Study on Performance of Cantilever Space Frame Structure for Lateral Load

Santhosh Kumar G. K.¹, Dr. S. Vijaya², Sharath B.³

¹PG Student, Structural Engineering, ²Professor and HOD, ³Assistant Professor, Department of Civil Engineering, ^{1,2,3}Dr. Ambedkar Institute of Technology, Bengaluru, Karnataka, India

ABSTRACT

In the present0 day, it is observed that there is a growing0 interest0 in space0 frame0 systems. A space frame is a 3D structural system in which well0 organized0 linear0 axial0 elements0 are put together0 for the uniform distribution of forces. This paper presents to understand the performance of cantilever space frame and regular plane frame steel structure. This space frame structure uses a double layer grid element. Thus the entire steel frame structure is designed as a hollow pipe section. The analysis is carried out for static load is done using SAP2000 software. The result were extracted for shear force and bending moment and compared with the cantilever space frame and regular plane frame structure.

KEYWORDS: Space Frame, Cantilever, Double Layer Grid, Equivalent static method

> of Trend in Scientific Development

1. INTRODUCTION

A growing interest in space frame structures has been considered i.e. to study the behavior & performance witnessed worldwide over the previous half century. The look for innovative structural forms to accommodate large unobstructed areas has always been the main objective of architects and engineers. With the coming on of new building techniques & construction materials, space frames frequently provide the right answer and satisfy the requirements for lightness, economy, and speedy construction. Significant growth has been made in the process of the development of the space frame.

The space frames are extremely statically0 indeterminate and their analysis leads to extremely tedious computation if by hand. The difficulty of the complex analysis of such systems contributed to their limited use. By using computer programs has been0 radically changing0 the whole0 approach to the analysis of space frames. By using computer programs, it is possible to analyze very complex0 space structures with great accuracy and less time involved. Based on studying various kinds of literature, the parameters are set for the project

How to cite this paper: Santhosh Kumar G. K. | Dr. S. Vijaya | Sharath B. "Study on Performance of Cantilever Space Frame Structure for Lateral Load"

Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-6 | Issue-1,

December 2021, pp.451-457, URL: www.ijtsrd.com/papers/ijtsrd47814.pdf

Copyright © 2021 by author(s) and International Journal of Trend in Scientific Research and Development

Journal. This is an Open Access article distributed under the

terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

of cantilever space frame structure subjected to lateral load and then to understand the performance of steel structure for double layer grid and also observe the behavior of structure Static Performance.

A. Space Frame Components

In general, Omembers are axial elements with circular or rectangular sections; all0 members can only resist tension or compression. The space grid is an assembly of relatively long tension0 members and short compression members.

Typical detail of one unit of double layer grid **Space Frame element**

Different types of space frame connection consist of welded, bolted and threaded. Chief issue within the structural0 joint design is that the thought of a truly rigid connection that may support a load.

2. DESIGN OF STRUCTURAL MEMBERS

Here the height of 5m, Width of 10m at each column interval is 2m & length of 13m with including extra projection structural models are considered for the hollow pipe section space framed structure considered for the analysis. Below Fig 1 shows the dimension of the cantilever space frame structure modelled in AutoCAD. Double layered Grid design is considered for the analysis. The structural models are modelled using SAP2000 software. The proposed models are cantilever space frame structures. Table 1 shows the material properties used in this project.

0.3M

3. ANALYSIS AND DISCUSSION

The models are first loaded with dead loads and then lateral loads are applied to check the behaviour of the models. Models are then analyzed with a combination of loads automatically calculated from the program. The selecting the span of cantilever space frame structure is (1, 3, and 6). The results are taken from the bottom members of starting three members at fixed end support and the last three members at free end support. The results obtained from analysis based on shear force and bending moment are discussed in terms of model analysis and Equivalent Static Analysis. Fig 2 & 3 shows 3D modeled of cantilever space frame and plane frame structure.

A. Equivalent Static Analysis (ESA)

Equivalent static analysis of both cantilever space frame structure and regular cantilever plane frame structure is analysed based on the seismic load. The results of the ESA are tabulated as shown below.

0.25M

Fig 1 Plan View

Table-1: Material properties considered for Structure

Structure							
Sl. No.	Description	Data					
1.	Structure Height	5m					
2.	Structure Width	10m					
2	Overall span	12m					
5.	Length	1,5111					
1	Column Size	ISNIR 2001					
4.	used	151ND 50011					
	Beam Size used	ISNB 20H (TOP					
5		CHORD)					
5.		ISNB 65H (BOTTOM					
		CHORD)					
		ISNB 15H, ISNB 40H,					
6.	Brace Size used	ISNB 65H, ISNB 20H,					
		ISNB 175H					
7.	Thickness of	20mm					
	Roof	2011111					
8.	Grade of Steel	Fe 3/15					
	$(\mathbf{f}_{\mathbf{y}})$	10 575					

Structure

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

Shear Force (kN)					
Frame no?e	End Type	Member no's	Model		
rraine no s			Space Frame	Plane Frame	
		199	-2.826	-2.039	
	Fixed End	200	0.871	0.756	
Contilovor Fromo 1		201	0.069	-0.010	
Cantilever Frame -1		214	-0.326	-0.208	
	Free End	215	-0.489	-0.25	
		216	-0.378	0.883	
	Fixed End	619	-3.236	-3.086	
		620	1.379	1.099	
Contilovor Fromo 3		621	0.049	-0.045	
Cantilevel Flame -3	Free End	634	-0.421	-0.401	
		635	-0.635	-0.482	
		636	-0.483	1.706	
	Fixed End	1249	-2.826	-2.039	
		1250	0.871	0.755	
Cantilever Frame -6		1251	0.069	-0.010	
	25	1264	-0.326	-0.208	
	Free End	Sci1265	-0.489	-0.250	
		• 1266	-0.378	0.883	

Table 7. Madel and	Irrain of Chean Fanas	hath Crass Frames and	Dlama Ename Cture aturna
Table-2: Wodel anal	ivsis of Shear Force	DOLD SDACE FFAME AND	Plane Frame Structure
	Jois of Shear 1 of ce	sour space rame and	I fund I funde Stracture

Here,

From table 2 it can be seen that the model analysis of shear force at fixed end support, the span of each cantilever space frame value shows more when compared to the cantilever plane frame structure.

- In the model analysis of shear force at the free end, the span of each cantilever space frame value shows more when compared to the cantilever plane frame structure. But at end of each span of cantilever space frame structure, the members are (216, 636, 1266) the values are lesser (-0.378, -0.483, -0.378), when compared to cantilever plane frame structure the values is (0.883, 1.706, 0.883).
- In the model analysis of shear force, to compared the span of each cantilever frame (1, 3, and 6) at fixed end support and a free end, the span of cantilever frame 1 and cantilever frame 6 the values are lesser when compared to the span of middle cantilever frame 3.

Table-3: Model analysis of Bending moment both Space Frame and Plane Frame Structure

Bending Moment (kN-m)					
Frama no la	End True o	Member no's	Model		
rraine no s	па гуре		Space Frame	Plane Frame	
		199	0.503	0.386	
	Fixed End	200	0.384	0.346	
Contilovor Fromo 1		201	-0.072	-0.045	
Cantilever Frame -1		214	0.020	0.170	
	Free End	215	0.206	0.270	
		216	0.353	0.264	
		619	0.541	0.588	
	Fixed End	620	0.435	0.527	
Contilovor Fromo - 3		621	-0.093	-0.067	
Cantilevel Flame -3		634	0.017	0.335	
	Free End	635	0.258	0.526	
		636	0.443	0.514	
Cantilever Frame -6	Fixed End	1249	0.503	0.386	
		1250	0.384	0.346	
		1251	-0.072	-0.045	

	1264	0.020	0.170
Free End	1265	0.206	0.270
	1266	0.353	0.264

Here,

- ➢ From table 3 it can be seen that the model analysis of bending moment at the fixed end support, the span of each cantilever space frame-1 and cantilever space frame-6 value shows more (0.503, 0.384, -0.072) when compared to cantilever plane frame structure the values are (0.386, 0.346, -0.045). But in the middle span of the cantilever space frame 3 value shows lesser (0.541, 0.435), when compared to the cantilever plane frame structure the values are (619 and 620) of two members at fixed end support are starting with the member of (621), the span of middle cantilever space frame-3 values are (-0.093) when compared to cantilever plane frame structure the value is (-0.067).
- The Model analysis of bending moment at free end, the span of each cantilever space frame shows lesser values are (0.020, 0.206, 0.017, 0.258, 0.443) when compared to cantilever plane frame structure the values are (0.170, 0.270, 0.335, 0.526, 0.514). But at the end of span cantilever frame-1 and cantilever frame-6 at free end,
- the member (216, 1266) value shows more (0.353) when compared to cantilever plane frame structure the value is (0.264).
- In the model analysis of bending moment, to compared the span of each cantilever frame (1, 3, and 6), the span of cantilever frame-1 and cantilever frame-6 at fixed end support and a free end, the values are lesser when compared to the span of middle cantilever frame-3.

Table-4: Earthquake in X-direction of Shear Force both Space Frame and Plane Frame Structure

Shear Force (kN)					
Enome no?s	End Type	Member no's	EQ-X		
Frame no's			Space Frame	Plane Frame	
Z	S of Tru	and in199 entiti	0.373	0.286	
8	Fixed End	200	0.060	0.054	
Contilovor Fromo		201	0.010	0.005	
Cantilever Frame -1	20	214	0.000	0.000	
() (V)	Free End	N: 24 215470	0.000	0.000	
×		216	0.006	0.005	
	94	619	0.395	0.326	
	Fixed End	620	0.062	0.059	
Contilovor Fromo -3		621	0.010	0.005	
	,	634	0.005	0.000	
	Free End	635	0.007	0.000	
		636	0.011	0.003	
		1249	0.373	0.286	
	Fixed End	1250	0.060	0.054	
Contilovor Fromo -6		1251	0.010	0.005	
		1264	0.000	0.000	
	Free End	1265	0.000	0.000	
		1266	0.006	0.005	

Here,

- From table 4 it can be seen that the Earthquake analysis in X-direction of shear force both at fixed end support and a free end, the span of each cantilever space frame value shows more when compared to cantilever plane frame structure.
- The compared the span of cantilever frame (1, 3, and 6) of Earthquake analysis in X-direction of shear force both at fixed end support and a free end, the span of cantilever frame 1 and cantilever frame 6 the values are lesser when compared to the span of middle cantilever frame 3.

Structure					
Bending Moment (kN-m)					
Examo no?a	End Type	Member no's	EQ-X		
rrame no s			Space Frame	Plane Frame	
		199	0.144	0.109	
	Fixed End	200	0.032	0.029	
Contilovor Fromo 1		201	0.006	0.004	
Cantilever Frame -1		214	0.004	0.001	
	Free End	215	0.004	0.001	
		216	0.006	0.001	
		619	0.154	0.124	
	Fixed End	620	0.034	0.033	
Contilovor Fromo 3		621	0.007	0.004	
Cantilever Frame -3	Free End	634	0.005	0.001	
		635	0.007	0.001	
		636	0.010	0.001	
		1249	0.144	0.109	
	Fixed End	1250	0.032	0.029	
Contilovor Fromo		1251	0.006	0.004	
Cantilever Frame -0		1264	0.004	0.001	
	Free End	1265	0.004	0.001	
	Jacoli .	1266	0.006	0.001	

Table-5: Earthquake in X-direction of Bending Moment both Space Frame and Plane Frame Structure

Here,

• From table 5 it can be seen that the Earthquake analysis in X-direction of bending moment both at fixed end support and a free end of each cantilever space frame value shows more when compared to cantilever plane frame structure.

• The compared the span of cantilever frame (1, 3, and 6) of Earthquake analysis in X-direction of bending moment both at fixed end support and a free end, the span of cantilever frame - 1 and cantilever frame - 6 the values are lesser when compared to the span of middle cantilever frame - 3.

Table-6: Earthquake in Y-direction of Shear Force both Space Frame and Plane Frame Structure

Shear Force (kN)					
Enome no?e	End Type	Member no's	EQ-Y		
Frame no's			Space Frame	Plane Frame	
		199	0.158	0.394	
	Fixed End	200	0.027	0.077	
Contilovor Fromo 1		201	0.004	0.007	
Cantilever Frame -1		214	0.005	0.006	
	Free End	215	0.009	0.006	
		216	0.017	0.033	
	Fixed End	619	0.067	0.069	
		620	0.011	0.013	
Contilovor Fromo 3		621	0.001	0.001	
Cantilevel Flame -3	Free End	634	0.003	0.000	
		635	0.002	0.000	
		636	0.009	0.001	
	Fixed End	1249	0.158	0.394	
		1250	0.027	0.077	
Contilovor Fromo		1251	0.004	0.007	
Cantilevel Flaille -0	Free End	1264	0.005	0.006	
		1265	0.006	0.006	
		1266	0.017	0.033	

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

Here,

- From table 6 it can be seen that the Earthquake analysis in Y-direction of shear force at both fixed end support
- and a free end of cantilever space frame value shows lesser when compared to cantilever plane frame structure. But in the middle of cantilever space frame 3 at the free end the members are (634, 635, 636), the value shows more (0.003, 0.002, 0.009) when compared to cantilever plane frame structure the values are (0.000, 0.000, 0.001).
- The compared the span of cantilever frame (1, 3, and 6) of Earthquake analysis in X-direction of shear force both at fixed end support and a free end, the span of cantilever frame 1 and cantilever frame 6 the values are more when compared to the span of middle cantilever frame 3.

Structure					
	Bending Moment (kN-m)				
Enomo no?c	Der d. Deres e	Member no's	EQ-Y		
rrame no s	Епа Гуре		Space Frame	Plane Frame	
		199	0.063	0.153	
	Fixed End	200	0.016	0.043	
Contilovor Fromo 1		201	0.004	0.005	
Cantilever Frame -1		214	0.001	0.007	
	Free End	215	0.003	0.009	
	A .din	216	0.007	0.009	
	J'reur	619	0.024	0.026	
E	Fixed End	620	0.006	0.007	
Contilovor Fromo		621	0.001	0.000	
Cantilever Frame-5	interi	hation634 ourna	0.001	0.000	
8	Free End	end in635ientifi	0.002	0.000	
	R	esear636and	0.002	0.000	
Ø.	D N	evelo <mark>1</mark> 249ent	0.063	0.153	
N N	Fixed End	1250	0.016	0.043	
Contilovor Fromo		N: 241251470	0.004	0.005	
	() (C)	1264	0.001	0.007	
	Free End	1265	0.003	0.009	
	All h	1266	0.007	0.009	
Allugore					

Table-7: Earthquake in Y-direction of Bending Moment both Space Frame and Plane Frame Structure

Here,

- ➢ From table 7 it can be seen that the Earthquake analysis in Y-direction of bending moment at both fixed end support and a free end of cantilever space frame value shows lesser when compared to cantilever plane frame structure. But in the middle of cantilever space frame 3 at the free end the members are (634, 635, 636), the value shows more (0.001, 0.002, 0.002) when compared to cantilever plane frame structure the values are (0.000, 0.000 0.000).
- The compared the span of cantilever frame (1, 3, and 6) of Earthquake analysis in Y-direction of bending moment both at fixed end support and a free end, the span of cantilever frame 1 and cantilever frame 6 the values are more when compared to the span of middle cantilever frame 3.

4. CONCLUSION

Based on analysis and discussion, the results are extracted and tabulated. The analysis results are compared and conclusions are drawn in this chapter.

From the overall analysis, it is observed that the performance of space frame structure is better when compared to plane frame0 structure since space frame is strong0 due to the inherent0 rigidity0 of0 the0 triangle0 and flexing the loads which can be transferred as tension0 and0 compression0 loads0 along0 the length0 of0 each0 strut.

- The model analysis0 of shear force value shows more in cantilever space frame structure when compared to the regular plane frame structure.
- The model analysis of bending moment value shows more at fixed end support in cantilever space frame structure when compared to the plane

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

frame structure. But in the free end of cantilever space frame structure value shows lesser when compared to the plane frame structure.

- The model analysis of shear force and bending moment, to compared the span of each cantilever frame (1, 3, and 6), the span of cantilever frame-1 and cantilever frame-6 the value shows are lesser when compared to the span of middle cantilever frame-3.
- The static analysis of EQ-X in both shear force and bending moment value shows more when compared to the EQ-Y value.
- The compared span of cantilever frame (1, 3, and 6) of Earthquake analysis in X-direction of shear force and bending moment at both fixed end support and a free end, the span of cantilever frame 1 and cantilever frame 6 the values are lesser when compared to the span of middle cantilever frame 3.

The compared span of cantilever frame (1, 3, and 6) of Earthquake analysis in Y-direction of shear force and bending moment at both fixed end support and a free end, the span of cantilever frame - 1 and cantilever frame - 6 the values are more when compared to the span of middle cantilever frame - 3.

REFERENCES

- [1] Criteria for earthquake resistant design of or structures IS 1893 (part 1): 2002.
- [2] IS 1161: 1998 "steel tubes for structural purposes specification".
- [3] Lan, T. T., 1999. "Space frame structures". *Structural engineering handbook*, 13(4).

- [4] Muteb, H. H. and Al-Salman, H., (2020).
 "Nonlinear 3D finite element modelling of conventional and composite steel space frames structures". *Periodicals of Engineering and Natural Sciences (PEN)*, 8(3), pp.1449-1463.
- [5] Vatansever, C., (2019). "Investigation of buckled truss bars of a space truss roof system". *Engineering Failure Analysis*, 106, p.104156.
- [6] Zhang, D., Lv, Y., Zhao, Q. and Li, F. (2019), "Development of lightweight emergency bridge using GFRP–metalcompositeplate-truss
- [7] Yang, X., Bai, Y., Luo, F.J., Zhao, X.L. and Ding, F (2016). "Dynamic and fatigue performances of a large-scale space frame assembled using pultruded GFRP composites". *Composite Structures*, 138, pp.227-236.
- [8] Yang, X., Bai, Y. and Ding, F.,(2015). "Structural performance of a large-scale space frame assembled using pultruded GFRP composites". *Composite Structures*, *133*, pp.986-996.

[9] Augenti, N. and Parisi, F., (2013)."Buckling analysis of a long-span roof structure collapsed during construction". Journal of performance of h and constructed facilities, 27(1), pp.77-88.

[10] Bai, Y. and Yang, X., (2013). "Novel joint for 6-6470 assembly of all-composite space truss structures: conceptual design and preliminary study". *Journal of Composites for Construction*, *17*(1), pp.130-138.