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ABSTRACT

Consider a GI/M/1 queue with set-up period and working vacations.
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1. INTRODUCTION

Servi and Finn [1] first introduced the working
vacation models and studied an M/M/1 queue, the
server commits a lower service rate rather than
completely stopping the service during a vacation.
Baba [2] considered a GI/M/1 queue with working
vacations by the matrix-analytic method. For the
vacation interruption models, Li and Tian [3] first
introduced and studied an M/M/1 queue with working
vacations and vacation interruption. Then, Li et al. [4]
analyzed the GI/M/1 queue with working vacations
and vacation interruption by the matrix-analytic
method. Meanwhile, in some practical situations, it
needs some times to switch the lower rate to the
normal working level, which we call set-up times.
Zhao et al. [5] considered a GI/M/1 queue with set-up
period and working vacation and vacation
interruption. Bai et al. [6] studied a GI/M/1 queue
with set-up period and working vacations.

In this paper, based on the Bernoulli schedule rule we
analyze a GI/M/1 queue with set-up period and
working vacation and vacation interruption at the
same time. Zhang and Shi [7] first studied an M/M/1
queue with vacation and vacation interruption under
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the Bernoulli rule. In our model, during the working
vacation period, if there are customers at a service
completion instant, the server can come back to a set-
up period with probability p(0< p<1), not with
probability 1, or continue the working vacation with
probability 1- p, which is different from the situation

many authors considered before, and when the set-up
period ends, the server will switch to the normal busy
period. Clearly, the models in [5,6] will be the special
cases of the model we consider.

2. Model description and embedded Markov
chain
Consider a GI/M/1 queue such that the arrival process
is a general distribution process. The server begins a
vacation each time when the queue becomes empty
and if there are customers arriving in a vacation
period, the server continues to work at a lower rate,
1.e., the working vacation period is an operation
period in lower speed. At a service completion
instant, if there are customers in the vacation period,
the vacation can be interrupted and the server is
resumed to a set-up period with probability
p(0< p<1), or continues the vacation with probability
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p (p=1-p), and when the set-up period ends, the

server will switch to the normal working level.
Otherwise, the server continues the vacation.
Meanwhile, if there is no customer when a vacation
ends, the server begins another vacation, otherwise,
he switches to the set-up period, and after the set-up
period, the server switches to the normal busy period.

Suppose 7, be the arrival epoch of nth customers with
7,=0. The inter-arrival times ({7,,n21} are

independent and identically distributed with a general
distribution function, denoted by A(r) with a mean

1/ A and a Laplace Stieltjes transform (LST), denoted
by A’(s) . The service times during a normal service

period, the service times during a working vacation
period, the set-up times and the working vacation
times are exponentially distributed with rate ¢ ,7,

Band @, respectively.

Let L(r) be the number of customers in the system at
time 7 and 1, = (7, -0)be the number of the customers
before the nth arrival. DefineJ, =0, the nth arrival
occurs during a working vacation period; J, =1, the
nth arrival occurs during a set-up period; J, =2, the

nth arrival occurs during a normal service period.
Then, the process {(L,,J,),n=1}is an embedded

Markov chain with state space

Q ={0,0}0{(k, j),k=1,j=0,1,2}.
In order to express the transition matrix of (L ,J,), let
Piginy =Py =k J o =l L, =00, = ).

Meanwhile, we introduce the expressions below
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Using the lexicographic sequence for the states, the
transition probability matrix of (Z,,J/,) can be written

as the Block-Jacobi matrix

B, A,
B, A A
P=\B, A A A :
B, A, A A A
where
By =1=c¢,=d, = fo; Ay =(cy, fy.d,y);
Co fo d, ¢ fiteg, d.te
A =0 A B by A=|0 0 b, >
0 0 a, 0 0 a,
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1_Z(Cz td te +f+g)—c,—d,~ [

i=1

k
B, = 1->"b,-A(B) , k=1.

i=0

k
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3. Steady-state distribution at arrival epochs
We first define

AR) =Y a7 B(2) =Y b, C(2) =Y ¢ 2"
k=0 k=0 k=0
D(2)=)d. 7" E(2)=) ez . F(2) =) f,z,G(2) =) g, 2"
k=0 k=1 k=0 k=1

In this section, we derive the steady-state distribution
for (L,,J,) at arrival epochs using matrix-geometric

approach. In order to derive the steady-state
distribution, we need the following three lemmas.

Lemma 3.1.
A(z) = A" (U~ p2),

_BIA (u-p)- A (P)]
B-ul-2z)

C(zx)=A(8+n-pn2),

63  [A(6+n-pnz)-A(B)]

B(z)

D(z) =

B-pl-z)  O+n-pnz-p

_ 8B [A@+n-pnn)-A(U- )]

B-ul-z)  O+pnz—(H-ml-2)
E(z) = P13 [A"(6+n-pnz) - A (B)]

B-pul-z) O+n-pnz-p

__ PzB [A(B+n-pnz)— A (U- )]

B-ul-2)  O+pnz—(u-ml-z)
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_GA (B -AB+n-pn2)]

F(z) ,
- 6+n-pnz-p
Gz = PIAA (B) = A @+~ pn2)]
6+n-pnz-pB
Lemma 3.2. If >0, the

equationz = A"(8+n-pnz)has a unique root in the
range 0<z<1.

Lemma 3.3. If 6>0,4>0 andp=A/u<1, then the

matrix ~ equationR=>) R‘A has  the  minimal

k=0
nonnegative solution

o O(n=n) DO(r=r)=yo(r—r)

R=|0 r A(r,— 1) ,
0 0 A
where r, =A"(f), r, and r, are the unique roots in the

range 0<z<1 of equations
z=A"(@+n-pnz)and z = A" (u- uz) , respectively, and
0=(@+pnr)/(@+n-pnr=p),  A=B/[B-ul-r)],
y=pB118+ pnr,—(L-mA-nr)].

Moreover, we can easily verify that the Markov

chain P is positive recurrent if and only if
6>0,B>0and p<1. And the matrix
BOO AOI
B[R] ZRk lB ZRk l
l=c,=d, - f, Co fo d,
Co+fo_5(rz n) —w 1_& J(rz_’i)_ﬁ w
5 5 5 5 K

aOA(G _rz) +b70 O 0
il 6 nh 6

1_

]

7

with w= [AJ(r3 —n) _ Yo —rl)]a() Lo —rl)bo _4 paca
nhh hh hn K

positive left invariant vector

K(1,5,,0(r, =1;),00(r, =1y) = yo(ry = 1)) (1)

where K ia a random positive real number.

Let(L,J) be the stationary limit of the process (L,,J,),
and denote
ﬂ 77(-)0’ ( k0 kl’mz)’ k21,

=P{L=k,J=j}=limP{L, =k, J, =j}, (k, j)OQ.

Theorem 3.4. If >0, 3>0and p<1, the stationary
probability distribution of (L,J)is given by

m, =(1-r)or', k=0,
7, = (1=1,)00(r; = 1), k20,
7, = (1= 1)0lAS(r =)=y =), k21,

where
_ A-rn)d-r)
=R =n) + 00 =R +ASA =) = 1) = U= )5 ~5)

Proof. With the Theorem 1.5.1 in [8],
(1, 71,,71,,77,) is given by the positive left invariant

vector Eq. (1), and satisfies the normalizing condition

7, + (71, 11’”12)(1_R)_le=1’

where e is a column vector with all elements equal to
one. Substituting R into the above relationship, we
can get

A-r)A-r)d-r)
(l A =1)+0(r, =)I+AN1 = 1)1 = 1) = PO =1)(5 ~K)

=(1-r)0.

Therefore, we have
(74, 7, 71,) = (1= 1,)0(1;,0(r, = 1,),A0(r, = 1,) = yO(r, = 1)) .
Using the Theorem 1.5.1 of Neuts [8], we can obtain

(74, 78, 12)Rk k=21, (2)

( k0> kl’ k2)

Taking (7z,,77,,77,)and R*"'into Eq. (2), the theorem
can be derived.

Then, we discuss the distribution of the queue length
L at the arrival epochs. From Theorem 3.4, we have
1, =P{L=0}=m, =(1-r)0,
T, = P{L=k}=

=(1-r)ol(1=0)r" +0rf +A3(rf =1} )= yO(rf 1)), k=

o + 70, + 7T,

The state probability of a server in the steady-state is
given by
d-n)o

1-r

1

PI=0}=>m, =
k=0

> . = 900 =) 1)

PlU=1}=)> m, =
{ }Z A-r)1-r)
Pl =)= in“_awa R =1,) =0y =1,)(r =)

(A=r)d-n)

Theorem 3.5. If 6>0,3>0and p<1, the stationary
queue length L can be decomposed asL=1L +L,,
where L, is the stationary queue length of a classical

GI/M/1 queue without vacation, and follows a
geometric distribution with parameter , . Additional

queue length £, has a distribution
P{L, =0}=0

P{L, =k} = 0(d~1-O)(r, — )i
+ad(A=1)(r, —r)rk ™, k=1,

Proof. The probability generating function of L is as
follows:
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which completes the proof.

Thus, the mean queue length at the arrival epoch is
given by
,

E[L]=—2

L OO=1=0)(—1) OB, =1,)
1-r, a-r)’ '

(1-r)’

4. Steady-state distribution at arbitrary epochs
Now we consider the steady-state distribution for the
queue length at arbitrary epochs. And, denote the
limiting distribution of L(z): p, = }irg P{L(t)=k}.

Theorem 4.1. If 8>0,5>0and p<1,
distribution of L(z) exists. And, we obtain

the limiting

DSy (1=D)S(1-r)  (1=3+)B)1-r)

=1-o0l
Py [ B 6+n=pnr,

AS- o kl (1-4)501 - r)r;l (1-0+yo)1- ) lkl]k>1
B G+ = pnr,

Proof. From the theory of SMP, the limiting
distribution of L(z) has the following expression (see

[9D):

P =1 -1)0A[
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+Z zof pPp %e_'”e_me_ﬁ(”)dx)l(l—A(t))dt

=bl+b2+b3+b4+b5+b6+b7 +D8.

We compute each part of the equation and have

bl—(l 1_3)0-/][ VJ kl Aal_A (ﬂ_ﬂrZ)rzk—l
H /./(1_7'2)
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Then, using these expressions, the theorem can be
obtained by some computation.

b7=

Let L denote the steady-state system size at an
arbitrary epoch, the mean of £ can be given by

(-5, 1-5+
B=r) (A=r)@+n=pnr)"

E[E1= S kp, = (1= 1)l A(J V;Z +
k=0 r3

Remark 4.2. If p =1, the system reduces to the model
described in [4], and if p =0, the system becomes a

GI/M/1 queue with set-up period and multiple
working vacations [6].
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