
International Journal of Trend in Scientific Research and Development, Volume 1(2), ISSN: 2456-6470

www.ijtsrd.com

154
IJTSRD | Jan-Feb 2017
Available Online@www.ijtsrd.com

Effective Analysis on Power and Memory

Optimization Techniques for Embedded Systems

Mini R. S.

Lecturer in Electronics, Department of Electronics Engineering,

Government Polytechnic College, Kottayam, Kerala, India

ABSTRACT

Memory systems have been identified as a major

source of embedded software performance and power

consumption. Because embedded systems require low

power consumption, it is worthwhile to investigate

memory optimization techniques for these systems.

There are numerous techniques in the literature for

reducing embedded system power/energy

consumption and execution time. This paper revisits

and discusses these techniques, with an emphasis on

hardware and software optimizations. Reduced power

dissipation in all parts of the design and at all stages

of the design process is required for power-efficient

design, subject to constraints on system performance

and service quality. To meet these often-conflicting

design requirements, power-aware high-level

language compilers, dynamic power management

policies, memory management schemes, bus encoding

techniques, and hardware design tools are required.

Keywords: Power, Memory Optimization Techniques,

Embedded Systems, Power-aware software

compilation, Dynamic power management

Introduction

There are two types of computer systems: general

purpose systems and special purpose systems.

General-purpose systems can be used for a variety of

purposes. The applications of general-purpose

systems are not predetermined. Personal computers

with Intel *86 architectures are a good example of

general purpose systems.

These systems are expected to perform a variety of

tasks with reasonable performance, which means that

if the application can be completed in a reasonable

amount of time, it will be considered acceptable. As

technology advances, millions of circuits can be

integrated on a single chip, allowing general purpose

systems such as workstations and personal computers

to play a significant role in computing environments.

However, general purpose systems cannot be used in

some application domains due to both their

performance and their cost. [1-2]

General purpose systems are not considered a

competitive solution in some areas, such as

telecommunications, multimedia, and consumer

electronics. Special purpose systems have specific

application domains whose requirements for real-time

performance and compact size must be met at any

cost, even if it means removing some system features

[3]. For example, if special purpose systems in a

cellular phone cannot meet real-time performance

requirements, the output will be inaudible.

Structure of Embedded Systems

As shown in Figure 1, an embedded system is a

typical design methodology for a special purpose

system, consisting of three main components: an

embedded processor, on-chip memory, and

synthesised circuit. An embedded system's hardware

and software are specially designed and optimised to

solve a specific problem. From a manufacturing

standpoint, implementing an entire system on a single

chip, also known as system-on-a-chip architecture, is

profitable. Embedded systems have strict size

constraints because their cost is heavily dependent on

size. Memory is the most important component in

embedded system size. It is critical to minimise

memory size by optimising its usage in order to

reduce costs. In embedded systems, memory is

divided into two parts: program-ROM and data-RAM.

155
IJTSRD | Jan-Feb 2017
Available Online@www.ijtsrd.com

Figure 1: Structure of embedded systems

Advantages of Embedded Systems

The following are the benefits of embedded systems.

time-to-market For an embedded processor, there are numerous special purpose processors available. Only the

time-critical components of an application are synthesised into a customised circuit, reducing the complexity of

designing embedded systems. The use of high-level languages boosts the productivity of the software

implementation phase. flexibility New standards emerge as technology advances. Video coding standards, for

example, evolved from JPEG to MPEG1, MPEG2, and MPEG4. This application change will be

accommodated by rewriting software rather than redesigning an entire embedded system [76, 63]. As a result,

embedded systems are well suited to application evolution. This adaptability contributes to a short time-to-

market cycle and low cost [5].

performance in real time Implementing time-critical tasks in a synthesised circuit aids in achieving high speed.

If this objective cannot be met, the application should be reanalyzed and partitioned. The optimization

technology used to generate high-quality (fast) code is critical to achieving this goal.

low price There are many low-cost special-purpose processors available when compared to general-purpose

processors. The use of off-the-shelf special purpose processors and synthesising only time critical parts into

hardware contributes to the low cost of embedded systems. It is critical to generate compact code in order to

reduce costs by optimising on-chip memory usage.

Compiler Optimization for Embedded Systems

Special purpose processors with embedded capabilities differ from general purpose processors in several ways.

DSPs, for example, have specific functional blocks that are optimised for common signal-processing

algorithms. A typical example is a multiply accumulation (MAC). DSPs are distinguished by their irregular

data paths and heterogeneous register files [6]. DSPs have limited data paths to save money and space. It is not

uncommon for a specific register to be dedicated to a specific function block with this irregular data path

topology, which means that the input and output of a function unit were fixed at the time the DSPs were

designed. Figure 1.4 depicts the TMS320C25, a Texas Instruments DSP series. There are three registers that

have specific uses. A multiplier, for example, requires one of its operands to be from the t register, and the

result to be stored in the p register. The output of an ALU should be stored in an accumulator. As a result, each

register should be treated differently. The data path is constrained.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

156
IJTSRD | Jan-Feb 2017
Available Online@www.ijtsrd.com

Review of Literature:

Several works, including [7], [8], and [9], show that the Instruction Memory Organization (IMO) and Data

Memory Hierarchy (DMH) account for a sizable portion of the chip area as well as the energy consumed by the

system. According to [6,] both memory architectures now account for up to 40-60% of an embedded

instruction-set processor platform's total energy budget.

Memory consumes more than half of the silicon real-estate in systems-on-chip (SoCs). These are products that

combine multiple components into a single system on a single silicon chip.

Off-chip memory accesses dominate the power consumption of signal processing-oriented embedded systems,

according to Catthoor et al. [10]. Even excessive cache behaviour can result in significant excess power

consumption in some cases.

Objectives:

 Power and Memory Optimization Techniques for Embedded Systems

 Defining Embedded System Architecture

 Memory Optimization Techniques

 Embedded System Hardware and Software Techniques

Research Methodology:

Result and Discussion:

Ge et al. [11] depict a typical embedded system architecture that includes a processor core, reconfigurable

hardware, instruction cache, data cache, on-chip scratch memory, on-chip DRAM, and off-chip memory in

Figure 2. The computations are partitioned into different computational units, as shown in this figure, while the

data is assigned to different storage components.

Figure 2 depicts a typical embedded system architecture [11].

Off-chip, on the other hand, may employ a variety of technologies, including synchronous dynamic random

access memory (SDRAM) or Rambus DRAM. Caches, on-chip main memory, and off-chip main memory can

all have an impact on embedded system performance and power/energy consumption.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

157
IJTSRD | Jan-Feb 2017
Available Online@www.ijtsrd.com

Figure 3: TI TMS320C25

MEMORY OPTIMIZATION TECHNIQUES

There have been numerous proposals for memory system optimizations. These types of memory optimizations

can be classified into several categories. However, the traditional approaches are generally hardware and

software optimizations, but both can be combined. This paper concentrated on traditional approaches. Figure 4

depicts a taxonomy of low-power memory design approaches found in the literature [12] [13].

Figure 4: A classification of memory optimization techniques [12].

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

158
IJTSRD | Jan-Feb 2017
Available Online@www.ijtsrd.com

Benini et al. [12] describe techniques and methodologies for optimising the energy consumption of a

hierarchical memory subsystem that have been presented in the literature. According to the authors, the goal of

energy-efficient memory design is to reduce the overall energy cost of memory access while maintaining

performance and size constraints. By allowing access to smaller banks, hierarchical organisations save memory

energy. Furthermore, because most applications are characterised by nonuniform memory access patterns,

mapping frequently accessed locations to low hierarchy levels aids in lowering total energy consumption.

Panda et al. [13] present data memory optimization techniques for embedded systems. Topics such as code

transformations and memory addressing were thoroughly discussed using an original classification: platform-

independent memory optimizations that operated on a source-to-source level, and platform-dependent

optimizations that could be applied to memory structures at various architectural granularities. The

disadvantage of this paper is that it does not address the context of parallel platforms, such as task-level

parallelism.

Hardware and software in embedded systems can be custom-designed and optimised for specific applications.

To optimise energy for an application, we must first solve a number of problems. What are the best PCM and

DRAM sizes, for example, how to statically allocate data and programme, and how to migrate data between

PCM and DRAM? To fully explore this application-specific PCM/DRAM main memory for energy

optimization in embedded systems, many new optimization problems arise, and various system-level

optimization techniques must be developed.

Shao et al. [14] present a hybrid memory system architecture in which PCM is used to replace DRAM as much

as possible in order to reduce system energy by utilising PCM's lower standby power. Figure 5 depicts an

embedded system system architecture with hybrid PCM/DRAM main memory. NAND flash is used as a

secondary storage medium for storing user data. The main memory is a hybrid PCM/DRAM memory. Unlike

DRAM-based main memory, this hybrid main memory can store code as well as user data due to the non-

volatility of PCM.

Figure 5: System architecture in embedded systems with application-specific hybrid PCM/DRAM main

memory [14].

Power-aware software compilation

Based on instruction-level characterization and simulation of the underlying hardware, power analysis

techniques for embedded software have been proposed. Statistical profiling techniques have been proposed in

to improve the efficiency of software power analysis. The SOC design paradigm has fueled research into

hardware and software power consumption co-estimation. It has been reported that embedded software power

consumption can be reduced through compiler optimizations, source-level transformations, and memory

management schemes. [15-16]

Dynamic power management

Dynamic power management, which refers to the selective shutoff or slowing down of idle or underutilised

system components, has proven to be a particularly effective technique for reducing power dissipation in such

systems. Incorporating a dynamic power management scheme into an already complex system is a difficult

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

159
IJTSRD | Jan-Feb 2017
Available Online@www.ijtsrd.com

process that may necessitate many design iterations as well as careful debugging and validation. A dynamic

power management policy's goal is to reduce an electronic system's power consumption by putting system

components into different states, each representing a different level of performance and power consumption.

Based on the system's history, workload, and performance constraints, the policy determines the type and

timing of these transitions.

Figure 6: A model of a power-managed system.

A power manager (PM), a service provider (SP), a service requestor (SR), and a service request queue (SQ)

comprise the system model (cf. Figure 6). [17]

Conclusion:

This paper reviewed memory optimization techniques

for embedded systems. First, we provided some

background on embedded systems, their

characteristics, and some notes on memories.

Following that, we reviewed some memory

optimization techniques and presented a taxonomy of

low-power memory design approaches found in the

literature. This paper also reviewed techniques and

tools for power-efficient embedded system design,

taking into account the hardware platform, application

software, and system software.

References:

[1] P.R. Panda. Memory Optimizations and

Exploration for Embedded Systems. PhD thesis,

[2] UC Irvine Dept. of Information and Computer

Science, 1998.

[3] J. L. Hennessy and D. A. Patterson. Computer

Architectures: A Quantitative Approach.

[4] Morgan Kaufmann, 1996.

[5] J. G. Ganssle. The Art of Programming

Embedded Systems. Academic Press, Inc., San

Diego, California, 1992.

[6] G. Goossens, F. Catthoor, D. Lanneer, and H.

De Man. Integration of Signal Processing

Systems on Heterogeneous IC Architectures. In

Proceedings of the 6th International Workshop

on High-Level Synthesis, pages 16-26,

November 1992.

[7] S. Devadas, A. Ghosh, and K. Keutzer. Logic

Synthesis. McGraw Hill, New York, NY, 1994.

[8] E. A. Lee. Programmable DSP Architectures:

Part I. IEEE ASSP Magazine, pages 4-19,

October 1988.

[9] F. Catthoor, P. Raghavan, A. Lambrechts and

M. Jayapala, Ultra-low energy domain-specif

instruction-set processors, Berlim: Springer,

2010.

[10] J. L. Hennessy and D. A. Patterson, Computer

Architecture – A quantative approach, 4ª ed.,

San Francisco: Morgan Kaufmann, 2007.

[11] M. Verma and P. Marwedel, Advanced memory

optimization techniques for low-power

embedded processors, Berlim: Springer, 2007.

[12] F. Catthoor, E. De Greef, S. Wuytack, L.

Nachtergaele, F. Balasa and A. Vandecapelle,

Custom Memory Management Methodology:

Exploration of Memory Organization for

Embedded Multimedia System Design, Boston:

Kluwer, 1998.

[13] Z. Ge, H. B. Lim and W. F. Wong, "Memory

Hierarchy Hardware-Software Co-design,"

Journal of Computer Science, pp. 1-9, 2004.

[14] L. Benini, A. Macii and M. Poncino, "Energy-

aware design of embedded memories: A survey

of technologies, architectures, and optimization

techniques," Journal of ACM Transactions of

Embedded Computing System, vol. II, no. 1, pp.

5-32, 2003.

[15] P. R. Panda, F. Cathoor, N. D. Dutt, K.

Danckaert, E. Brockmeyer, C. Kulkarni, A.

Vandercappelle and P. G. Kjeldsberg, "Data and

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

160
IJTSRD | Jan-Feb 2017
Available Online@www.ijtsrd.com

memory optimization techniques for embedded

systems," pp. 149-206, April 2001.

[16] Z. Shao, Y. Liu, Y. Chen and T. Li, "Utilizing

PCM for Energy Optimization in Embedded

Systems," in ISVLSI, Amherst, MA, 2012.

[17] embedded software: A first step towards

software power minimization,” Proc. Int. Conf.

Computer-Aided Design, Nov. 1994.

[18] T. Sato, Y. Ootaguro, M. Nagamatsu, and

H.Tago, “Evaluation of architecture-level power

estimation for CMOS RISC processors,” Proc.

Int. Symp. Low Power Electronics, pages 44-45,

Oct. 1995.

[19] C.-T. Hsieh, M. Pedram, G. Mehta, and

F.Rastgar, “Profile-driven program synthesis for

evaluation of system power dissipation,” Proc.

Design Automation Conf., pages 576-581, June

1997.

