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ABSTRACT 

This paper aims at the fourth-order and fifth-order continuous-time 
systems, respectively, to explore the necessary and sufficient 
conditions to ensure exponential stability. The main theorem shows 
that the necessary and sufficient conditions are only simple algebraic 
inequalities related to the coefficients of the characteristic equation. 
In other words, the stability of the fourth-order and fifth-order 
systems can be quickly and easily determined. Finally, we will 
present several numerical simulations to illustrate the practicability 
and correctness of the main results. 
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1. INTRODUCTION 

Stability analysis has always been one of the topics 
explored by scholars and engineers engaged in 
systems engineering. In the past, various 
methodologies have been proposed to analyze the 
stability of the system, such as Lyapunov approach, 
Nyquist stability analysis, time-domain stability 
analysis, small-signal stability analysis, and large 
signal stability analysis; see, for instance, [1-7] and 
the references therein. However, most studies only 
provide sufficient conditions to ensure the stability of 
the system, and few results propose the necessary and 
sufficient conditions to ensure stability. It has proved 
that necessary and sufficient conditions are not only 
more important than sufficient conditions, but also 
more challenging.  

As we know, stability criteria that are not easy to 
calculate or solve too complicated are difficult to be 
favored by users; on the contrary, fast and convenient 
stability criteria can provide users with great 
convenience. In this paper, aiming at the fourth-order 
and fifth-order continuous-time systems, two sets of 
simple stability criteria are proposed to ensure that the  

 
above two systems achieve exponential stability. It is 
worth mentioning that the proposed criteria are 
necessary and sufficient conditions to achieve 
exponential stability.  

2. PROBLEM FORMULATION AND MAIN 

RESULTS 

As a start, we consider the characteristic equation of 
the fourth-order system: 

001
2

2
3

3
4 =++++ asasasas   (1) 

with { }3,2,1,0, ∈∀ℜ∈ iai . 

Now, we are in a position to present the first main 
result for the exponential stability of the system (1). 

Theorem 1: A fourth-order continuous-time system, 
with characteristic equation of (1) is exponentially 
stable if and only if the following conditions are 
satisfied: 

1. { }3,2,1,0,0 ∈∀> iai ; 

2. 02
30

2
1321 >−− aaaaaa . 
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Proof: 
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Such a fourth-order continuous-time system is 
exponentially stable, in view of Routh stability 
criterion [8] with Routh array: 
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This completes the proof.   □ 

Now we present another main result for the 
exponential stability of the fifth-order continuous-
time system. 

Theorem 2: A fifth-order continuous-time system, 
with characteristic equation of  

001
2

2
3

3
4

4
5 =+++++ asasasasas , (2) 

is exponentially stable if and only if the following 
conditions are satisfied: 
1. { }4,3,2,1,0,0 ∈∀> iai , 

2. 
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a
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a
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3. ( ) 02
1024122 >−− bababab , 

where 2431 aaab −=  and 0412 aaab −= . 

Proof: 

{ }4,3,2,1,0,0 ∈∀> iai ,  
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Such a fifth-order continuous-time system is 
exponentially stable, in view of Routh stability 
criterion with Routh array: 
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This completes the proof.   □ 

3. NNMERICAL SIMULATIONS 

Example 1: Consider the following feedback control 
system: 

+
− ( )1

1
22 ++ sss

YR

skk 21 +
 

Obviously, the characteristic equation of above 

system is 012
234 =++++ ksksss . Consequently, by 

Theorem 1, we conclude that the above system is 
exponentially stable if and only if  

,0,0 21 >> kk  and 01
2
22 >−− kkk . (3) 

In case of ( ) ( )5.0,2.0, 21 =kk , the conditions of (3) are 

satisfied, so the system is exponentially stable and the 
unit step response of such a system is shown in Figure 
1. On the other hand, in case of ( ) ( )5.0,3.0, 21 =kk , the 

conditions of (3) are not satisfied, so the system is not 
exponentially stable and the unit step response of 
such a system is shown in Figure 2. 
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Figure 1: Unit step response of Example 1 with 

( ) ( )5.0,3.0, 21 =kk . 
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Figure 2: Unit step response of Example 1 with 

( ) ( )5.0,2.0, 21 =kk . 

Example 2: Consider the following feedback 

control system: 

+
−

YR

skk 21 +

( )1034

1
232 +++ ssss

 

Clearly, the characteristic equation of above system is 

01034 12
2345 =+++++ kskssss . Consequently, by 

Theorem 2, we conclude that the above system is 
exponentially stable if and only if  









>>>
2

1
21 ,

3

10
max4,0,0

k

k
kk , (4a) 

and  

( )( ) 04416204 11212 >−+−− kkkkk . (4b) 

In case of ( ) 






=
8

7
,1, 21 kk , the conditions of (4) are 

satisfied, so the system is exponentially stable and the 
unit step response of such a system is shown in Figure 

3. On the other hand, in case of ( ) 






=
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,

4

25
, 21 kk , the 

conditions of (4) are not satisfied, so the system is not 
exponentially stable and the unit step response of 
such a system is shown in Figure 4. 
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Figure 3: Unit step response of Example 2 with 

( ) 






=
8

7
,1, 21 kk . 
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Figure 4: Unit step response of Example 2 with 

( ) 






=
16

35
,

4

25
, 21 kk . 

4. CONCLUSION 

In this paper, the stability analysis of fourth-order and 
fifth-order continuous-time systems has been 
explored. The main theorems have showed that the 
necessary and sufficient conditions are only simple 
algebraic inequalities related to the coefficients of the 
characteristic equation. In other words, the stability of 
the fourth-order and fifth-order systems can be 
quickly and easily determined. Finally, several 
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numerical simulations have been presented to 
illustrate the practicability and correctness of the 
main results. 
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