
International Journal of Trend in Scientific Research and Development, Volume 1(2), ISSN: 2456-6470

www.ijtsrd.com

105
IJTSRD | Jan-Feb 2017
Available Online@www.ijtsrd.com

Capability Memory Protection for Embedded System

Anitha M. T.

Lecturer in Electronics, Government Polytechnic College, Kothamangalam, Kerala, India

ABSTRACT

Embedded systems need memory protection measures

to be effective. This is a big change for embedded

systems, which previously didn't require memory

protection techniques. Modern embedded systems, on

the other hand, necessitate the inclusion of memory

safety methods. Such systems, such as car navigation

and high-end cell phones, are unreliable because of

software corruption caused by buggy programmes that

are found in big embedded systems. The OS in

embedded systems distributes resources to be

safeguarded through middleware and applications in a

different way than in a general-purpose computer

system (GPC).

Keywords: capability protection, embedded systems,

temporal memory safety, RTOS, password;

protection; revocation

Introduction

A new era of fully autonomous environments is on the

horizon, one in which tasks will be completed in

milliseconds and with little human intervention. An

increase in the utilisation of embedded systems has

made this possible. Embedded computers are

becoming more prevalent in our daily lives, from

automobiles to mp3 players to dishwashers, and even

thermostats [1]. It is these systems that drive

technological advancement in all aspects of our lives.

To begin with, embedded systems were found in

consumer electronics such as the iPod, mp3 player,

Bluetooth headphone, and PlayStation, but today they

are used in a wide range of applications, from

washing machines to smart phones to self-driving cars

to banks to the military to space exploration.

Concerns regarding embedded systems' security and

privacy have exploded in recent months as the

technology has gained in prominence. [2]

Memory protection methods are essential even in

embedded systems. Since programmes are larger and

more sophisticated in embedded systems, a single

failure might have a cascading effect on the rest of the

system and cause it to shut down. If one application

fails, memory protection is needed to keep the

problem isolated from other programmes. When

utilising a memory protection programme, it is easier

to debug defective programmes since illegal

behaviour can be spotted. As a last step, memory

protection is also necessary to safeguard embedded

systems against software faults and malicious

software downloads[3].

There are three types of attacks on embedded

systems based on their targets.

 Software-based attacks

The programme that controls the devices is the target

of software-based assaults. Embedded systems can be

taken over or their data accessed when an attack on

software is successful.

The most common kind of attack is to look for flaws

in software design and code, which can be carried out

remotely. Hackers need not have specialised

knowledge to carry out a software-based assault

because they can employ common techniques like

malware deployment and brute-forcing.

Attacks based on software are most common, and

include:

 Malware

 Brute-forcing access

 Overflowing a memory buffer

 It was initially published at

https://www.apriorit.com/[4] on exploiting web

application security issues

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

106
IJTSRD | Jan-Feb 2017
Available Online@www.ijtsrd.com

A typical attack against embedded devices is depicted in Fig. 1.

 Network-based attacks

This type of attack takes use of flaws in the network infrastructure and can even be carried out remotely.

Embedded systems are vulnerable to hacking attacks that take use of these flaws to listen in on, intercept, and

modify data traffic.

Consider the following examples of network-based attacks:

 Man in the middle (MITM)

 Domain name system (DNS) poisoning

 Distributed denial of service (DDoS)

 Session hijacking

 Signal jamming

 Side-channel attacks

The goal of side-channel attacks is to exploit embedded system security weaknesses to get access to them. The

most difficult and expensive sort of assault is a side-channel attack, which necessitates extensive knowledge of

the target system's hardware design and physical availability. Hackers acquire information about system power

consumption, electromagnetic leakage, operation time, etc. in order to carry out a side-channel attack. Thus,

they may be able to figure out how a system and its connected devices work from the inside, steal

cryptographic keys, or even take over the system.

Some of the more frequent side-channel assaults are listed below. [5]

 Power analysis

 Timing attacks

 Electromagnetic analysis

Review of Literature

With embedded systems in mind, attacks to alter the flow of control are discussed in [6]. Data and control flow

can be separated from each other using a hardware solution. The return addresses are stored in the control flow

stack, which is located in a separate memory module from the data stack. The control flow stack is protected by

hardware safeguards from being accidentally or maliciously modified. As a result, return addresses on the stack

are protected against being overwritten with random data because access to this stack is restricted to the call

and return instructions.

Low power microcontroller memory layout is expected to be basic and static in [7]. This suggests a trade-off

between hardware expense and usability to set the maximum number of unique software activities. A memory

protection unit that implements a segmented view of the address space is utilised in a protection system. If an

access violation is detected, the MPU acts on the enable signal of the memory and input-output devices to

physically halt a data transfer. For example, segmentation is used to safeguard the small memory portions

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

107
IJTSRD | Jan-Feb 2017
Available Online@www.ijtsrd.com

associated with an input-output device's internal registers in a memory-mapped view. MPU hardware, in

particular, has to keep an associative segment lookup table for segment descriptors, which adds complexity.

Objectives

 To learn more about how the memory protects memory

 To learn about MMU and MPU

 An investigation of the attack on embedded systems

 To examine embedded systems' need for memory protection.

Research Methodology

In the discipline of academics, methodology refers to the systematic and theoretical investigation of the

procedures used to conduct research. Theoretical analysis of the methods and principles linked with a particular

field of study is included. Paradigm, theoretical model and phases as well as quantitative or qualitative

methodologies are common concepts included. It is necessary to do extensive study into secondary sources in

order to use analytical and descriptive methods. To fully develop the textual analysis, it is necessary to consult

secondary sources and do close reading analyses of a few of their writings.

Result and Discussion

In many microcontrollers, a Memory Protection Unit (MPU) provides simple hardware memory segregation.

There is no page-granular translation between virtual and physical addresses in MPUs, unlike in memory

management units (MMUs). MPUs, on the other hand, let you restrict access to certain areas of a physical

address. Systems requiring low power consumption and predictability, as well as affordability and simplicity,

are common places for MPUs. [8-10]

Fig. 2 shows the differences between the MMU and MPU. A dotted line indicates that MMUs provide page-

based translation, whereas a vertical solid line indicates that MPUs do region-based protection. RW: read-write;

RO: read-only; RX: read-only and executable.

The MPU access control state is maintained directly in registers that are programmable solely at the kernel level

and have more flexible granularity control. Due to the fact that MPUs do not allow for address virtualization,

all memory must be non-overlapping in order to create an Single Address Space Operating System. [11-13]

A Memory Management Unit (MMU) is responsible for implementing the above-described memory protection

features (MMU). Memory access is monitored using a page table by the MMU, which performs the translation

of virtual addresses to physical addresses. The virtual address and memory protection information are both

stored in the page table for each page entry. [14]

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

108
IJTSRD | Jan-Feb 2017
Available Online@www.ijtsrd.com

Changes in memory protection mechanisms are depicted in Fig. 3

The memory protection information in Fig. 4 indicates that with a domain denotes

access in the execution mode is granted to the domain, where i=0 and i=1 indicate the kernel

mode and user mode, respectively.[15]

Conclusion

In addition to making our lives easier and more

comfortable, embedded devices can pose a threat to

our safety. The commercial viability of new goods or

the proper operation of current ones can be

jeopardised by an expanding number of security

threats against embedded systems and other hacker

attacks. As 100% security does not exist, an attacker

having enough time, resources and motivation could

always break into any system. For this reason,

manufacturers must protect their products against

specific dangers in order to establish a balance

between the expense of security implementation and

the benefits gained. Multiple memory regions, nested

memory areas, and the ability to guard against

memory area changes are all features of the memory

protection system. Because of their flexibility and

generic nature, these properties are well-suited to a

wide range of embedded system uses. The integration

of the embedded component system and the access

control mechanism leads to a more secure and safe

embedded programme runtime environment. Next, we

plan to create the general memory protection

mechanism and test it in a variety of component usage

scenarios.

References

[1] P. Koopman, "Embedded system security,"

IEEE, pp. 95-97, 12 July 2004.

[2] https://www.ioxtalliance.org/the-pledge

[3] https://ogi-cdn.s3.us-east-

2.amazonaws.com/csis/firmware-security-best-

practices-v1.1.pdf

[4] https://www.nccgroup.com/uk/our-

research/security-of-things-an-implementers-

guide-to-cyber-security-for-internet-of-things-

devices-and-beyond/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

109
IJTSRD | Jan-Feb 2017
Available Online@www.ijtsrd.com

[5] https://www.nccgroup.com/uk/our-

services/cyber-security/specialist-

practices/secure-development-cycle/

[6] A. Francillon, D. Perito, C. Castelluccia,

“Defending embedded systems against control

flow attacks,” Proceedings of the First ACM

Workshop on Secure Execution of Untrusted

Code, Chicago, Illinois, USA, November 2009,

pp. 19–26.

[7] O. Stecklina, P. Langendörfer, H. Menzel,

“Design of a tailor-made memory protection

unit for low power microcontrollers,”

Proceedings of the 8th IEEE International

Symposium on Industrial Embedded Systems,

Porto, Portugal, June 2013

[8] T. Azumi, M. Yamamoto, Y. Kominami, N.

Takagi,H. Oyama, and H. Takada. A New

Specification of Software Components for

Embedded Systems. In Proc. 10th IEEE In-

ternational Symposium on Object and

Component-Oriented Real-Time Distributed

Computing, pages 46–50, May 2007.

[9] Ken Sakamura. ITRON4.0 Specification

Ver.4.00.00.TRON Association, 2002.

[10] Y. Nakamoto. Software TLB Management for

Embedded Systems. Transaction on Information

and Systems, Special Issues on Advanced

Computer Systems, E86-D (10):2034–2039,

Oct. 2003.

[11] Renesas Technology. SH7727 group Hardware

Manual, Rev.5.00, Dec. 2005.

[12] T. Shinagawa, K. Kono, M. Takahashi, and T.

Masuda. Ker-nel support of fine-grained

proctection domains for extention components.

Journal of Information Processing Society of

Japan, 40(6):2596–2606, June 1999. (in

Japanese)

[13] J.-H. Choi et al., “A low power TLB structure

for embedded systems,” Computer Architecture

Letters, vol. 1, no. 1 (2002).

[14] B. Egger, S. Kim, C. Jang, J. Lee, S. L. Min, H.

Shin, “Scratchpad memory management

techniques for code in embedded systems

without an MMU,” IEEE Transactions on

Computers, vol. 59, no. 8 (August 2010), pp.

1047–1062.

[15] A. Francillon, D. Perito, C. Castelluccia,

“Defending embedded systems against control

flow attacks,” Proceedings of the First ACM

Workshop on Secure Execution of Untrusted

Code, Chicago, Illinois, USA, November 2009,

pp. 19–26.

