A Study on Investment Decisions of Different Projects at Chakravuyha Software Technologies Pvt Ltd

K Mahesh Kumar¹, Dr. P. Basaiah²

¹Student, ²Assistant Professor, ^{1,2}JNTUA University Anantapur, Andhra Pradesh, India

of Trend in Scientific

Development

ABSTRACT

Investment Decisions as a technique of capital budgeting to make decision whether and how to invest available funds in long term or short term while anticipating high returns. The study aim was to about choosing the profitable and suitable projects with higher possible returns & risk for their investments on various projects.

KEYWORDS: Investment decisions, Decision Making, NPV Analysis, Profitability Index

Iourna/

INTRODUCTION

Investment decision is also termed as the capital budgeting. Capital budgeting or investment decision means the process of taking decisions when investing in the capital expenditure. Capital budgeting is a process of evaluating investments and huge expenses in order to obtain the best returns on investment. An organization is often faced with the challenges of selecting between two projects/investments or the buy vs replace decision.

Ideally, an organization would like to invest in all profitable projects but due to the limitation on the availability of capital an organization has to choose between different projects/ investments.

Need for the study;-

The present study is mainly about to choosing the right & profitable and suitable projects from five different clients of the CHAKRAVUYHA SOFTWARE TECHNOLOGIES PRIVATE LIMITED. *How to cite this paper:* K Mahesh Kumar | Dr. P. Basaiah "A Study on Investment Decisions of Different Projects at Chakravuyha Software Technologies Pvt Ltd" Published in

International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-5 | Issue-5, August 2021, pp. 1547-1550,

1550, URL: www.ijtsrd.com/papers/ijtsrd45111.pdf

Copyright © 2021 by author (s) and International Journal of Trend in Scientific Research and Development

Journal. This is an Open Access article distributed under the

terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

Scope of the study;-

>	The study	was	conducted	to	analysis	the
	INVESTMI	ENTS	DEC	ISIC	DNS	OF
	DIFFEREN	IT	PROJ	EC	ГS	in
	CHAKRAV	UYHA	A		SOFTWA	ARE
	TECHNOLO	OGIES	PRIVATE	LIN	IITED.	

Objectives of the study;-

- To study the techniques of capital budgeting, presently adopted by the CHAKRAVUYHA SOFTWARE TECHNOLOGIES PRIVATE LIMITED.
- To evaluate all projects and select the profitable projects for the company.
- To analysis the difference of cash flows on various clients of the company.

Research Methodology;-

Primary & secondary sources;

Collected information through interactions from various personnel (at different hierarchies) in the departments of Finance and Accounts at International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

CHAKRAVUYHA SOFTWARE TECHNOLOGIES. In secondary data was collected from annual reports and websites. Books relating to the projects

Limitations;-

- The study is confined to Capital Budgeting techniques of Chakravuyha Software Technologies Private Limited Hyderbad only.
- The study is limited to five various clients of Chakravuyha Software Technologies Only for the period of 2018 to 2020.

Company clients

NVP Analysis

NPV is used in capital budgeting and investment planning to analyze the profitability of a projected investment or project.

Net present value= Net present value of cash Inflows – Net Present value of Cash Outflows

Calculation of NPV on project A

			PROJECT		
				FV FACTORS	PRESENT VALUE OF CASH IN
-	Mondley	-	CARL INF.OWN	0/10/%	FILEN .
_	1	_	2000-00	0 909	161800
-	2	-	215000	. 0.526	177990
-	ы	-	275000	0.03	. 205525
-	4	-	823000	0.663	. 221973
-		-			н н. н. н.
_			loss I presenti vi	sive of cash inflov	e 187890

Net Present Value of cash outflows = 320000

Net Present Value = 787890- 32000

(Net Present Value = 467890)

R Programming on Project A

> library(FinCal)

- > initialinvestment<-320000</pre>
- > cashflows<-c(200000,215000,275000,325000)
- > cf<-c(-initialinvestment,cashflows)</pre>
- > t=0.1

```
> NPV=npv(t,cf)
```

```
> NPV
```

[1] 467890

>

NPV on Project B

	PROJECT B			
	•	PVFACTORS P	RESENTIVALLE OF CA	454
Months	CASH INFLOWS	@10%	IN FLOW	
1	250000	0.909	227250	- 1
2	275000	0.826	227150	- 1
3	300000	0.751	225300	
4	. 392880	. 0.683	268337.04	
				1
	Total present value (of cash in flow	544037.04	

Net Present Value of cash outflows = 594000 Net Present Value = 948037.04 – 500000

Net Present Value = 448037.04

R programming on Project **B**

- > library(FinCal)
- > initialinvestment<-594000</pre>
- > cashflows<-c(250000,275000,300000,392880)
- > cf<-c(-initialinvestment,cashflows)</pre>
- > t=0.1
- > NPV=npv(t,cf)
- > NPV= [1] 448037.04

NPV on Project C

Months 1

	PROJECTO		
S.	CASH INFLOWS	PVFACIONS 	PRESENT VALUE OF CASH IN FLOW
- <u>Y</u> Y	1.25/300	0.909	113625
V V	1 60000	0.826	1 52 160
6. Y	200000	1 O 751	150700
3.	215000	0.683	146845
, m		•	
	Tetal present value	e of cash inflow	542830

Net present value of cash outflows = 300000 Net present value = 542830-300000 Net Present Value = 242830

R Programming on project C

- > library(FinCal)
- > initialinvestment<-300000
- > cashflows<-c(125000,160000,200000,215000)
- > cf<-c(-initialinvestment,cashflows)
- > t=0.1
- > NPV=npv(t,cf)

> NPV

[1] 242830

>

NPV on Project D

	-	PRODUCTU	Р.,	•	
k-lo-sibs		CASHINFIOWS	PV FACTORS @100	PRESENT VALUE OF CAS FIGW	3- IN
:		200300	0.968	18JB00	
2		275330	0.826	227150	
2		300000	0.751	225600	
4	-	325-390	0.683	. 221975	
			•		
	le Ist	otal present value of ra	sh nibw	856235	

Net Present Value of Cash outflows = 400000

Net Present Value = 856225 – 400000

Net Present Value = 456225

@ IJTSRD | Unique Paper ID – IJTSRD45111 | Volume – 5 | Issue – 5 | Jul-Aug 2021

R Programming on Project **D**

- > library(FinCal)
- > initialinvestment<-400000
- > cashflows<-c(200000,275000,300000,325000)
- > cf<-c(-initialinvestment,cashflows)</pre>
- > t=0.1
- > NPV=npv(t,cf) > NPV
- [1] 456225
- L+.

NPV on Project E

-		- PAULING F		
	Months	, EASH IN FLOWS	PVFACTORS @10%	PRISENT VALUE OF CASHINI FLOW
	1	27:000	0.909	2499-5
-	2	52 9000	0.826	258453
	4	420000	0.754	315420
-	-1	. 488570	0.683	. 333659-16 .
		total present whole of a	esstunitees	1157506-15

Net Present Value of Cash outflow =450000 Net Present Value = 1167504.15 – 450000 Net Present Value = 712504.15

R Programming on Project E

- > library(FinCal)
- > initialinvestment<-450000
- > cashflows<-c(275000,325000,420000,488520)
- > cdsiniows < c(275000,525000,420000, > cf<-c(-initialinvestment,cashflows) > t=0.1
- > NPV=npv(t,cf)
- > NPV

```
[1] 712504.15
```

```
>
```

Bar Graph on NPV values

PROFITABILITY INDEX

Profitability index = <u>PV of cash inflows</u> Initial investment or cash outflows

Projects	Present value of cash inflow	Present value of cash out flow	Profitability
			index
A	787890	320000	2.462
. 8	946037.04	594000	1.596
с	542830	300000	1.809
D	-8562215	400003	2.14
E	1167504.16	450000	2.594

Project E Profitability index = $\frac{1167504.16}{450000}$

Profitability index = 2.594

Bar Graph on Profitability Index

Interpretation:-

As per the above calculations the profitability index in projects which is greater than to compaire with other projects and their profitability index is higher than 2 i.e E 2.594, so the project E is accepted.

Hypothesis;

+ T-Test

Ho; There is no significant difference between present value of cash inflows of different projects.

H1; There is a significant difference between present value of different projects.

Researc INTERPRETATION:

Develop Compare the tcal Value with ttab value at 4 d.f. ttab at 4 d.f.= 2.776. Here, tcal > ttab therefore we reject H0. Therefore there is a significance difference in the cash flows in the projects.

Hypothesis;

Ho; There is no significant difference between NPV of different projects.

H1; There is a significant difference between NPV of different projects.

Interpretation:

Compare the tcal Value with ttab value at 4 d.f. ttab at 4 d.f.= 2.2776 Here, tcal > ttab therefore we reject H0. Therefore there is a significance difference in the projects in N.P. V.

Hypothesis;

Ho; There is no significant difference between Profitability index of different projects.

H1; There is a significant difference between Profitability index of different projects.

Interpretation;

Compare the tcal Value with ttab value at 4 d.f.t tab at 4 d.f.= 2.2776 Here, tcal > ttab therefore we reject H0. Therefore there is a significance difference in the projects in P.I.

Findings;-

- In decision rule of NPV we accept the project \geq which shows the positive values. But here we are comparing different projects like A,B,C,D and E. so while making analysis of different projects based on NPV method we accept the project which shows the high value.
- > Project E shows the high NPV value it is clent investments 712504.15.
- As compare with other projects A and D also shows positive values. which is in 467890 and 456225.
- As NPV considers only returns of the project but \geq not risk. So the company calculates based on the profitability index method as it considers both risk and return. When its P.I is greater than two. If PI is less than two it should be rejected. Profitability index of the First project is 2.462 and the fourth project is 2.14 and the fifth project is 2.594 this is greater than two. So, the projects are accepted.
- Among the five projects we select the most \succ profitable projects of three. We ignore the two less revenue projects.

- \blacktriangleright The calculated value of t is 8.435 and the table value is 2.776 at 4 d.f.
- \blacktriangleright The calculated value of t is 6.249 and the table value is 2.776 at 4 d.f.
- \triangleright The calculated value of t is 11.227 and the table value is 2.776 at d.f.

Suggestions;-

- ▶ Project B, being an Indian small start-up company, this project doesn't give much profits but in order to encourage small start-ups, the company should accept such Indian small projects even though the profits are less.
- > Organization can follow some other Modern techniques for making better decisions on identifying the suitable projects of the company.
- > The future of investment is always uncertain so the company should maintain continuous monitoring fluctuations on currency for minimizing the risk and maximizing the

Conclusion;-

From the study it was observed by making the analysis of investment decisions on various clients projects of chakravuyha. The First fourth and fifth projects investments are suitable and profitable to the company by using NPV and the Profitability index and their investments returns are getting back within the excepted period. So the Organization can accept and invest more in this projects.

Reference;-

- [1] Financial Management I.M.PANDEY
- [2] Financial Management - PRASANNA **CHANDRA**
- Financial Management KHAN AND JAIN [3]
- [4] Financial Management – F.M.VENHDRNE.