
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 5 Issue 3, March-April 2021 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD39964 | Volume – 5 | Issue – 3 | March-April 2021 Page 802

Color Based Object Tracking with OpenCV - A Survey

Vatsal Bambhania1, Harshad P Patel2

1Student, 2Lecturer,

1Computer Engineering Department, L.J. Institute Engineering and Technology, Ahmedabad, Gujarat, India
2Instrumentation & Control Engineering Department, Government Polytechnic, Ahmedabad, Gujarat, India

ABSTRACT

Object tracking is a rapidly growing field in machine learning. Object tracking

is exactly what name suggests, to keep tracking of an object. This method has

all sorts of application in wide range of fields like military, household, traffic

cameras, industries, etc. There are certain algorithms for the object tracking

but the easiest one is color-based object detection. This is a color-based

algorithm for object tracking supported very well in OpenCV library. OpenCV

is an library popular among python developers, those who are interested in

Computer vision. It is an open source library and hence anyone can use and

modify it without any restrictions and licensing. The Color-based method of

object tracking is fully supported by OpenCV's vast varieties of functions.

There is little bit of simple math and an excellent logic behind this method of

object tracking. But in simple language the target object is identified from and

image given explicitly by user or some area selected from frame of video, and

algorithm continuously search for that object from each frame in video and

highlights the best match for every frame. But like every algorithm it also has

some pros and cons which are discussed here.

How to cite this paper: Vatsal Bambhania

| Harshad P Patel "Color Based Object

Tracking with OpenCV - A Survey"

Published in

International Journal

of Trend in Scientific

Research and

Development (ijtsrd),

ISSN: 2456-6470,

Volume-5 | Issue-3,

April 2021, pp.802-

806, URL:

www.ijtsrd.com/papers/ijtsrd39964.pdf

Copyright © 2021 by author (s) and

International Journal of Trend in Scientific

Research and Development Journal. This

is an Open Access article distributed

under the terms of

the Creative

Commons Attribution

License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

1. INTRODUCTION

1.1. OpenCV

OpenCV (Open Source Computer Vision Library) is an open

source computer vision and machine learning software

library. OpenCV is built to provide a common infrastructure

for computer vision applications and to accelerate the use of

machine perception in the commercial products. Being a

BSD-licensed product, OpenCV makes it easy for businesses

to utilize and modify the code.

The library comes handy with more than 2500 optimized

algorithms, which includes a comprehensive set of both

classic and state-of-the-art computer vision and machine

learning algorithms. These algorithms can be used to detect

and recognize faces, identify objects, classify human actions

in videos, track camera movements, track moving objects,

extract 3D models of objects, produce 3D point clouds from

stereo cameras, stitch images together to produce a high

resolution image of an entire scene, find similar images from

an image database, remove red eyes from images taken using

flash, follow eye movements, recognize scenery and establish

markers to overlay it with augmented reality, etc.

Along with well-established companies like Google, Yahoo,

Microsoft, Intel, IBM, Sony, Honda, Toyota that employ the

library, there are many startups such as Applied Minds,

Video Surf, and Zeitera, that make extensive use of OpenCV.

OpenCV’s deployed uses span the range from stitching street

view images together, detecting intrusions in surveillance

video in Israel, monitoring mine equipment in China,

detection of swimming pool drowning accidents in Europe,

running interactive art in Spain and New York, checking

runways for debris in Turkey, inspecting labels on products

in factories around the world on to rapid face detection in

Japan. Thus there are tons of uses, as some mentioned above,

of Object detection technique.

It has C++, Python, Java and MATLAB interfaces and

supports Windows, Linux, Android and Mac OS. A full-

featured CUDA and OpenCL interfaces are being actively

used. OpenCV is written natively in C++ and has a template

interface that works seamlessly with STL containers.

1.2. Object Recognition

Object recognition is the area of artificial intelligence (AI)

concerned with the abilities of AI and robots

implementations to recognize various things and entities.

Object recognition allows AI programs and robots to pick out

and identify objects from inputs like video and still camera

images. Methods used for object identification include 3D

models, component identification, edge detection and

analysis of appearances from different angles.

Object recognition is at the convergence points of robotics,

machine vision, neural networks and AI. Google and

Microsoft are among the companies working in this area, e.g.

Google’s driverless car and Microsoft’s Kinect system both

use object recognition. Robots that understand their

environments can perform more complex tasks better. Major

advances of object recognition stand to revolutionize AI and

robotics. MIT has created neural networks, based on our

IJTSRD39964

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD39964 | Volume – 5 | Issue – 3 | March-April 2021 Page 803

understanding of how the brain works, that allow software

to identify objects almost as quickly as primates do.

Gathered visual data from cloud robotics can allow multiple

robots to learn tasks associated with object recognition

faster. Robots can also reference massive databases of

known objects and that knowledge can be shared among all

connected robots.

But all of these needed to be started at some point, and that

is where the OpenCV comes in play. Thus OpenCV is the tool

that is used to accomplish the task of object detection.

2. Mathematics of the Object Detection

2.1. Histograms

Before getting into the mathematics behind the object

detection first we need to understand how an image is

represented in the computer. An image is nothing but the

array of number representing some values, specifically the

value of color that is to be displayed for each pixel. The color

is represented in any form. It can be RGB, HSV, Gray Scale,

etc. A histogram is a graphical display of data using bars of

different heights. In it, each bar group is partitioned by

specific ranges. Taller bars show that more data falls in that

range. A figure-1 below shows histogram. It displays the

shape and spread of continuous sample data.

Figure 1 Histogram Model

Histogram or Histogram model is a plot of the frequency

against their matching reflectance values. For images the

values is the value of pixel color in the image. As said above

image is the histogram of in image. Y-axis represents the

frequency of particular color and X-axis represents

corresponding color. This color range contains all the colors

those are in the image. To make the histogram model from

the source image the OpenCV contains the inbuilt function

cv2.calcHist().

2.2. Back Projection on and Image

2.2.1. What is Back Projection

First of all if we want to detect the object from histogram the

best approach is to use Back Projection as it quick, requires

less computational power and its working can be easily

understood. Thus the Back Projection is first step for object

tracking.

Back Projection is a way of recording how well the pixels of a

given image fit the distribution of pixels in a histogram

model. To make it simpler, for Back Projection, we calculate

the histogram model of a feature and then use it to find this

feature in an image. Application example: If you have a

histogram of flash color (say, a Hue-Saturation histogram),

then you can use it to find flash color areas in an image.

2.2.2. How Back Projection works

In order to understand the working of Back Projection let's

take an example of detecting the skin. Suppose we have skin

histogram(Hue-Saturation) as shown in image below in

figure-2. The Histogram below is the histogram model of the

skin (which we know represents the sample of skin), also

we had applied some mask to capture histogram of skin only.

 Skin Image Histogram Model

Figure 2

Now to test other sample of skin like one shown below in

figure-3.

 Skin Image Histogram Model

Figure 3

1. In each pixel of our Test Image (i.e. p(i,j)), collect the

data and find the correspondent bin location for that

pixel (i.e. (h(i,j) , s(i,j))).

2. Lookup the model histogram in the correspondent bin

(bar of corresponding color) e.g (h(i,j) , s(i,j)), and read

the bin value.

3. Store this bin value in a new image (Back Projection).

Also, you may consider to normalize the model

histogram first, so the output for the Test Image can be

visible for you.

4. Applying the steps above, we get the Back Projection

image for our test image as shown in figure-4.

Figure 4 Back Projection Test Image

2.3. MeanShift

A MeanShift is an algorithm, a non-parametric algorithm, use

to analyze the feature space to find the maxima of density

function. The intuition behind the MeanShift is simple.

Consider you have a set of points. (It can be a pixel

distribution like histogram Back Projection). You are given a

small window (may be a circle) and you have to move that

window to the area of maximum pixel density (or maximum

number of points). It is illustrated in the simple image given

below in figure-6.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD39964 | Volume – 5 | Issue – 3 | March-April 2021 Page 804

Figure 6 MeanShift Sample Image

The initial window is shown in blue circle with the name

"C1". Its original center is marked in blue rectangle, named

"C1_o". But if you find the centroid of the points inside that

window, you will get the point "C1_r" (marked in small blue

circle) which is the real centroid of the window. Surely they

don't match. So move your window such that the circle of the

new window matches with the previous centroid. Again find

the new centroid. Most probably, it won't match. So move it

again, and continue the iterations such that the center of

window and its centroid falls on the same location (or within

a small desired error). So finally what you obtain is a

window with maximum pixel distribution. It is marked with

a green circle, named "C2". So we normally pass the

histogram back projected image and initial target location.

The target location is specified manually, hard coded

coordinates, or selected from the video frame. When the

object moves, obviously the movement is reflected in the

histogram back projected image. As a result, the MeanShift

algorithm moves our window to the new location with

maximum density.

Meanshift using OpenCV library:

_, frame = cap.read()

hsvFrame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

bp = cv2.calcBackProject([hsvFrame], [0], roi, [0, 180], 1)

_, object_tracker = cv2.meanShift(bp, object_tracker, termn)

x, y, width, height = object_tracker

result = cv2.rectangle(frame, (x, y), (x + width, y + height),

255, 2)

cv2.imshow('MeanShift Demo', result)

But even with this hectic math there comes a flaw with this

method, that is the size of the window is constant hard coded

and it won't change with the change in the size of target

object.

2.4. CamShift

 As mentioned the flaw in MeanShift above, CamShift is

similar algorithm to MeanShift but aimed to overcome the

flaw of MeanShift. In the algorithm the size of window is

initially defined but as video continues the window size also

changes in response to change in size of target object.

 In first step of CamShift it applied the MeanShift to calculate

the density and find displacement of object from it. Once the

MeanShift converges, it updates the size of window. It also

calculates the orientation of the best fitting ellipse to it.

Again it applies the MeanShift with new scaled search

window and previous window location. The process

continues until the required accuracy is met. Example of

CamShift is as shown below in figure-7.

Figure 7 CamShift Sample Image

Continiously Adatpive Meanshift(CAM) using OpenCV

library:

_, frame = cap.read()

hsvFrame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

bp = cv2.calcBackProject([hsvFrame], [0], roi, [0, 180], 1)

_, object_tracker = cv2.CamShift(bp, object_tracker, termn)

x, y, width, height = object_tracker

result = cv2.rectangle(frame, (x, y), (x + width, y + height),

255, 2)

cv2.imshow('CamShift Demo', result)

About the methods in above snippet:

calcBackProject:

This is a build-in method in opencv that calculates the back

projection of our roi to current frame. In other words, this

method will calculate how well our roi (region of interest)

fits with pixel distribution of image.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD39964 | Volume – 5 | Issue – 3 | March-April 2021 Page 805

inRange:

This method is use to filter image on using a given range of

color. Also it a build-in method of openCV library.

3. Applying the about Math to track Object

3.1. How the Object tracking works at Backend

Now as we had seen the math behind the object tracking,

now it's time to apply it on video to track an object. The

video that will be given as input will be analyses frame by

frame. Thus we can control the speed of video by controlling

the frames per second (fps).

In order to detect an object following steps has to be

performed.

1. First of all the target object is detected from the video

2. Now this detected object is tracked frame by frame as

video goes on

First of all we need to detect the target object which we want

to keep track of in video, and in order to detect an object we

need to have an image of that target object. This image we

will use to create the histogram model of target object. After

creating the histogram model of target image we feed that

model to the Back Projection algorithm. Thus as a result we

get a box's starting coordinate in 2-D space of image and it's

width and height. This box is showing the target object in

present frame of video.

Once we get our target object coordinate in starting frame,

than we just need to keep track of it as video continues to

play frame by frame. In order to achieve that first we

calculate the back projection on the present video frame

with the histogram model of target object. It will give us back

projected image of frame. If we output the back projected

image than we'll see the whole image is black except for the

target object which are white. Further we give that image as

input to MeanShift or CamShift algorithm. If we give input to

MeanShift and it will return new starting coordinate of the

box. It will show our target object in that video frame with its

width and height value. The value of width and height of box

it returns every time, will be same as one that we has given

as input while detecting the target object in first step. This

process will repeat till there are more frames in video.

After calculating MeanShift after every iteration we need to

show the target object, which can be achieved be

highlighting the target object with rectangle, and the

coordinate of rectangle the one which we get as output from

the MeanShift or CamShift algorithm.

4. Pros and Cons of Color based Object Tracking

Pros

1. This technique is based on color and not on features of

target object so it require relatively very less

computational power for detecting object from every

frame.

2. In this method it is possible to get pretty good frame

rate while detecting the object in video.

3. This method is easy to understand and implement, thus

it is the best way for beginners to get started with

machine learning and object tracking using OpenCV.

Cons

1. This method is not recognize the features of target

object while detecting it from video so has very less

accuracy.

2. This method will go in ambiguous state if there more

than one objects in frame having same color as that of

our target object.

3. If our target object goes out of frame than the method

won't understand that there is no target object in frame,

instead it will assume the other object whose histogram

model matches the best with target histogram model as

a target object.

4. Compare to deep learning algorithms our algorithm

cannot understand context from past experience.

5. Scope of improvement

Now due to some requirement or just for curiosity, if we had

to use the color based tracking than there are some

techniques, tricks and tips that can be applied to get the

better results.

Other than Back Projection there are other methods to scan

the pixel pattern of target object in frame of video. We all

know that in any situation if the noise is reduced from any

sample than we can analyze if better. Same concept is

applied here. That is if we remove the noise from the frame

than we can analyze and detect the object better. Here this

noise is low light image that is the bad image quality due to

the low or insufficient light, in other words we are giving the

threshold value to every pixel in order to accept it in input.

Above concept can be implemented using an in Build method

from OpenCV library known as in Range function. Basic idea

behind this function is to filter out the range of light from the

frame. As an input we gives an image on which we want to

apply the threshold, and then the range of color that we want

to accept from image. Here the range is given in HSV format.

In our case we will apply the range of color that we want to

from image to be accepted. For every frame first we will

apply the inRange method and filter out the pixel with low

light which can potentially be recognized as noise. After this

we'll apply the back projection with histogram model of

target object.

So by this small trick we can see pretty good increase in

accuracy of object detection and tracking but with only slight

increase in the processing needs. HSV Color range can be

found on online.

Another way to increase the accuracy is very obvious way to

do so. There is a termination criterion which is required

input for back projection, which defines the criteria to stop

the algorithm and give the result. In these criteria we need to

give epsilon value and max iteration, thus tweaking this two

parameters we can improve the accuracy without much

increase in processing needs.

6. Conclusion

Thus from the above discussion we can conclude that,

OpenCV is easy to understand and quit powerful tool. Here

we had discussed about the methods for tracking an object in

any video. To recap first we make histogram for the target

object than for small portions in every frame in video we'll

compare histogram of target object with histogram of that

object. We will continuously do same for each and every

frame of video, along with highlighting where the histogram

of target object match with the best in frame. This is how we

keep track of an object in video.

But as we know the nothing is perfect in the world, thus

there comes some flaws with this method. As this is color

based tracking technique it can easy confuse the target

object with other object with same color or relevant

histogram. Also if video is playing and if target object isn't in

the frame, than it can't understand that object was there and

afterward it got out of frame or it wasn't in video from

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD39964 | Volume – 5 | Issue – 3 | March-April 2021 Page 806

beginning, that is it cannot understand context from past.

But along with all these disadvantages there is a major

advantage of using this method, which is need of

computational power. This method can achieve pretty good

frame rates on an average machine. So this method can be

used to analyze the video footage where accuracy is second

factor but time is the limiting factor.

Hence ever beginner can use this OpenCV with this method

of tracking object to get the basics of object tracking without

any deep mathematical understanding , also the OpenCV is

an open source library hence no licensing is needed in order

to use it which make the learning process even more

enjoyable.

7. References

[1] https://docs.opencv.org/

[2] https://www.geeksforgeeks.org/

[3] "GitHub - opencv/Opencv: Open Source Computer

Vision Library". 21 May 2020.

[4] Intel acquires Itseez: https://opencv.org/intel-

acquires-itseez.html

[5] "CUDA". Opencv.org. Retrieved 2020-10-15.

[6] Adrian Kaehler; Gary Bradski (14 December 2016).

Learning OpenCV 3: Computer Vision in C++ with the

OpenCV Library. O'Reilly Media. pp. 26ff. ISBN 978-1-

4919-3800-3.

[7] Bradski, Gary; Kaehler, Adrian (2008). Learning

OpenCV: Computer vision with the OpenCV library.

O'Reilly Media, Inc. p. 6.

[8] OpenCV change logs:

http://code.opencv.org/projects/opencv/wiki/Chang

eLog Archived 2013-01-15 at the Wayback Machine

[9] OpenCV Developer Site: http://code.opencv.org

Archived 2013-01-13 at Archive. today

[10] OpenCV User Site: http://opencv.org/

[11] "Intel Acquires Computer Vision for IOT, Automotive |

Intel Newsroom". Intel Newsroom. Retrieved 2018-11-

26.

[12] "Intel acquires Russian computer vision company

Itseez". East-West Digital News. 2016-05-31. Retrieved

2018-11-26.

[13] OpenCV: http://opencv.org/opencv-3-3.html

[14] OpenCV C interface: http://docs.opencv.org

[15] Introduction to OpenCV.js and Tutorials

[16] Cuda GPU port:

http://opencv.org/platforms/cuda.html Archived

2016-05-21 at the Way back Machine

[17] OpenCL Announcement: http://opencv.org/opencv-

v2-4-3rc-is-under-way.html

[18] OpenCL-accelerated Computer Vision API Reference:

http://docs.opencv.org/modules/ocl/doc/ocl.html

[19] Maemo port:

https://garage.maemo.org/projects/opencv

[20] BlackBerry 10 (partial port):

https://github.com/blackberry/OpenCV

