Orthogonal and Diagonal Grid Slabs Analysis Using E-TABS

Rakshith Kumar G¹, B S Suresh Chandra²

¹PG Student, ²Faculty,

^{1,2}Department of Civil Engineering, Dr. Ambedkar Institute of Technology, Bengaluru, Karnataka, India

International Journal

of Trend in Scientific

Research and

ABSTRACT

Grid floor is an assembly of intersecting beam at regular interval and interconnected to a slab of nominal thickness is known as grid floor .These slab covers large free area and therefore it is adopted for public hall. A waffle slab is a type of building material that has two direction reinforcement. These types of floor are used to cover a large obstruction free are and therefore a good choice for public assembly hall. The present work includes the investigative parameter in terms of flexural action such bending moment, torsion and shear force, spacing of grid are the parameter considered for analysis and the results are evaluated for various grid panels. E-Tabs software is used for the analysis of grid slabs. Objective of this study is to analysis the grid slabs for different panels of orthogonal grids & diagonal grids.

KEYWORDS: Grid floor, orthogonal grids, diagonal grids, Bending moment, Deflection, Rankine's method, Plate analogy method, stiffness method

1. INTRODUCTION

Grid/waffle slab is defined as an assembly of beams 15 1. Orthogonal grid slabs that are intersecting at regular intervals & are interconnected to a slab of uniform thickness. These waffle slabs cover large free area & are therefore adopted for public hall. These have pleasant appearance, also less maintenance cost, however the construction of a grid slab is considered to be cost prohibited. Waffle name comes in due to its grid pattern that is created by its reinforced ribs. A grid slab has reinforcement in both X & Y direction. These types of slabs cover large obstructions free are and hence these are a good choice for public assembly hall etc., and these grid structures are monolithic and are stiffer in nature. Waffle slab are designed to be more solid when used on longer span & with heavier loads. By checking the various parameters that are involved, economical solution could be initiated for grid slab. Grids are highly redundant structure system and it is indeterminate (DOF) is not measured by equilibrium equation. The matrix formulation by stiffness of structure is computed by stiffness method.

How to cite this paper: Rakshith Kumar G B S Suresh Chandra "Orthogonal and Diagonal Grid Slabs Analysis Using E-

TABS" Published in International Journal of Trend in Scientific Research and Development **ISSN:** (ijtsrd), 2456-6470, Volume-6 | Issue-1,

December 2021, pp.263-272, URL: www.ijtsrd.com/papers/ijtsrd47780.pdf

Copyright © 2021 by author(s) and International Journal of Trend in Scientific Research and Development

Journal. This is an **Open** Access article distributed under the

terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

Development A. Types of grid slabs

These are regular type of grid system where the x ordinate node and y coordinate note are mutually perpendicular to each other. The loads are transferred perpendicular from slab to column. These grid slabs considered to be stiffer compared to other types of grid

2. Diagonal grid slabs

The diagonal grids/dia grids are grid slabs that are inclined to plane, normally 45 to 60 degrees. These types of slab are less stiff inclined

3. Three way grid slabs

This type of grid include two grid running in orthogonal direction and other grid line passing diagonal in between grid between the grid junction column are placed stiffness of the joint is distributed to links surrounding the nodes.

B. Methods of analysis

Grid is highly redundant structural system and therefore statically indeterminate. Various approaches available for the analysis of grid floor frame, are as listed below.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

- 1. Analysis of grid by Rankine Grashoff method.
- 2. Analysis by plate analogy theory.
- 3. Stiffness method.

1. Rankine - Grashoff method

This is an approximate method. This method is based

on equating the deflections at junctions of ribs at

either per unit width of slab strip. The slabs are

considered simply supported on edges

2. Plate analogy method

This method is based on Timoshenko analysis of orthopic plate theory considering plane stress analysis accounts shear and bending effect. This is a rigorous method of analysis. In this method also the analysis is done by considering the grid simply supported on edges. Bending & torsion moments and shears are obtained per unit width of slab strip

3. Stiffness method

This method, also called as Matrix/direct stiffness method, is used for the computer-automated complex structures study which includes statically indeterminate type structures. This method uses member stiffness relations for computing these

3. MODELLING AND ANALYSIS

member forces and displacements in the structures. This method is the exact application of the finite element method (FEM).

C. Objectives

The following objectives are considered in the present study

- To compare the nodal forces of a grid slab between Manual & Software analysis
- Analysis of orthogonal and diagonal grid slab for various grid panels & to obtain nodal forces for a particular Live load(10kN/m²)
- To obtain deflection of grid slabs

2. METHODOLOGY

First a numerical data of a grid slab available will be considered for both manual as well as software calculation is done using different methods. With the obtained results from the manual calculation, software analysis is observed. Bending moments are obtained at mid span & cross beam is taken for considerations. Results are compared between manual & software analysis. Software analysis for orthogonal grids & diagonal grids of various grid sizes considering live load (10kN/m²) only. Bending moment, shear force and deflection are obtained for different grid panels

	the second s	
Type of analysis	Manual analysis	E- TABS software
Size of grid	12m by 16m	12m by 16m
Spacing of ribs	$R_2 m c/c$	2 m c/c
Concrete (f_{ck})	20 N/mm ² ent	20 N/mm ²
Steel (f_y)	$415 N/mm^{2}$	415 N/mm ²
Slab thickness	100 mm	🔹 100 mm
Beam size	200 mm*600 mm	200 mm*600 mm
Live load		1.5 kN/m^2
Floor finish 🌂		\sim 0.6kN/m ²

Fig 1: AutoCAD diagram of grid slab

Fig 2: Deformation of grid slab

Fig 3: Bending moments

Fig 4: 3-D view of Grid slab

 Table 1:- Comparision of Maximum moments in grid (per metre)

A		<u> </u>		
Method of analysis Rankine Grashoff Theory		Timoshenko's Plate theory	E-Tabs 2017 Stiffness method	
Bending Moment M _x (kN-m)	90	108	92	
Bending Moment M_v (kN-m)	48	61	49	

COMPARISION CHART

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

4. **RESULTS**

Table 2:- Results of orthogonal grids for Live load of Tokivin						
Grid details	Beam direction	Beam mark	$M_x, M_y kN-m$	Qx, Qy kN	mm	
Grid panel size = $5 \text{ m x } 5 \text{ m}$ Beam size = $200 \text{mm} \text{ x } 250 \text{mm}$	X & Y	B1	6.3	3.42	2	
Beam spacing = 1 m c/c	direction	B2	3.6	1.6	1.2	
Grid panel size = $6 \text{ m x } 8 \text{ m}$	V dimention	B2	27.5	17.6	9	
Beam size = 200 mm x 300mm	X-direction	B1	20	10.5	0.3	
Beam spacing = 2 m c/c	Y-direction	B1	13	8.3	7.7	
Grid panel size = $6 \text{ m x } 10 \text{ m}$	X-direction	B1	34	20	117	
Beam size = 200mm x 300mm	X-direction	B2	21.5	10.5	11/	
Beam spacing = 2 m c/c	Y-direction	B1	11	8.3	10	
Grid panel size = $8 \text{ m x } 8 \text{ m}$	X & Y	B1	46	24.5	12	
Beam size = 200mm x 400mm Beam spacing =2 m c/c	direction	B2	31.1	15.1	8.5	
Grid papel size – 8 m x 10 m	V direction	B1	65	32	17	
Beam size $= 200$ mm x 400mm	A-uncetion	B2	38	17.2	10	
Beam spacing -2 m c/c	V direction	B1	42.5	24	18	
Beam spacing -2 m c/c	I -unection	B2	30.2	15	12	
	and the	B1	87.2	40	22	
Grid panel size = $8 \text{ m x } 12 \text{ m}$	X-direction SC	ientB2	75.3	34.6	20	
Beam size = 200mm x 400mm	8 enu	B3	41	17.5	11	
Beam spacing = 2 m c/c	V direction	B1	35.5	23.3	22	
E	I -unection	DKB2	25.5	14.6	16	

Table 2:- Results of orthogonal grids for Live load of 10kN/m²

Grid details	Beam direction	Beam mark	M _x , M _y kN-m	Qx, Qy kN	mm
Grid panel size = 9 m x 9 m $\sqrt{-3}$	Devologingent	B1 C	53.2	29	13
Beam size = $200 \text{mm} \times 450 \text{mm}$	SSN direction 70	B2	45.4	25.1	11.2 6.4
Beam spacing = 1.5 m c/c	0011. 2430-0470	Б 3	20	15.2	0.4
Grid nanel size – 9 m x 10 m	X -direction	B1	70.5	35	17
Beam size = 200 mm x 450mm	A direction	B2	42.5	21	10.4
Beam spacing = 1.5 m c/c along	annas	B1	60	28	18
shorter span & 2 m c/c along longer span	Y-direction	B2	52	23.6	15.4
		B3	29	11.6	8.7
Grid panel size = $9 \text{ m x } 12 \text{ m}$		B 1	101.6	45	24
	X-direction Y-direction	B2	87.6	40	21
Beam size = 200 mm x 450 mm		B3	49.2	22.3	12
Beam spacing = 1.5 m c/c along		B1	54.1	27.4	24
shorter span & 2 m c/c along longer span		B2	47	23.2	21
		B3	26.4	11.4	12
		B1	110	46	26.3
		B2	105	44.2	25.2
Grid nanel size = $9 \text{ m x } 15 \text{ m}$	X -direction	B3	90.4	40	22
Beam size = $200 \text{mm} \times 450 \text{mm}$		B4	66	29.4	16.2
Beam spacing = 1.5 m c/c		B5	34.3	14.1	8.6
beam spacing = 1.5 m c/c		B1	36	27	26.3
	Y-direction	B2	31	23.4	23
		B3	18	12.5	13.1
Grid panel size = $10 \text{ m x } 10 \text{ m}$	X & Y	B1	88.5	37	19.3
Beam size = $200 \text{mm} \times 500 \text{mm}$ Beam spacing = 2 m c/c	direction	B2	55	20.6	12

		B1	129	50.4	28
Grid panel size = $10 \text{ m x } 12 \text{ m}$	X -direction	B2	111.7	44	24.3
Beam size = 200 mm x 500mm		B3	65	23	14.1
Beam spacing = 2 m c/c	V direction	B1	81.6	36	26.6
	r-arrection	B2	51	20	16.3
Grid panel size = $10 \text{ m x } 14 \text{ m}$		B1	154.1	57.1	33.5
	X -direction	B2	124.6	46.4	27.3
Beam size = 200 mm x 500mm		B3	70	23.5	15
Beam spacing = 2 m c/c	V direction	B1	72.2	34.2	32.7
	1-unection	B2	45.1	19	20.1
		B1	140.4	50	31
$Crid panel size = 10 m \times 15 m$		B2	134.4	47.7	29.4
$B_{\text{norm size}} = 200 \text{mm s} 500 \text{mm}$	X -direction	B3	116	41.4	25.5
Beam specing $= 2 \text{ m s/s slope}$		B4	85.6	30	19
Beam spacing = 2 in c/c along longer span		B5	45	15.2	10
shorter span & 1.5 in the along longer span	V direction	B1	54.1	32	29.2
	r-arrection	B2	33.6	19.4	18
		B1	180	64	39
Crid nonal size -10 m y 16 m	X -direction	B2	168	60	37
Grid panel size = $10 \text{ m} \times 10 \text{ m}$ Recursize = $200 \text{mm} \times 500 \text{mm}$	mm	B3	131	47	29
Beam spacing = 2 m c/c	Dominal	B4	72.2	23.4	16
Beam spacing = 2 m c/c	Y-direction	B 1	61.3	33	37
S.o.no		B2	39	18.5	23
A Star		S. Y	0		

Grid details	Beam direction	Beam mark	M _x ,M _y kN-m	Qx, Qy kN	δmm
d i of	Frend in Scientif	C B1	194	66	42.4
	Research and	B2 🧧	174.3	60	38
Beam size = 200mm x 18 m Beam spacing = 2 m c/c	Development	B3	9 134	47	29.5
	0.011 0/50 0/70	B4	7 73.1	23.1	16.1
	33N: 2430-0470	B1	55.3	32	41
	r-direction	B 2	35	18	25
10 ×4		B1	207.5	68.5	45.6
Dr.		B2	200.4	66.5	44
Grid panel size = 10 m x 20 m Beam size = 200mm x 500mm Beam spacing = 2 m c/c	X -direction	B3	177	60	39
		B4	134.6	46.2	30
		B5	73.3	24	16.2
	Y-direction	B1	53	31.6	43.3
		B2	32.7	18	27
Grid panel size = $12 \text{ m x} 12 \text{ m}$		B1	156.2	53.7	29.2
Beam size = 200 mm x 600 mm	X & Y	B2	134.2	46.6	25.4
Beam spacing = 2 m c/c	direction	B3	77.5	25	15
		B 1	203.5	65.1	37.5
Grid panel size $-12 \text{ m y } 14 \text{ m}$	X -direction	B2	162	53	30.3
Beam size $= 200$ mm x 600mm		B3	89.3	27.5	17
Beam spacing -2 m c/c		B1	149.5	51.4	38.4
beam spacing – 2 m c/c	Y-direction	B2	129.2	45	33.3
		B3	75.1	24.1	19.2
Grid panel size $-12 \text{ m y } 15 \text{ m}$		B1	194	59.1	35.7
Beam size $= 200$ mm x 600mm		B2	184.5	56.6	34.1
Beam snacing -2 m c/c along shorter	X -direction	B3	157	49	29.3
span & 1.5 m c/c along longer span		B4	113	35.6	21.5
span & 1.5 m c/c along longer span		B5	59.2	19.2	11.4

		B 1	116	46.1	35.6
	Y-direction	B2	100.1	41	31
		B3	58.3	24	18
Grid panel size = $12 \text{ m x } 16 \text{ m}$		B1	252	76.4	46.1
Beam size = 200 mm x 600mm	V dimention	B2	233.1	71.3	43
Beam spacing = 2 m c/c	A-direction	B3	178	56	33.3
Grid panel size = $9 \text{ m x } 12 \text{ m}$		B4	96	28.5	18.2
Beam size = 200 mm x 450 mm		B1	132.6	48.7	46
Beam spacing = 1.5 m c/c along shorter	Y-direction	B2	115	42.4	40
span & 2 m c/c along longer span		B3	67	22.7	23
		B1	281	82.3	51.4
	V direction	B2	249.1	74.1	45.8
Grid panel size = $12 \text{ m x } 18 \text{ m}$	A -unection	B3	185.7	56.8	34.8
Beam size = 200 mm x 600 mm		B4	98.7	29.4	18.8
Beam spacing = 2 m c/c	Y-direction	B1	115	46.2	52.1
		B2	99.1	40.3	45.1
		B3	58.2	21.6	26.1
		B1	309.4	88	56.5
		B2	296.3	84.6	54.2
$Crid nonal cize = 12 m \times 20 m$	X -direction	B3	256.3	74.7	47.3
Becom size = 200 mm x 600mm	Dominico	B4	188.7	56.7	35.4
Beam spacing $= 2 \text{ m a/a}$	m Scientific	B 5	100	30.6	19
Beam spacing = 2 m c/c		B1	100	44.5	56.5
BAN	Y-direction	B2	87.4	38.8	49
8.0.	IJISRD	B3	51.8	20.8	28.3
Grid panel size = 14 m x 14 m 👩 🔮 Int	ernativre vlourn	B1	230.6	67	32.5
Beam size = 230mm x 700mm	A & I	B2 😡	185	54.7	26.2
Beam spacing = 2 m c/c $3 = 3 = 3 = 3$	Deservel	B3 📃	104	30	15
	Researchand				

Grid details	Beam direction	Beam mark	M _x , M _y kN-m	Qx, Qy kN	δmm
No.	24	B1	232.6	63.2	32.5
Grid panel size $-14 \text{ m x } 15 \text{ m}$	Dr. 75 Z.	B2	221.5	60.5	31
Beam size $= 230$ mm x 700mm	X -direction	B3	189.1	52.3	26.5
Beam spacing $= 2 \text{ m } c/c$ along		B4	138.1	38.3	19.5
shorter		B5	73	23	10.3
span & 1.5 m c/c along longer span		B 1	190.6	62	31.7
	Y-direction	B2	152.3	51.7	25.5
		B3	85.1	29.7	14.3
	X -direction	B1	302.7	83	42.2
		B2	280.2	77	39
Grid panel size = $14 \text{ m x } 16 \text{ m}$		B3	215	61	30
Beam size = 230mm x 700mm		B4	118	34	16.6
Beam spacing = 2 m c/c		B1	218.5	64.3	41.2
	Y-direction	B2	175.3	52.5	33.3
		B3	98.3	27.6	18.5
		B1	353	93	49.1
	V direction	B2	312.1	83.3	43.6
Crid nonal size $-14 \text{ m} \times 19 \text{ m}$	A-unection	B3	233.7	64	33
Office panel size = $14 \text{ m x} 18 \text{ m}$ Poom size = $220 \text{ mm} \times 700 \text{ mm}$		B4	126	36.3	17.7
Beam specing $= 2 \text{ m s/s}$		B1	200.3	60.7	48.6
Beam spacing = 2 m c/c	Y-direction	B2	161	50	39.2
		B3	90.2	26.1	21.8

		B1	401.3	102.2	55.7
		B2	383.5	98.2	53.3
	X -direction	B3	330	86.2	46.1
Grid panel size = $14 \text{ m x } 20 \text{ m}$		B4	243.1	65.2	34.2
Beam size = 230 mm x 700mm		B5	130	38	18.3
Beam spacing = 2 m c/c		B1	175.5	58	54.4
	Y-direction	B2	141	47.2	44
		B3	79.4	24.7	24.4
		B1	214	62	28.3
Grid panel size = $15 \text{ m x } 15 \text{ m}$	V & V	B2	203.3	59.5	27
Beam size = 230 mm x 750mm Beam spacing = 1.5 m c/c	A & I direction	B3	172.5	52.1	23.1
	unection	B4	125.3	39.3	17
		B5	66.4	21.1	9
$Grid population = 18 m \times 18 m$		B1	422	92	43
Beam size = 250 mm x 000 mm	X & Y direction	B2	371	83.5	38
Beam spacing $= 2 \text{ m s/s}$		B3	275.1	66	28.4
Beam spacing – 2 m c/c		B4	146	38	15.2
	X -direction	B1	527	113.4	53
		B2	502	109	51
	man	 B3	428.2	95.3	43.5
		B4	312.4	73.1	32
Grid panel size = $18 \text{ m x } 20 \text{ m}$	Ain Scientif	B5	166	45	17
Beam size = 250 mm x 900mm	SUN		100	0.2.5	50.4
Beam spacing = 2 m c/c		BI	409	92.5	52.4
H º	Y-direction	B2	360	83.2	46.3
2	International Jo	B3	267.5	64	34.6
	of Trend in Scie	B4	144	39.4	18.5
	Research a	B1	547.7	112	50.3
Grid panel size = $20 \text{ m x } 20 \text{ m}$	X & Y	B2	520.7	107.6	48
Beam size = 250 mm x 1000mm	direction	••• B3	442.3	94.2	41.1
Beam spacing = 2 m c/c	ISSN: 2456-64	70 B4	322	74.5	30.1
() × () × ()		B5 📩	170.8	45.3	16

Table 3:- Results of diagonal grids for Live load of 10kN/m²

Grid details	Beam direction	Beam mark	M _x , M _y kN-m	Qx, Qy kN	δmm
Grid panel size = 5 m x 5 m Beam size = 200mm x 250mm Beam spacing = 1 m c/c	X & Y direction	B1 B2 B3 B4	4.7 4.74 4.1 5.2	5.2 4 3.5 5.8	2 1.5 1 0.2
Grid panel size = 8 m x 8 m Beam size = 200mm x 400mm Beam spacing =1.5 m c/c	X & Y direction	B1 B2 B3 B4	27 26 25 32.3	22 16 20.2 24.6	7 6 3.5 1
Grid panel size = 10 m x 10 m Beam size = 200mm x 500mm Beam spacing = 1.8 m c/c	X & Y direction	B1 B2 B3 B4	61.4 57.4 57.2 79	42.7 27 34.2 48.5	13 11.1 6.7 2
Grid panel size = 12 m x 12 m Beam size = 200 mm x 600 mm Beam spacing = 2 m c/c	X & Y direction	B1 B2 B3 B4	119 106.4 109 153.1	69.2 40.8 50.8 79.1	20.3 17.6 10.6 3.1

T 1 T	1 . CT 1 in Color	C . D 1	1 D 1		TOON 0456 6470
International Journa	1 of 1 rend in Scient	fic Research an	a Development @	<u>www.ijtsrd.com</u>	2155IN: 2450-0470

Grid panel size = 20 m x 20 m Beam size = 250mm x 1000mm Beam spacing =1.8 m c/c	X & Y direction	B1 B2 B3 B4 B5 B6 B7 B8	428 262.2 273.6 291 312 334.4 377.6 374.2	243 133 77.8 63.6 95.4 161 218 221	26.3 25.5 23 19.1 14.3 9.2 4.5
		B8	374.2	221	1

Here, M_x , M_y = Bending moment

 Q_x , Q_y = Shear force

 δ = Deflection

Fig 5: 15m x 20m orthogonal grid

Fig 7: 20m x 20m diagonal grid

Fig 8: Diagonal grid 3-D view with beam marking

5. CONCLUSION

The present study is focused on orthogonal and diagonal grid slab analysis using E-TABS 2017 software for various grid panels with only live load acting on the slabs. Below stated are the conclusions drawn from the above analysis carried out

- Between Rankine–Grashoff, Plate analogy and Stiffness method, Rankine–Grashoff & Stiffness method results are almost same but Timoshenko's Plate analogy theory overestimates the shear force and bending moment.
- In case of orthogonal grid slabs, the bending moment of beams in grid slabs goes on decreasing towards the peripheral beams.
- In case of diagonal grid slabs, the bending moment decreases till certain beam and again starts to increases towards the peripheral beams.
- In diagonal slab the bending moment of mid span beam obtained from E-Tabs is much lesser

when compared to the result obtained by using the formula (W*2*L)/8

Where, W = Shear force obtained from E-Tabs L = Length of beam

This is because of its unique property of providing rigidity for bending and shear

The bending moment of the peripheral beam is higher compared to mid span beam in diagonal grid slab.

6. REFERENCES

- [1] N Krishnaraju Raju "Book of advanced RCC concrete design"
- [2] Dr S A Halkude, SV Mahamuni "Comparison of various methods of analysis of grid floor frame" International Journal of Engineering science invention, volume 3, issue 2.(2014)
- [3] Amit A Sathawane, R S Deotale "Analysis of grid slab using various methods and their

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

comparsion "international journal of engineering research and application vol issue 3

- [4] Anithu Dev, Jasmin S.P., Shinu Shajee "Analysis and parametric study of waffle slabs" Vol. 6, Issue 10, (2017)
- [5] Dr SA Halkude, SV Mahamuni "Effect of spacing of grid beam and its depth on peripheral beams in grid floor frame" volume 03, issue 03 (march 2014)
- [6] Rajalakshmi U, Linda Ann Mathew, "Comparative Study on Dynamic Behaviour of

Various Grid Patterns on Concrete Floors", International Journal of Science and Research (IJSR), Volume 5 Issue 7, July 2016, 951 - 953

- [7] Vipul R Meshram, DR. Valsson Varghese, "Dynamic behavior of grid pattern on concrete floors", international journal of engineering scientific research & development, volume 3, issue 4, 2321-0613, (2015)
- [8] IS code 456:2000:-Plain and reinforced concrete code of practice.

