
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 5 Issue 4, May-June 2021 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD42358 | Volume – 5 | Issue – 4 | May-June 2021 Page 771

Graph Databases and Graph Data Science in Neo4j

Akanksha Junawane1, Y. L. Puranik2

1PG Student, Department of MCA (Engineering), 2Guide
1,2P.E.S.’s Modern College of Engineering, Pune, Maharashtra, India

ABSTRACT

The contents include what graph databases are, their uses, notations,

structure, what is neo4j, its components, what are Graph Data Science and GDS

algorithms and their types in Neo4j. It contains an overview of all the features

provided by neo4j like querying, visualization, remote access, etc. It will also

include information about Neo4j Aura, Sandbox, Desktop, Browser and Bloom.

The various tiers of maturity of GDS algorithms and their types will also be

explained along with an example of each of the type of algorithms.

How to cite this paper: Akanksha

Junawane | Y. L. Puranik "Graph

Databases and Graph Data Science in

Neo4j" Published in

International Journal

of Trend in Scientific

Research and

Development (ijtsrd),

ISSN: 2456-6470,

Volume-5 | Issue-4,

June 2021, pp.771-

777, URL:

www.ijtsrd.com/papers/ijtsrd42358.pdf

Copyright © 2021 by author (s) and

International Journal of Trend in Scientific

Research and Development Journal. This

is an Open Access article distributed

under the terms of

the Creative

Commons Attribution

License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

GRAPH DATABASES

A graph database is a type of database that uses graphical

structures with nodes, edges, and properties to represent the

data and for its storage with the help of queries. Graph

databases are built with the purpose of storing and

navigating the graph through its relationships. Relationships

are the most important aspect in graph databases, and

maximum value of graph databases with respect to querying,

analysing and visualizing is derived from these relationships

present between the nodes. In graph databases nodes are

used to store data entities and edges store the relationships

between entities. An edge always has a start node, end node,

type, and direction. An edge can describe hierarchical or

inheritance relationships, actions performed, ownership

type and so on. There are unlimited ways and limitless

numbers of relationships a node can have.

A graph in graph databases can be traversed along specific

relationship types or across the entire graph. In graph

databases, traversing the joins or relationships is very fast

because the relationships between nodes are not calculated

at query times but are persisted in the database. Graph

databases have advantages for use cases such as social

networking, recommendation engines, and fraud detection,

when you need to create relationships between data and

quickly query these relationships.

Fig.1

Figure 1depicts how a completely loaded graph database

looks along with its nodes connected with edges or

relationships. This graph will be used in this article as an

example to show all the applications and functionalities of

Neo4j, GDS and the algorithms. A main component of the

system is the graph(that is relationships or edges). The

graph relates the data items in the store to a collection of

nodes and edges, the edges representing the relationships

between the nodes. The relationships allow data in the store

to be linked together directly and, in many cases, retrieved

with one operation. Graph databases hold the relationships

IJTSRD42358

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD42358 | Volume – 5 | Issue – 4 | May-June 2021 Page 772

between data as a priority. Querying relationships is fast

because they are permanently stored in the database.

Nodes:

They represent entities such as people, organizations, credit

cards, etc. to be tracked. They are roughly the equivalent of a

tuple or row in a relational database, or a document in a

document-store database.

Edges:

They are also called as relationships. They connect nodes to

one another and represent the relationships between them.

Examining the connections and interconnections of nodes,

properties and edges gives rise to meaningful patterns. The

edges can either be directed or undirected.

Fig. 2

In figure number 2, the nodes are of types doctor, hospital,

register and credit card and the relationships are ‘has’

between the hospital and register nodes , ‘made_transaction’

between register and credit card nodes, ‘related_to’ between

two hospital nodes and ‘attached_to’ between doctor and

hospital nodes which are represented by the edges.

Properties:

It is metadata associated to a node or property. For example

here for the Doctor node the properties are city,

contactNumber, doctorName, doctorAddress, Gender, etc.

and the property values are winter park, 8885084673, Mrs.

Abby James Gulden, 243 west park ave suite 101, F and so

on.

Fig. 3

When should you use a graph database:

1. When you have highly related data.

2. You need a flexible schema.

3. You want to have a structure and build queries that are

more similar to way people think.

NEO4J

Neo4j (Network Exploration and Optimization 4 Java) is

a graph database management system developed by Neo4j,

Inc. Neo4j is implemented in Java and accessible from

software written in other languages using the Cypher query

language through a transactional HTTP endpoint, or through

the binary "bolt" protocol.

Neo4j comes in 2 editions: Community and Enterprise. It is

dual-licensed: GPL v3 and a commercial license. The

Enterprise Edition is available under a closed-source

Commercial license.

Notable features of Neo4j are:

1. Data model with flexible schema

2. Scalable and reliable

3. Based on ACID properties

4. Provides built in browser web application.

SERVICES PROVIDED BY NEO4J:

1. Neo4j Aura:

 Neo4j Aura is an automated graph database service. Aura

enables you to focus on creating rich, data-driven

applications rather than waste time managing the databases.

Neo4j Aura is fast, reliable, scalable and makes the power of

relationships available in a cloud-native environment,

enabling fast queries for real-time analytics and insights.

2. Neo4j Sandbox:

Neo4j Sandbox is a great way to try out Neo4j for free without

having to download or install anything on your machine. It

gives you access to Neo4j database, Neo4j Bloom, and plugins

like Neo4j Graph Data Science, all hosted online and private

to you.

3. Neo4j Desktop:

Neo4j Desktop is a Developer IDE or Management

Environment for Neo4j instances. You can manage as many

projects and database servers locally as you like and also

connect to remote Neo4j servers. Neo4j Desktop comes with

a free Developer License of Neo4j Enterprise Edition.

4. Neo4j Graph Applications:

A Graph app is a Single Page Application (SPA) built with

HTML and JavaScript which interact with Neo4j databases

through Neo4j Desktop. A developer could take an existing

SPA and package it into a graph app or start from scratch

with a new idea.

5. Neo4j Browser:

Neo4j Browser is a tool for developers to interact with the

graph. It is the default interface for both Enterprise and

Community Editions of the Neo4j database. You can query

your databases using cypher queries from the neo4j

browser.

6. Neo4j Bloom:

Neo4j Bloom helps the developer visualize the graph and its nodes

and relationships better which in turn helps understand it for

further use. It also provides features for selective visualization of

data and lets you create dynamic queries to help you visualize the

database based on the dynamic input provided by the user.

GRAPH DATA SCIENCE

Graph Data Science is a science-driven approach to gain

knowledge from the relationships and structures in data,

typically to power predictions. It contains various techniques

that help data scientists answer questions and explain

outcomes using graph data. Graph data science lets you

leverage the power of relationships, that is, the connections

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD42358 | Volume – 5 | Issue – 4 | May-June 2021 Page 773

between your data points to improve model prediction and

answer previously obstinate questions.

Fig. 4

GDS consists of three main parts, namely graph visualization,

graph algorithms and graph queries.

Graph visualization helps in understanding the nodes and

relationships and the overall structure and patterns of the

graph better and using graph algorithms along with this,

data analysts run analytics on the graph for predictive

purposes. Graph queries are used to create the nodes and

relationships in a graph and manipulate them as per the

developer’s requirement and these together with the Graph

algorithms are used for feature engineering in graph data

science. Graph algorithms are used to run various types of

analysis on data and these along with graph visualization aid

in data exploration.

1. Graph Queries:

In neo4j cypher queries are used to query the database. This

querying of the database is done through the neo4j browser.

Fig. 5

Through this neo4j browser you can query your database

and view the results in the tabs below. Here we are taking a

simple ‘MATCH (n) RETURN n’ query as an example which

returns all the nodes and relationships in the graph. The GDS

algorithms are also run on the graph database through the

browser. Using the cypher queries you can create new nodes,

relationships and properties and also modify and update

them as and when necessary. Complex queries can be used

for more detailed and use case specific results.

2. Data Visualization:

In neo4j the Bloom perspective is used for the visualization

of data.

Fig. 6

Bloom helps us visualize data in a very easy and attractive

way. It helps the user understand the database better. As we

can see here the pane on the right shows the type of nodes

and relationships. Here, we have also added appropriate

icons to the nodes for better understanding and to be able to

identify the type of node in the graph. The search box above

shows suggestions as you type in the search phrase which

makes it very user friendly. Here, we have selected the

doctor and hospital nodes with an ‘attached_to’ relation

between them. This is how we can selectively visualize

certain aspects of the graph as per requirement. We can also

create dynamic search phrases so that the output changes

according to user input and we don’t have to write the

queries over and over again.

For example let’s see a dynamic query that returns the

doctors with specialization as Allergists/Immunologist.

Fig. 7

Here, we can see that with the use of dynamic search phrase

we have given an input of our choice as the specialization

and it has returned all the doctors with specialization as

Allergists/Immunologists along with the hospitals that they

are attached to.

3. GDS Algorithms:

Neo4j offers various types of graph data science algorithms

are made available in the Graph Data Science library. These

algorithms provide unsupervised machine learning methods

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD42358 | Volume – 5 | Issue – 4 | May-June 2021 Page 774

which help you understand the structure of your graph and

also help in deterministic and predictive analysis. The

algorithms in neo4j exist in 3 tiers of maturity,

� Alpha tier: The algorithms in the alpha tier are

completely experimental in nature and can be removed

at any point in time.

The prefix ‘gds.alpha’ is used before the name of the

algorithms in this tier during implementation.

� Beta tier: The algorithms in the beta tier can be

candidates for the production quality tier. That is these

algorithms can be moved to the production quality tier

in the future if requires and deemed fit.

� The prefix ‘gds.beta’ is used before the algorithm names

in this tier during implementation.

� Production-quality tier: If an algorithm exists in this

tier, it indicated that, that specific algorithm has been

thoroughly tested.

The algorithms present in this layer are stable and scalable

in nature.

The prefix ‘gds’ is used before the algorithm names in this

tier during implementation.

Types of algorithms:

We will be using the Hospital Database shown in figure 1 as

an example to demonstrate the application and results of the

algorithms. Following are the types of algorithms provides

by the GDS library in neo4j,

1. Centrality Algorithms:

These algorithms are used to find out which nodes are

important in a graph based on its topology. The position of

nodes in the graph determines the influence of each of the

node over the database. These algorithms help determine

group dynamics such as the ripple effects caused by the

vulnerability of nodes, credibility of nodes and the bridges

between nodes. Following are the centrality algorithms

provided by neo4j,

� Alpha:

● HITS

● Closeness Centrality

● Article Rank

● Harmonic Centrality

● Degree Centrality

● Eigenvector Centrality

� Production-quality:

● Page Rank

● Betweenness Centrality

Let’s see the application of one of the algorithms to

understand the functionality:

Page Rank Algorithm: This algorithm measures the

importance of each of the nodes within the graph based on

the number of incoming relationships and the importance of

the corresponding nodes. It means that a node is only as

important as the nodes connected to it.

Eg. The figure 8.1 shows the output after running the page

rank algorithm on the Hospital database. It return the page

ranks of all nodes in the graph in a descending order.

Fig. 8.1

Fig. 8.2

Here we take Baptist Health Medical Center and Cleveland

Clinic Hospital to see how the algorithm works. As we can

see here the Baptist Health Medical Center has a huge

amount of incoming nodes and hence has page rank of 26.7

and Cleveland Clinic has comparatively very few incoming

nodes and hence its page rank is 2.7.

2. Similarity Algorithms:

Similarity algorithms compare the nodes with each other to

see how alike they are based on their neighbours or

properties. They produce likeness scores which can be used

for developing categorical hierarchies or to personalize

recommendations. Following are the similarity algorithms

provided by neo4j,

� Alpha:

● Jaccard Similarity

● Cosine Similarity

● Approximate Nearest Neighbors

● Euclidean Similarity

● Overlap Similarity

● Pearson Similarity

� Beta:

• K-Nearest Neighbors

� Production-quality:

• Node Similarity

Let’s see the application of one of the algorithms to

understand the functionality:

Node Similarity Algorithm: This algorithm measures the

similarity of a set nodes based on their neighbours. If 2

nodes have more shared nodes their similarity score will be

higher. This algorithm uses Jaccard similarity to compute the

similarity scores.

The figure 9.1 shows the output after running the node

similarity algorithm on the Hospital database.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD42358 | Volume – 5 | Issue – 4 | May-June 2021 Page 775

Fig. 9.1

Here we can see that each node is being compared to every

other node in the graph and similarity scored is being

computed.

Fig. 9.2

Here we can see that since ‘Kaiser Foundation Hospital -

Fresno’ and ‘Kaiser Foundation Hospital-Santa Rosa’ have

one shared neighbour their similarity score is 1.

3. Pathfinding Algorithms:

These algorithms are used for graph analytics and find the

most efficient or shortest paths to traverse between nodes.

Some of these algorithms are used to understand complex

dependencies and evaluate routes for uses such as physical

logistics and IP routing.

� Alpha:

● Breadth First Search

● Depth First Search

● Minimum Weight Spanning Tree

● All Pairs Shortest Path

● Single Source Shortest Path

● Random Walk

� Beta:

● A*

● Yen’s algorithm

● Dijkstra Source-Target

● Dijkstra's Single-Source

Let’s see the application of one of the algorithms to

understand the functionality:

Random Walk: This algorithm provides random paths in a

graph between the nodes. A random walk means that we

specify a start node, randomly choose a neighbour to reach

or choose based on a provided probability distribution, and

then do the same from that node, keeping the resulting path

in a list.

Fig. 10.1

Eg. In figure 10.1 we can see the result of random walk

algorithm when run on the hospital database while

considering the start node as ‘Kaiser Foundation Hospital-

Los Angeles’ and destination as ‘Kaiser Foundation Hospital-

South San Francisco’.

Fig. 10.2

4. Link Prediction Algorithms:

Link prediction algorithms are used to predict the likelihood

of forming relations between nodes that are not connected at

present. It considers the closeness of nodes in the graph and

also structural elements of the graph. The following

algorithms are provided by neo4j for this type,

� Alpha

● Preferential Attachment

● Total Neighbors

● Adamic Adar

● Common Neighbors

● Resource Allocation

● Same Community

Let’s see the application of one of the algorithms to

understand the functionality:

Preferential Attachment: Preferential Attachment is a

measure used to calculate the closeness of nodes, based on

the number of shared neighbours they possess.

Eg. If we run this algorithm on our Hospital Database

considering two hospital, namely ‘Cleveland Clinic’ and

‘Cleveland Clinic Hospital’ we get the following result as

shown in figure 11.1.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD42358 | Volume – 5 | Issue – 4 | May-June 2021 Page 776

Fig. 11.1

As we can see here the algorithm has returned the

information of the two hospitals along with its preferential

attachment score. As we can see the hospitals are directly

connected and are direct neighbours. Therefore their score is

252.0 which is a very high closeness score.

Fig. 11.2

5. Community Detection Algorithms:

These algorithms find clusters in the graph based on

relationships to find the communities where members have

more significant interactions. Detecting communities help us

in predicting similar behaviours between the nodes, find

duplicate entities or prepare data for various analytical

purposes.

� Alpha:

● Strongly Connected Components

● Speaker-Listener Label Propagation

� Beta:

● Modularity Optimization

● K-1 Coloring

� Production-quality:

● Louvain

● Triangle Count

● Local Clustering Coefficient

● Label Propagation

● Weakly Connected Components

Let’s see the application of one of the algorithms to

understand the functionality:

Louvain: The Louvain method is used to detect communities

in large networks. It maximizes a modularity score for each

community based on the quality of assignment of nodes to

various communities. It is a hierarchical clustering algorithm

and it recursively merges communities into a single node

and executes the modularity clustering on the condensed

graphs.

Eg. When we run this algorithm on our graph after creating

communities based on certain property and relationship

type, we get the following results shown in figure 12.1 which

includes the name of the hospital and the community id of

the node.

Fig. 12.1

6. Node Embedding Algorithms:

Graph embeddings are very powerful as even while reducing

the dimensionality for being able to decode the graph, they

preserve all the key features. They transform the structure

and features of the graph into fixed length vectors which

uniquely represent each node. In simpler terms they

compute low-dimensional vector representations of nodes in

the graphin order to be useful in machine learning processes

by capturing the complexity and structure of the graph and

transforming it.

� Alpha

● Node2Vec

� Beta

● GraphSAGE

� Production-quality

● FastRP

Let’s see the application of one of the algorithms to

understand the functionality:

FastRP: FastRP stands for Fast Random Projection. It is a

node embedding algorithm which belongs to the family of

random projection algorithms. These algorithms are

theoretically backed by the Johnsson-Lindenstrauss lemma

according to which one can project n vectors

of arbitrary dimension into O(log(n)) dimensions and still

approximately preserve pair wise distances among the

points.

Eg. When we run the FastRP algorithm on the Hospital graph

we get the following results shown in figure 13.1 which

returns the node ids and embeddings of the nodes in the

graph based on properties and orientation.

Fig. 13.1

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD42358 | Volume – 5 | Issue – 4 | May-June 2021 Page 777

CONCLUSION:

The main purpose of this paper is to help you understand

how graph databases and gds works in neo4j and also how

the graphs are visualized and queried. The functionality of

the algorithms types is also explained in simple terms along

with an example algorithm of each type to see how the

results are generated along with the graphical

representation.

REFERENCES:

Books:

[1] Graph Algorithms - Mark Needham

[2] Learning Neo4j - Jérôme Baton, Rik Van Bruggen

[3] Graph Data Science - Amy Hodler and Mark Needham

Links:

[1] https://neo4j.com/docs/graph-data-science

[2] https://neo4j.com/blog/why-graph-databases-are-

the-future

