

𝑤
−

0.0002

𝑤
+

0.000002

𝑤
 

Taking the inverse Laplace transform of both sides of the above equations, we obtain the solutions of the 
parameters as follows. 
𝑋(𝑡) = 0.05𝑡 − 0.03𝑡 + 0.0000333333𝑡  
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𝑁(𝑡) = 0.00999𝑡 + 10 𝑡 − 3.33333 × 10 𝑡       (67) 

𝐹(𝑡) = 0.00999 − 0.0001𝑡 + 3.33333 × 10 𝑡  

𝑁ext., we calculate the [5 5⁄ ] Pade approximates of the infinite series solution which gives the following 
rational fraction approximation of the parameters of interest using Mathematica 

𝑋 (𝑡) =
1.  + 0.7195405𝑡 − 0.365002𝑡 + 0.0050𝑡 − 0.0000051𝑡

1 − 0.593𝑡 + 2.16 × 10 𝑡 + 1.68 × 10 𝑡 − 1.4 × 10 𝑡
 

𝑁 (𝑡) =
.  . . . . ×

. . × . × . ×
  

𝐹 (𝑡) =
1.  + 0.0502𝑡 − 0.00506𝑡 + 0.05308𝑡 − 1.6565 × 10 𝑡

1 − 0.049𝑡 + 6.9697 × 10 𝑡 − 3.503 × 10 𝑡 − 3.4 × 10 𝑡
 

 
 
RESULTS AND DISCUSSION 
In this subsection, the results of the problem in Eq. (1) are presented to show the effects of the governing 
parameters on the model. The effectiveness and accuracy of the numerical methods are displayed in Tables 
1-3 and Figures 1-7. The methods give highly accurate results in few steps. The results obtained when 
compared are consistent with literature 

Table 1: Numerical Computations for X(t) 
𝒕 LADM LADM-Padé 4th Order R-K 
0 1 1 1 

0.2 -1.27322 -1.27369 -1.27310 
0.4 -13.01120 -13.1023 -13.1201 
0.6 -39.11090 -41.6953 -41.6102 
0.8 -92.2623 -134.119 -134.102 
1.0 -196.788 -195.23 -194.21 
1.2 -392.44 178.808 178.801 

Table 2: Numerical computations for N(t) 
𝒕 LADM LADM-Padé 4th Order R-K 
0 1 1 1 

0.2 19.0903 19.0903 19.0901 
0.4 37.3871 37.3872 37.3862 
0.6 56.0688 56.0699 56.0700 
0.8 75.5955 75.6116 75.6110 
1.0 96.867 96.9949 96.9950 
1.2 121.397 122.11 122.020 

Table 3: Numerical Computations for F(t) 
𝒕 LADM LADM-Padé 4th Order R-K 
0 -1.05 -1.05 -1.05 

0.2 -1.04715 -1.04715 -1.04715 
0.4 -1.02824 -1.02796 -1.02796 
0.6 -0.983335 -0.973338 -0.97337 
0.8 -0.959682 -0.833489 -.0.833452 
1.0 -1.30508 -0.318347 -0.318340 
1.2 -3.3568 -5.94349 -5.94340 
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Figure 1 Computation of Atmospheric C𝑶𝟐 Against Time 

 

 
Figure 2 Computations of Human Population Against Time 

 

 
Figure 3 Computation of Forest Biomass Against Time 
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Figure 4 Computation of Amount of CO2 Against Human Population 

 

 
Figure 5 Computation of Amount of CO2 Against Forest Biomass 

 
Figure 6 Human population Against Forest Biomass 
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Figure 7 Computation of Atmospheric CO2, Human Population and Forest Biomass against Time 

 

CONCLUDING REMARKS 
In this study, the approximate analytical solution of 
the mathematical model describing the dynamics of 
carbon dioxide in the atmosphere is solved using 
the fusion of Laplace transform and Adomian 
decomposition method (LADM). The validity, 
accuracy, flexibility, and effectiveness of the 
method is demonstrated by obtaining the exact 
solution of the parameters of interest subject to the 
initial condition. The solution obtained shows the 
MADM is effective and convenient.  

Furthermore, MADM is a promising tool to 
effectively both linear and nonlinear PDEs. The 
benchmark solution is a ready reference for further 
works in the crime model. 
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