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ABSTRACT 
 
The prediction of simultaneous limb motions is a
highly desirable feature for the control of artificial 
limbs. In this work, we investigate different 
classification strategies for individual
simultaneous movements based on pattern recognition 
of myoelectric signals. Our results suggest that any 
classifier can be potentially employed in the 
prediction of simultaneous movements if arranged in 
a distributed topology. Compressive sensing has 
successfully used for optimized operations in wireless 
sensor networks. However, raw data collected by 
sensors may be neither originally sparse nor
transformed into a sparse data representation. This 
work addresses the problem of transforming s
data collected by sensor nodes into a sparse 
representation with a few nonzero elements. Our 
contributions that address three major issues
1) an effective method that extracts population 
sparsity of the data, 2) a sparsity ratio guarantee 
scheme, and 3) a customized learning algorithm of the 
sparsifying dictionary. We introduce an unsupervised 
neural network to extract an intrinsic sparse coding of 
the data. As the underlying semiconductor 
technologies are getting less and less reliable, the 
probability that some components of computing 
devices fail also increases, preventing designers from 
realizing the full potential benefits of on
integration derived from near atomic scale feature 
dimensions. As the quest for performance confr
permanent and transient faults, device variation, and 
thermal issues, major breakthroughs in computing
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The prediction of simultaneous limb motions is a 
highly desirable feature for the control of artificial 

In this work, we investigate different 
classification strategies for individual and 
simultaneous movements based on pattern recognition 
of myoelectric signals. Our results suggest that any 
classifier can be potentially employed in the 
prediction of simultaneous movements if arranged in 

Compressive sensing has been 
optimized operations in wireless 

data collected by 
sensors may be neither originally sparse nor easily 
transformed into a sparse data representation. This 
work addresses the problem of transforming source 

sensor nodes into a sparse 
elements. Our 

contributions that address three major issues include: 
1) an effective method that extracts population 

of the data, 2) a sparsity ratio guarantee 
customized learning algorithm of the 

introduce an unsupervised 
sparse coding of 

As the underlying semiconductor 
technologies are getting less and less reliable, the 

components of computing 
fail also increases, preventing designers from 

realizing the full potential benefits of on-chip exascale 
integration derived from near atomic scale feature 
dimensions. As the quest for performance confronts 
permanent and transient faults, device variation, and 
thermal issues, major breakthroughs in computing  

 
 
 
 
efficiency are expected to benefit from 
unconventional and new models of computation, such 
as brain inspired computing. The challenge is then
high-performance and energy-
tolerant computing solutions. 
 
Keywords: data representation, device variation, 
wireless sensor networks 
 
1. Introduction 
In order to achieve simultaneous control using the 
direct mapping strategy, it would be enough to assign 
the MES of each muscle to its respective limb motion. 
However, this is practically 
reasons, i.e., considerable myoelectric
(crosstalk) is commonly found on superficial
recordings and, inherently to an amputation, muscles 
are lost and so are the myoelectric control sites.
simultaneous control of two DoF using a direct 
scheme has been demonstrated by Kuiken
patients with targeted muscle re
This was achieved thanks to the TMR procedure 
which increases the number of independent
sites [2]. Unfortunately, even in TMR patients,
not always possible to satisfactorily isolate MES in 
surface recordings, thereby admittedly making pattern 
recognition schemes desirable [2], [3].An alternative 
to the direct control scheme is the use of pattern
recognition algorithms (classifiers) which map several 
inputs(mixed MES from different muscles) to several 
outputs(limb motions). Although this approach is 
potentially capable of providing simultaneous control, 
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efficiency are expected to benefit from 
unconventional and new models of computation, such  

computing. The challenge is then 
-efficient, but also fault-

 

data representation, device variation, 

In order to achieve simultaneous control using the 
would be enough to assign 

muscle to its respective limb motion. 
 impossible for several 

reasons, i.e., considerable myoelectric interference 
(crosstalk) is commonly found on superficial 

to an amputation, muscles 
and so are the myoelectric control sites. The 

simultaneous control of two DoF using a direct 
has been demonstrated by Kuikenet al. [1] in 

muscle re-innervations (TMR). 
to the TMR procedure 

which increases the number of independent control 
sites [2]. Unfortunately, even in TMR patients, it is 
not always possible to satisfactorily isolate MES in 

recordings, thereby admittedly making pattern 
esirable [2], [3].An alternative 

to the direct control scheme is the use of pattern 
recognition algorithms (classifiers) which map several 
inputs(mixed MES from different muscles) to several 
outputs(limb motions). Although this approach is 

of providing simultaneous control, 
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most prosthetic research has focused on predicting 
individual motions which limits the control to a serial 
operation (a single motion at a time). A detailed 
review of prosthetic control has been provided by 
Scheme and Englehart [4].A sparsely-activated data (a 
few nonzero elements in a sample vector) may 
naturally exist for compressive sensing (CS) 
applications in wireless sensor networks (WSNs) such 
as the path reconstruction problem[1], indoor 
localization[2], and sparse event detection [3]. On the 
other hand, a sparse data representation cannot be 
easily induced in many other real-world contexts (e.g., 
in meteorological applications and environmental data 
gathering). In particular, noise patterns are usually 
presented in collected data from WSNs which greatly 
affect the performance of conventional sparsity-
inducing (transformation) algorithms such as the 
Haarwavelet and discrete cosine transforms [4]. This 
motivates the quest for noise-robust and effective 
sparsity-inducing method for WSNs. One of the 
breakthroughs in recent deep learning paradigms for 
finding high level data abstractions is achieved by 
introducing sparsity constraints on data 
representations, e.g., the Kullback–Leibler divergence 
[5], rectifier function [6], and topographic coding [7]. 
These methods are introduced for extracting intrinsic 
features from the data in a similar way that the human 
brain does while encoding sensory organ data, e.g., 
the low percentage of spikes in a visual cortex [8].In 
particular, sparse deep learning methods generate 
sparse representations across training data for each 
single unit (i.e.,lifetime sparsity), and they neither 
guarantee sparsity for each input signal nor assert on 
the number of nonzero values in the sparse codes. 
 
Derived from these observations, it is commonly 
claimed that the majority of neural network models, 
abstracted from biological ones, have built-in or 
intrinsic fault tolerance properties due to their parallel 
and distributed structure, and the fact that usually they 
contain more neurons or processing elements than the 
necessary to solve a given problem, i.e., some natural 
redundancy due to over provisioning. However, 
claiming such an equivalent fault tolerance only on 
the basis of rough architectural similarities therefore 
cannot hold true in general, especially for small size 
neural networks [9], [10]. Furthermore, the 
assessment of fault tolerance across different neural 
models still remains difficult to generalize, due to 
fault tolerance is network- and application- 
dependent, an inconsistent use of the principal 
concepts exists, and the lack of systematic methods 

and tools for evaluation across neural models. 
Computational studies have shown that neural 
networks are robust to noisy inputs and they also 
provide graceful degradation due to their resilience to 
inexact computations when implemented in a physical 
substrate. The tolerance to approximation, for 
instance, can be leveraged for substantial performance 
and energy gains through the design of custom low-
precision neural accelerators that operate on sensory 
input streams [11]_[13]. However, in practice, a 
neural network has a very limited fault tolerance 
capability and, as a matter of fact, neural networks 
cannot be considered intrinsically fault tolerant, 
without a proper design. Furthermore, as a 
consequence of computation and information are 
naturally distributed in neural networks, error 
confinement and replication techniques, key to 
conventional fault tolerance solutions, cannot be 
applied directly so as to limit the error propagation 
when implemented in potentially faulty substrates. 
Obtaining truly fault tolerant neural networks is still a 
very attractive and important issue to obtain more 
biological plausible models, both for i) artificial 
intelligence based solutions, where, for instance, 
pervasive embedded systems will require smart 
objects fully merged with the environment in which 
they are deployed to cope with unforeseeable 
conditions[14]_[16], and ii) as a source to build 
reliable computing systems from unreliable 
components, as suggested by [17].Rooted on the 
neural paradigm computing systems might take 
advantage of new emerging devices at nano scale 
dimensions and deal both with manufacturing defects 
and transient faults as well [18], [19] and even 
considers faults/errors an essential and intrinsic part 
of the design. In this last direction, the robustness and 
the potential fault tolerant properties of neural models 
call for attention as permanent and transient faults, 
device variation, thermal issues, and aging will force 
designers to abandon current assumptions that 
transistors, wires, and other circuit elements will 
function perfectly over the entire lifetime of a 
computing system, relying mainly on digital 
integrated circuits [20][23]. 
 
2. Problem Formulation 

Neural networks are claimed to have a built-in or 
intrinsic fault tolerance property mainly due to their 
distributed connectionist structure. Fault tolerance in a 
neural network is directly related to the redundancy 
introduced because of spare capacity (over-
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provisioning), i.e., when the complexity of the 
problem is less than the raw computational capacity 
that actually the network can provide. Nevertheless, 
the analysis and evaluation of fault tolerance remain 
difficult because many different architectural and 
functional features under diverse conceptual 
frameworks are usually involved, and there are no 
common systematic methods or tools for evaluation. 
Technical and quantitative reasoning about these 
features calls for clear definitions, highlighting their 
similarities and differences, as those concepts appear 
indifferent contexts and areas of application. 
 
A fault is an anomalous physical condition in a 
system that gives rise to an error. An error is a 
manifestation of a fault in a system, the deviation 
from the expected output, in which the logical state of 
an element differs from its intended value. A failure 
refers to a system's inability to perform its intended 
functionality or behavior because of errors in its 
elements or perturbations in its environment. 
Propagation of an error to the system level results in 
system failure, however, a fault in a system does not 
necessary result in an error or failure as it might go 
inactivated. A fault is said to be active when it 
produces an error; otherwise it is called dormant. 
Faults can be classified by their temporal 
characteristics as follows: 
 
A permanent fault is continuous and stable with 
time; it is mainly a result of an irreversible physical 
damage. 
 
A transient fault may only persist for a short period 
of time and it is often result of external disturbances. 
Transient faults, which recur with some frequency, 
are called intermittent. Usually, an intermittent fault 
results from marginal or unstable device operation 
and they are more difficult to detect than permanent 
ones. Transient and intermittent faults cover the vast 
majority of faults which occur in digital computing 
systems built with the current semiconduct or 
technology. Even, future implementation technologies 
are expected to suffer transient faults due to a reduced 
device quality, exhibiting a high level of process and 
environmental variations as well as considerable 
performance degradation due to the potential high 
stress of materials. 
 
A. Classifiers and Classifier Topologies 
There is a wide variety of fundamentally different 
pattern recognition algorithms, and although some of 

them are inherently capable of simultaneous 
classification (e.g., MLP), others are limited by their 
design to produce a single output (e.g., linear 
discriminant analysis). A mixture of these classifiers 
was evaluated in this work: Linear Discriminant 
Analysis (LDA) as a statistical classifier part of 
discriminant analysis; Multi-Layer Perceptron (MLP) 
as a supervised Artificial Neural Network (ANN); 
Self-Organized Map (SOM) as an unsupervised ANN 
and Regulatory Feedback Networks (RFN) as a new 
paradigm in classification based on negative feedback 
rather than learning. 

Figure: 2.1 A Multi-Layer Feed-Forward Neural 
Network 

 
Although some of these algorithms compute the most 
likely pattern/class by majority voting (single output), 
they can be split into different topologies using 
dedicated classifiers, thus enabling simultaneous 
predictions (mixed outputs). One way of achieving 
mixed outputs is the creation of several binary 
classifiers, which is known as problem transformation 
by binary relevance. The following topologies 
(transformations) were used in this study. 
 
1) Single: This is the simplest and most commonly 
used topology, where all inputs feed a single classifier 
which is trained to discriminate all labels. In order to 
be used for simultaneous predictions, the classifier is 
also fed with information relating to the mixed classes 
during the training/learning process. Although the 
number of outputs remained the same as that of the 
individual classes, simultaneous prediction is possible 
because more than one output can be activated in 
parallel.  
 
2) All Movements as Individual (AMI): Similar to a 
single classifier but applies the label power set 
problem transformation method, which means 
creating a new label for each mixed movement. The 
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number of outputs is there for expanded to the total 
number of classes. In this case, only one output is 
activated at a time.  
 
3) Ago/Antagonist-Mixed (AAM): This topology 
assumes that the motions are paired in ago/antagonist 
movements (essentially a DoF). There are as many 
classifiers as DoF and each classifier is fed with the 
feature vectors of at least three classes; two of them 
are the movements related to the DoF, and the third is 
a mixed class combining all the other movements. A 
fourth class is optional if the rest class (no motion) is 
available. The output vector contains the winner 
motion from each classifier, It is formed by 
classifiers, considering that there is a rest class. 
 
The number of movements for the individual 
classification study was 11 (hand open/close, wrist 
flexion/extension, pro/supination, side grip, fine grip, 
agree or thumb up, pointer or index extension, and 
rest), recorded by four equally spaced bipolar 
electrodes. The movements involved in the 
simultaneous study were hand open/close, wrist 
flexion/extension and pro/supination, plus all their 
possible combinations—that is three DoF with six 
individual and 20 mixed motions for a total of 27 
classes (considering the rest class) recorded using 
eight bipolar electrodes. These movements were 
selected because they are currently feasible using 
commercially available prosthetic devices. A 
recording session for simultaneous movements lasted 

10.4 min, and information from all classes was used 
to train the classifiers. 
 
3. Fault-Tolerant Neural Networks 

Fault tolerance in neural networks depends on the 
definition of the acceptable degree of performance 
and its intended application at a high level of 
abstraction, fault tolerance, within neural models, 
might be analyzed by the effects of errors in the main 
operators that support the whole neural computational 
task, rather independent from their intended physical 
implementation. In fact, this has been the practice in 
most works reported in the literature. In a more 
comprehensive and structured approach, after this 
initial step, physical faults affecting a specific 
implementation can be mapped onto such errors so 
that the expected fault tolerance of a given 
architectural implementation of a neural model can be 
estimated, and further by identifying critical neural 
components, complementary and ad-hoc fault 
tolerance policies can be further applied to enhance 
the properties of the neural model implementation. In 
neural networks, an error model can be defined 
depending only on the neuron behavior itself, rather 
independent of its physical implementation, which is 
usually targeted to a digital substrate, so as to estimate 
the influence of faults on the neural computation from 
the initial design stages. 
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 As unexpected values of signals in the 
communication channels due to faulty 
interconnections or noise. 

 In the synaptic weight or the associated 
computation, this in the absence of 
implementation details can be considered as 
indistinguishable. 

 In the neuron body itself, affecting the summation 
or the evaluation of the nonlinear activation 
function. 

 
The stuck-at model essentially allows investigating 
fault tolerance at the behavioral level, independently 
of the actual implementation or detailed 
characteristics of physical faults. It abstracts and 
simplifies faults into stuck-at values affecting single 
components. Such an abstraction has been widely 
used in testing of digital circuits and has proved to be 
sufficient to model a large number of physical faults. 
Some other faults/errors can be even considered for 
neurons but they can mask each other in the sense that 
it can be undistinguishable which fault occurred, for 
instance a fault in the synaptic operation itself 
(multiplication) instead of a fault in the weight 
storage. Considerations on physically realistic fault 
models for analog VLSI neural networks are also 
needed. Among the most important works reported in 
the literature regarding fault models in neural 
networks, mostly feed forward multilayer networks, 
are the following.  Sequin and Clay used a bottom-up 
approach to categorize the types of faults that usually 
might occur in neural networks looking at the main 
components that comprise a network and focusing in 
fault cases that yield a worse effect on the overall 
performance of the network. 
 
4. Taxonomy of Fault Tolerance 

A general but widely adopted frame is to classify fault 
tolerance as passive or active, based on the principles 
and mechanisms that they exploit to achieve fault 
tolerance and particularly emphasized for fault 
tolerance in neural models. We follow this frame in 
reviewing the literature related to neural networks 
fault tolerance, and we principally focus on methods 
and techniques to enhance fault tolerance passively. 
Nonetheless, other important works on fault tolerance 
in neural networks are also briefly referred throughout 
this review. An empirical study of the influence of the 
activation function on fault tolerance properties of 
feed forward neural networks is presented, showing 
that the activation function largely has relevance on 

fault tolerance and the generalization property of the 
network. Review some representative works on active 
fault tolerance in neural networks. Before going into 
details, it is worth to point out that the majority of 
reported works has been focused in feed forward 
neural networks and few attempts have been made to 
improve fault tolerance in some other neural models. 
Works that discuss and analyze fault tolerance of non-
feed forward neural networks, even though some 
works do not propose any specific technique for fault 
tolerance improvement. This issue is of importance 
since the studies and results in the literature concerned 
with fault tolerance in feed forward neural networks, 
despite of its importance (e.g. for deep learning), are 
difficult to generalize and directly apply across other 
different neural models. 
 
4.1 Passive Fault Tolerance 
 
In the proposed taxonomy, as schematically the 
reviewed works are classified based on their main 
strategies to achieve or improve fault tolerance in the 
recall stage of neural networks without considering 
retraining, i.e., we mainly focus on passive fault 
tolerance. Since only passive fault tolerance is 
considered in depth herein, the main mechanisms to 
provide the needed redundancy or fault masking to 
enhance fault tolerance will be presented. Each 
technique is explained based on its characteristics, 
design objectives, and the considered fault types in 
the performed study. Three main categories, in the 
passive approach, are identified, which group together 
related methods and techniques to enhance the 
intrinsic fault tolerance capabilities of neural 
networks: i) explicitly augmenting redundancy, ii) 
modifying learning/training algorithms, and iii) neural 
network optimization with constraints. 
 
5. Results 
In order to appreciate the detection quality of the 
different options, and considering the highly 
unbalanced distribution of service labels, we provide 
the following performance metrics for each option: 
accuracy, precision, recall, and F1. Considering all 
metrics, F1 can be considered the most important 
metric in this scenario. F1 is the harmonic mean of 
precision and recall and provides a better indication of 
detection performance for unbalanced datasets. F1 
gets its best value at 1and worst at 0.All the activation 
functions were Rectified Linear Units(ReLU) with the 
exception of the last layer with Softmax activation. As 
expected, in general, the more features render better 
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results. But, interestingly the packets inter-arrival time 
(TIMESTAMP) gives slightly worse results when 
added to the full features set. It seems it provides 
some not well aligned information with the source and 
destination ports, because, as soon as we take away 
the source and destination port, it is clear it becomes 

again an important feature. It is also interesting to 
appreciate the importance of the feature TCP window 
size (WIN SIZE), being more important than 
TIMESTAMP when operating with a reduced set of 
features. 
 

 
Table: 5.1 Adaptive Motion Data Representation 

 
The Motion Test for simultaneous movements was 
performed by ten subjects using the MLP classifier in 
Single, OVA, and AAM topologies in order to 
investigate whether differences in real-time prediction 
exist despite their practically identical offline 
accuracy No difference was found between the Single 
and AMM topologies when subjects were asked about 
their perceived performance. Conversely, they all 

reported that OVA was the least stable, which is in 
line with its poor performance on this test. On the 
other hand, the Single topology for MLP was chosen 
as the simultaneous strategy because of its simplicity 
and since no considerable difference was found 
compared with AAM. 
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6. Conclusion 
This problem is currently being addressed using 
different, but not always mutually exclusive,
approaches such as conforming dry surface 
electrodes, TMR, and in our case, implanted 
neuromuscular interfaces permanently communicated 
through an Osseo integrated implant. In
these controllers are to be used, this work suggests
that simultaneous control must be considered, as it 
increases the overall controllability without 
considerable increment incomplexity. In this work, we 
have introduced a sparsity-inducing algorithm
aggregation of non-sparse signal in wireless
networks. The proposed method consists of three 
steps: data collection, offline training and mode
and online sparse code generation. The model
scheme is based on a neural network with three layers, 
where the sparse codes are exposed at the
layer’s neurons. A cost function is introduced as a 
sparsity nomination scheme. Then, a shrinking
mechanism is used to switch off the least dominant 
neurons in the hidden layer, while asserting on the 
number of generated nonzero values in the sparse 
code. The resulting scheme can be used in many 
applications such as in compressive sensing based
data aggregation schemes. For future research, we 
will analytically study the energy consumption and 
computational burdens of the proposed scheme.
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