
International Journal of Trend
Volume 6 Issue 1, November-December

 

@ IJTSRD   |   Unique Paper ID – IJTSRD

Duality Theorems of Nonlinear Time

State Saturation Nonlinearities and Multiple Time Delays

Professor, Department of Electrical Engineering, I

ABSTRACT 

In this paper, the problem of the asymptotic state estimator 
design for a class of time-lag systems with state saturation 
nonlinearities is explored. A simple criterion is established to 
guarantee the asymptotic convergence of the observation error 
between the observer state estimate and the true state. Such a 
criterion can be view as the dual to static output feedback 
controller for a class of time-lag systems with multiple time
varying delays. At last, an upper bound of arbitrary time
delays is also derived to assure the observation error can 
converge asymptotically to zero. 
 

 

KEYWORDS: Saturation nonlinearities, time

problem, static output feedback control
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. INTRODUCTION 

Any physical dynamic systems inherently comprise, 
more or less, some time-lag phenomena for the 
reason that the energy in the systems propagates 
with a finite speed. Time-lag systems has been 
extensively explored in recent years; see, for 
instance, [1-8] and is often encountered in various 
areas, such as chemical engineering systems, the 
rolling mill, the ship stabilization, the aircraft 
stabilization, the manual control, the nuclear 
reactor, AIDS epidemic, and systems with lossless 
transmission lines. Frequently, the existence of the 
delays in many control systems is a source of 
oscillation and a source of instability. 

On the other hand, saturation nonlinearities 
frequently appear in most physical systems, e.g., 
the states are constrained to stay within a 
set due to physical limitations of the devices or by 
protection equipment. Furthermore, form practical 
considerations, it is either impracticable or 
inappropriate to measure all the elements of the 
state vector. The state observer has come to take 
pride of place in filter theory, system identification, 
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and control design. Nevertheless, the state observer 
design of dynamic systems with saturation 
nonlinearities is in general not as easy as that 
without saturation nonlinearities. On the basis of
the above-mentioned reasons, the observer design 
of time-lag systems with saturation nonlinearities is 
actually crucial and significant.

In this paper, the asymptotic state estimator design 
for a class of time-lag systems with state saturation 
nonlinearities is investigated. Based on the time
domain approach, the duality between state 
estimator design and static output feedback design 
will be provided. Besides, an upper bound of 
arbitrary time-varying delays is also derived to 
guarantee the global asymptotic stability of the 
resulting error system. 

2. PROBLEM FORMULATION AND MAIN 

RESULTS 
Nomenclature 

=ℜ :n  the n-dimensional real space,

=ℜ × :nm  the set of all real m
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=:TA  the transpose of the matrix A, 

=:I  the unit matrix, 

=:A  the induced Euclidean norm of the matrix A, 

( )Qmaxλ  (res. ( )Qminλ ):= the maximum (res. 

minimum) eigenvalue of the symmetric matrix Q, 

=> :0Q the symmetric matrix Q is positive definite, 

},,2,1{: pp ⋅⋅⋅= , 

},,2,1,0{: pp ⋅⋅⋅= . 

As a start, we consider the following uncertain 
time-lag system with multiple discrete and 
distributed time delays: 
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where n
x ℜ∈  is the state vector, the uncertain term 
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f ℜ∈∆  is a smooth function with ( ) 00,,0,0 =∆ Lf , 

piA
nn

i ∈∀ℜ∈ × , , qiB
nn

i ∈∀ℜ∈ × , , pisthi ∈∀, )'(  and 

qisti ∈∀, )'(τ  are arbitrary delay arguments with 
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and ( )tθ  is a given continuous vector-valued initial 
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For the convenience of the sequel, we present the 
first main result, which is a delay-dependent 
criterion, for the global asymptotic stability of the 
systems (1). 

Lemma 1. The system (1) is globally 
asymptotically stable provided that the following 
conditions are satisfied. 
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where 0>P  is the unique solution to the Lyapunov 
equation of IPAPA

T 2−=+ . 

 

Proof. From (1), we have 
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Define the dynamic system 
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The time derivative of ( ))(tyV  along the trajectories 

of the system (3) is given by  
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in view of (8). Thus, by Theorem 4.2 in [2] with (5) 
and (10), we conclude that the system (2) and the 
system (3) are both globally asymptotically stable. 
This completes our proof. □ 

In this following, we consider nonlinear time-lag 
systems with state saturation nonlinearities 
described as 

( )

( )( )( )[ ] ),(

)()()(

1
,,,

1
0

21
tDuttxfE

thtxAtxAtx

q

i

ii

p

i

ii

n
+−+

−+=

∑

∑

=

=

τλλλ L

&

 

,0≥∀ t  (11a) 

( )

( )( )( )[ ],

)()()(

1
,,,

1
0

21∑

∑

=

=

−+

−+=

q

i

ii

p

i

ii

ttxfH

thtxCtxCty

n
τλλλ L

 

,0≥∀ t  (11b) 

( ) [ ]0,,)( Htttx −∈∀= θ , (11c) 

where n
x ℜ∈  is the state vector, r

y ℜ∈  is the output 

vector, du ℜ∈  is the input vector, pisthi ∈∀, )'(  and 

qisti ∈∀, )'(τ  are arbitrary delay arguments with 

Hthi ≤≤ )(0  and Hti ≤≤ )(0 τ  for some constant H, 

and ( )tθ  is a given continuous vector-valued initial 

function. Besides, the saturation nonlinearities 
( ) nn
xf

n
ℜ→ℜ:,,, 21 λλλ L

, with { }nii ,,2,1,0 L∈∀>λ , are 

defined as follows. 

( )

( )
( )

( )
,:

2

1

,,,
2

1

21





















=

nxsat

xsat

xsat

xf

n

n

λ

λ

λ

λλλ
M

L
 

with [ ]Tnxxxx L21:=  and 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD   |   Unique Paper ID – IJTSRD49107   |   Volume – 6   |   Issue – 1   |   Nov-Dec 2021 Page 1682 

( )








−≤−
<<−

≥
=

λλ
λλ

λλ

λ

z

zz

z

zsat

,

,

,

: . 

The following assumption is made on the system 
(11) throughout this paper. 
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where 0>P  is the unique solution to the Lyapunov 
equation of IAPPA

T 2
~~ −=+ . 

Now we present the first main result for the state 
estimator of system (11). 

Theorem 1. The state estimator of the system (11) 
is of existence provided that (A1) is satisfied. In 
this case, a suitable state estimator is given by  
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Proof. Define )(ˆ)()( txtxte −= . Then, from (11) and 

(12), it is easy to see that the error dynamic system 
is given by 
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in view of the global Lipschitz of ( )zsatλ . Thus, by 

Lemma 1 with (13) and (A1), we conclude that the 
system (13) is globally asymptotically stable. This 
completes the proof. □ 

In this following, we consider the time-lag system 
with multiple time-varying delays: 
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( ) [ ]0,,)( Htttx −∈= θ , (14c) 

where n
x ℜ∈  is the state vector, r

y ℜ∈  is the output 

vector, du ℜ∈  is the input vector, piA
nn

i ∈∀ℜ∈ × , , 

qiHE
nn

ii ∈∀ℜ∈ × ,, , pisthi ∈∀, )'(  and qisti ∈∀, )'(τ  are 

arbitrary delay arguments with Hthi ≤≤ )(0  and 

Hti ≤≤ )(0 τ  for some constant H, and ( )tθ  is a given 

continuous vector-valued initial function. 
Moreover, the smooth vector-valued functions 

qisfi ∈∀, '  satisfy  

( )( )( ) ( )( ) qittxttxf iii ∈∀−≤− ,ττ . 

Now we present another main result for the global 
stabilizability of system (14). 

Theorem 2. The system (14) is static output 
feedback stabilizable provided that (A1) is satisfied. 
In this case, a suitable static output feedback is 
given by )()( tKytu = . 

Proof. From (14) with )()( tKytu = , the feedback 

controlled system is given by 
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Thus, by Lemma 1 with (15) and (A1), we conclude 
that the system (15) is globally asymptotically 
stable. This completes our proof. □ 

Remark 1. Note that 
1. the structure of the error dynamic system of 

(13) is the same as that of the feedback 
controlled system of (15); 

2. the criterion to guarantee the existence of state 
estimator of system (11) is the same as that to 
guarantee the existence of output feedback 
controller of system (14).  

Consequently, the criterion of (A1) can be view as 
the duality between state estimator and output 
feedback for the system (11) and (14), respectively. 

Remark 2. Based on Theorem 1, an upper bound of 
arbitrary time-varying delays without destroying 
the state estimator is given by HH < , where 
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3. CONCLUSION 

In this paper, the problem of the state estimator 
design for a class of time-lag systems with state 
saturation nonlinearities has been investigated. A 
simple criterion has been established to guarantee 
the asymptotic convergence of the observation error 
between the observer state estimate and the true 
state. It has been shown that such a criterion can be 
view as the dual to static output feedback controller 
for a class of time-lag systems with multiple time-
varying delays. Besides, an upper bound of 
arbitrary time-varying delays has been derived to 
guarantee the observation error can converge 
asymptotically to zero. Nevertheless, the duality 

between state estimator and dynamic output 
feedback for more general time-lag systems still 
remains unanswered. This constitutes an interesting 
future research direction. 
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