International Journal of Trend in Scientific Research and Development (IJTSRD) Volume 5 Issue 3, March-April 2021 Available Online: www.ijtsrd.com e-ISSN: 2456-6470

Regularity of Generalized Derivations in P-Semi Simple BCIK-Algebras

S Rethina Kumar
Assistant Professor, Department of Mathematics, Bishop Heber College (Affiliation to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India

Abstract

In this paper we study the regularity of inside(or outside) $(\theta ; \varphi)$-derivations in p-semi simple BCIK - algebra X and prove that let $\left.\mathrm{d}_{(} \theta, \phi\right): \mathrm{X} \rightarrow \mathrm{X}$ be an inside (θ, ϕ)-derivation of X . If there exists $\mathrm{a} \in \mathrm{X}$ such that $\left.\mathrm{d}_{(} \theta, \phi\right)(\mathrm{x}) * \theta$ (a) $=0$, then $\mathrm{d}_{(} \theta, \phi$) is regular for all $\mathrm{x} \in \mathrm{X}$. It is also show that if X is a BCIKalgebra, then every inside(or outside) (θ, ϕ)-derivation of X is regular. Furthermore the concepts of θ-ideal, ϕ-ideal and invariant inside (or outside) (θ, ϕ)-derivation of X are introduced and their related properties are investigated. Finally we obtain the following result: If $\left.\mathrm{d}_{(} \theta, \phi\right): \mathrm{X} \rightarrow \mathrm{X}$ is an outside (θ, ϕ) -derivation of X , then $\mathrm{d}_{(} \theta, \phi_{)}$is regular if and only if every ϕ ideal of X is $\left.\mathrm{d}_{(} \theta, \phi\right)$-invariant.

KEYWORDS: BCIK-algebra, p-semi simple, Derivations, Regularity

How to cite this paper: S Rethina Kumar "Regularity of Generalized Derivations in P-Semi Simple BCIKAlgebras" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-
 Issue-3, April 2021, pp.717-727, URL: www.ijtsrd.com/papers/ijtsrd39949.pdf

Copyright © 2021 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY
4.0) (http://creativecommons.org/licenses/by/4.0)

1. INTRODUCTION

This In 1966, Y. Imai and K. Iseki [1,2] defined BCK - algebra in this notion originated from two different sources: one of them is based on the set theory the other is form the classical and non - classical propositional calculi. In 2021 [6], S Rethina Kumar introduce combination BCK-algebra and BCI-algebra to define BCIK-algebra and its properties and also using Lattices theory to derived the some basic definitions, and they also the idea introduced a regular f derivation in BCIK-algebras. We give the Characterizations f derivation p-semi simple algebra and its properties. In 2021[4], S Rehina Kumar have given the notion of tderivation of BCIK-algebras and studied p-semi simple BCIK—algebras by using the idea of regular t-derivation in BCIK-algebras have extended the results of BCIK-algebra in the same paper they defined and studied the notion of left derivation of BCIK-algebra and investigated some properties of left derivation in p-semi simple BCIK-algebras. In 2021 [7], S Rethina Kumar have defined the notion of Regular left derivation and generalized left derivation determined by a Regular left derivation on p-semi simple BCIK-algebra and discussed some related properties. Also, In 2021 [3,4,5], S Rethina Kumar have introduced the notion of generalized derivation in BCI-algebras and established some results.

The present paper X will denote a BCIK-algebra unless otherwise mentioned. In 2021 [3,4,5,6,7], S Rethina Kumar defined the notion of derivation on BCIK-algebra as follows: A self-map d: $X \rightarrow X$ is called a left-right derivation (briefly on (l, r)-derivation) of X if $\mathrm{d}\left(\mathrm{x}^{*} \mathrm{y}\right)=\mathrm{d}(\mathrm{x})^{*} \mathrm{y} \wedge \mathrm{x}^{*} \mathrm{~d}(\mathrm{y})$ holds for all $x, y \in X$. Similarly, a self-map $d: X \rightarrow X$ is called a
right-left derivation (briefly an (r, l)-derivation) of X if $\mathrm{d}(\mathrm{x}$ * $y)=x^{*} d(y) \wedge d(x) * y$ holds for all $x, y \in X$. Moreover if d is both (l, r)-and (r, l)-derivation, it is a derivation on X . Following [$3,4,5,6$], a self-map $\mathrm{d}_{\mathrm{f}}: \mathrm{X} \rightarrow \mathrm{X}$ is said to be a rightleft f-derivation or an (l, r)-f-derivation or an (l, r)-fderivation of X if it satisfies the identity $d_{f}(x * y)=d_{f}(x)$ * $f(y) \wedge f(x) * d_{f}(y)$ for all $x, y \in X$. Similarly, a self-map $d_{f}: X$ $\rightarrow X$ is said to be a right-left f-derivation or an (r, l)-fderivation of X if it satisfies the identity $d_{f}(x * y)=f(x) *$ $d_{f}(y) \wedge d_{f}(x) * f(y)$ for all $x, y \in X$. Moreover, if d_{f} is an $f-$ derivation, where f is an endomorphism. Over the past decade, a number of research papers have been devoted to the study of various kinds of derivations in BCIK-algebras (see for [3,4,5,6,7] where further references can be found).

The purpose of this paper is to study the regularity of inside (or outside) (θ, ϕ)-derivation in BCIK-algebras X and their useful properties. We prove that let $\left.\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}\right): \mathrm{X} \rightarrow \mathrm{X}$ be an inside (θ, ϕ)-derivation of X and if there exists a $\in \mathrm{X}$ such that $\left.\mathrm{d}_{(} \theta, \phi\right)(\mathrm{x})(\mathrm{x})^{*} \theta(\mathrm{a})=0$, then $\mathrm{d}_{(} \theta, \phi_{)}$is regular for all x $\in X$. It is derivation of X is regular. Furthermore, we introduce the concepts of θ-ideal, ϕ-ideal and invariant inside (or outside) (θ, ϕ)-derivation of X and investigated their related properties. We also prove that if $\left.\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}\right): \mathrm{X} \rightarrow \mathrm{X}$ is an outside (θ, ϕ)-derivation of X , then $\left.\mathrm{d}_{(} \theta, \phi\right)$ is regular if and only if every $\boldsymbol{\theta}$-ideal of X is $\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)}$-invariant.

2. Preliminaries

Definition 2.1: [5] BCIK algebra

Let X be a non-empty set with a binary operation * and a constant 0 . Then ($\mathrm{X},{ }^{*}, 0$) is called a BCIK Algebra, if it satisfies the following axioms for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:
(BCIK-1) $x^{*} y=0, y^{*} x=0, z^{*} x=0$ this imply that $x=y=z$.
(BCIK-2) $\left(\left(x^{*} y\right) *\left(y^{*} z\right)\right)^{*}\left(z^{*} x\right)=0$.
(BCIK-3) $\left(x^{*}\left(x^{*} y\right)\right) * y=0$.
(BCIK-4) $x^{*} x=0, y^{*} y=0, z^{*} z=0$.
(BCIK-5) $0^{*} \mathrm{x}=0,0^{*} \mathrm{y}=0,0^{*} \mathrm{z}=0$.
For all $x, y, z \in X$. An inequality \leq is a partially ordered set on X can be defined $x \leq y$ if and only if
$\left(x^{*} y\right) *\left(y^{*} z\right)=0$.
Properties 2.2: [5] I any BCIK - Algebra X, the following properties hold for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:

1. $0 \in X$.
2. $\mathrm{x}^{*} 0=\mathrm{x}$.
3. $x^{*} 0=0$ implies $x=0$.
4. $0^{*}\left(x^{*} y\right)=\left(0^{*} x\right) *\left(0^{*} y\right)$.
5. $X^{*} y=0$ implies $x=y$.
6. $\mathrm{X}^{*}\left(0^{*} \mathrm{y}\right)=\mathrm{y}^{*}\left(0^{*} \mathrm{x}\right)$.
7. $0^{*}\left(0^{*} \mathrm{x}\right)=\mathrm{x}$.
8. $x^{*} y \in X$ and $x \in X$ imply $y \in X$.
9. $\left(x^{*} y\right)^{*} \mathrm{z}=\left(\mathrm{x}^{*} \mathrm{z}\right) * y$
10. $x^{*}\left(x^{*}\left(x^{*} y\right)\right)=x^{*} y$.
11. $\left(x^{*} y\right) *\left(y^{*} z\right)=x^{*} y$.
12. $0 \leq x \leq y$ for all $x, y \in X$.
13. $\mathrm{x} \leq \mathrm{y}$ implies $\mathrm{x}^{*} \mathrm{z} \leq \mathrm{y}^{*} \mathrm{z}$ and $\mathrm{z}^{*} \mathrm{y} \leq \mathrm{z}^{*} \mathrm{x}$.
14. $x^{*} y \leq x$.
15. $x^{*} y \leq z \Leftrightarrow x^{*} z \leq y$ for all $x, y, z \in X$
16. $\mathrm{x}^{*} \mathrm{a}=\mathrm{x}^{*} \mathrm{~b}$ implies $\mathrm{a}=\mathrm{b}$ where a and b are any natural numbers (i. e)., $a, b \in N$
17. $\mathrm{a}^{*} \mathrm{x}=\mathrm{b}^{*} \mathrm{x}$ implies $\mathrm{a}=\mathrm{b}$.
18. $a^{*}\left(a^{*} x\right)=x$.

Definition 2.3: $[4,5,10]$, Let X be a BCIK - algebra. Then, for all $x, y, z \in X$:

1. X is called a positive implicative BCIK - algebra if (x *) * $\mathrm{z}=\left(\mathrm{x}^{*} \mathrm{z}\right) *\left(\mathrm{y}^{*} \mathrm{z}\right)$.
2. X is called an implicative BCIK - algebra if $x^{*}\left(y^{*} x\right)=x$.
3. X is called a commutative BCIK - algebra if $\mathrm{x}^{*}\left(\mathrm{x}^{*} \mathrm{y}\right)=$ $y^{*}\left(y^{*} x\right)$.
4. X is called bounded BCIK - algebra, if there exists the greatest element 1 of X , and for any
5. $x \in X, 1^{*} x$ is denoted by $G G_{x}$,
6. X is called involutory BCIK - algebra, if for all $\mathrm{x} \in \mathrm{X}, \mathrm{GG}_{\mathrm{x}}=$ x .

Definition 2.4: [5] Let X be a bounded BCIK-algebra. Then for all $x, y \in X$:

1. $\mathrm{G} 1=0$ and $\mathrm{G} 0=1$,
2. $\mathrm{GG}_{\mathrm{x}} \leq \mathrm{x}$ that $\mathrm{GG}_{\mathrm{x}}=\mathrm{G}\left(\mathrm{G}_{\mathrm{x}}\right)$,
3. $\mathrm{G}_{\mathrm{x}}{ }^{*} \mathrm{G}_{\mathrm{y}} \leq \mathrm{y}^{*} \mathrm{x}$,
4. $\mathrm{y} \leq \mathrm{x}$ implies $\mathrm{G}_{\mathrm{x}} \leq \mathrm{G}_{\mathrm{y}}$,
5. $\mathrm{G}_{\mathrm{x}^{*} \mathrm{y}}=\mathrm{G}_{\mathrm{y}^{*} \mathrm{x}}$
6. $\mathrm{GGG}_{\mathrm{x}}=\mathrm{G}_{\mathrm{x}}$.

Theorem 2.5: [5] Let X be a bounded BCIK-algebra. Then for any $x, y \in X$, the following hold:

1. X is involutory,
2. $\mathrm{x}^{*} \mathrm{y}=\mathrm{G}_{\mathrm{y}} * \mathrm{G}_{\mathrm{x}}$,
3. $x^{*} G_{y}=y^{*} G_{x}$,
4. $\mathrm{x} \leq \mathrm{G}_{\mathrm{y}}$ implies $\mathrm{y} \leq \mathrm{G}_{\mathrm{x}}$.

Theorem 2.6: [5] Every implicative BCIK-algebra is a commutative and positive implicative BCIK-algebra.

Definition 2.7: [4,5] Let X be a BCIK-algebra. Then:

1. X is said to have bounded commutative, if for any $x, y €$ X, the set $A(x, y)=\left\{t \in X: t^{*} x \leq y\right\}$ has the greatest element which is denoted by x oy,
2. ($\mathrm{X},{ }^{*}, \leq$) is called a BCIK-lattices, if (X, \leq) is a lattice, where \leq is the partial BCIK-order on X , which has been introduced in Definition 2.1.

Definition 2.8: [5] Let X be a BCIK-algebra with bounded commutative. Then for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:

1. $y \leq x$ o ($\left.y^{*} x\right)$,
2. $(\mathrm{x} \circ \mathrm{z})^{*}(\mathrm{y} \circ \mathrm{z}) \leq \mathrm{x}^{*} \mathrm{y}$,
3. $\left(x^{*} y\right) * z=x^{*}(y$ o $z)$,
4. If $x \leq y$, then x o $z \leq y o z$,
5. $z^{*} x \leq y \Leftrightarrow z \leq x$ o y.

Theorem 2.9: [4,5] Let X be a BCIK-algebra with condition bounded commutative. Then, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, the following are equivalent:

1. X is a positive implicative,
2. $\mathrm{x} \leq \mathrm{y}$ implies x o $\mathrm{y}=\mathrm{y}$,
3. $\mathrm{x} 0 \mathrm{x}=\mathrm{x}$,
4. $(x$ o $y) * z=\left(x^{*} z\right) \circ\left(y^{*} z\right)$,
5. x o $\mathrm{y}=\mathrm{x}$ o ($\left.\mathrm{y}^{*} \mathrm{x}\right)$.

Theorem 2.10: $[4,5]$ Let X be a BCIK-algebra.

1. If X is a finite positive implicative BCIK-algebra with bounded and commutative the (X, \leq) is a distributive lattice,
2. If X is a BCIK-algebra with bounded and commutative, then X is positive implicative if and only if (X, \leq) is an upper semi lattice with $x \vee y=x o y$, for any $x, y \in X$,
3. If X is bounded commutative BCIK-algebra, then BCIKlattice (X, \leq) is a distributive lattice, where $\mathrm{x} \wedge \mathrm{y}=$ $y^{*}\left(y^{*} x\right)$ and $x \vee y=G\left(G_{x} \wedge G_{y}\right)$.

Theorem 2.11: [4,5] Let X be an involutory BCIK-algebra, Then the following are equivalent:

1. (X, \leq) is a lower semi lattice,
2. (X, \leq) is an upper semi lattice,
3. (X, \leq) is a lattice.

Theorem 2.12: [5] Let X be a bounded BCIK-algebra. Then:

1. every commutative BCIK-algebra is an involutory BCIKalgebra.
2. Any implicative BCIK-algebra is a Boolean lattice (a complemented distributive lattice).

Theorem 2.13: [5, 11] Let X be a BCK-algebra, Then, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, the following are equivalent:

1. X is commutative,
2. $x^{*} y=x^{*}\left(y^{*}\left(y^{*} x\right)\right)$,
3. $x^{*}\left(x^{*} y\right)=y^{*}\left(y^{*}\left(x^{*}\left(x^{*} y\right)\right)\right)$,
4. $x \leq y$ implies $x=y^{*}\left(y^{*} x\right)$.

3. Regular Left derivation p-semi simple BCIK-algebra

 Definition 3.1: Let X be a p-semi simple BCIK-algebra. We define addition + as $\mathrm{x}+\mathrm{y}=\mathrm{x}^{*}\left(0^{*} \mathrm{y}\right)$ for all$x, y \in X$. Then ($X,+$) be an abelian group with identity 0 and x $-y=x^{*} y$. Conversely, let ($\mathrm{X},+$) be an abelian group with identity 0 and let $x-y=x^{*} y$. Then X is a p-semi simple BCIKalgebra and $x+y=x^{*}(0 * y)$,
for all $x, y \in X$ (see [6]). We denote $x \cdot y=y *(y * x), 0^{*}(0$ * $x)=a_{x}$ and
$L_{p}(X)=\left\{a \in X / x^{*} a=0\right.$ implies $x=a$, for all $\left.x \in X\right\}$.
For any $x \in X . V(a)=\{a \in X / x * a=0\}$ is called the branch of X with respect to a. We have
$x^{*} y € V(a * b)$, whenever $x \in V(a)$ and $y \in V(b)$, for all $x, y €$ X and all $a, b \in L_{p}(X)$, for $0^{*}\left(0^{*} a_{x}\right)=a_{x}$ which implies that a_{x} ${ }^{*} y \in L_{p}(X)$ for all $y \in X$. It is clear that $G(X) \subset L_{p}(X)$ and x^{*} ($\mathrm{x} * \mathrm{a}$) $=\mathrm{a}$ and
$a^{*} x \in L_{p}(X)$, for all $a \in L_{p}(X)$ and all $x \in X$.
Definition 3.2: ([5]) Let X be a BCIK-algebra. By a (l, r)derivation of X, we mean a self d of X satisfying the identity $d\left(x^{*} y\right)=(d(x) * y) \wedge(x * d(y))$ for all $x, y \in X$.

If X satisfies the identity
$d(x * y)=(x * d(y)) \wedge(d(x) * y)$ for all $x, y \in X$,
then we say that d is a (r, l)-derivation of X
Moreover, if d is both a (r, l)-derivation and (r, l)-derivation of X, we say that d is a derivation of X.

Definition 3.3: ([5]) A self-map d of a BCIK-algebra X is said to be regular if $\mathrm{d}(0)=0$.

Definition 3.4: ([5]) Let d be a self-map of a BCIK-algebra X. An ideal A of X is said to be d-invariant, if $d(A)=A$.
In this section, we define the left derivations
Definition 3.5: Let X be a BCIK-algebra By a left derivation of X, we mean a self-map D of X satisfying
$D(x * y)=(x * D(y)) \wedge(y * D(x))$, for all $x, y \in X$.
Example 3.6: Let $X=\{0,1,2\}$ be a BCIK-algebra with Cayley table defined by

$*$	0	1	2
0	0	0	2
1	1	0	2
2	2	2	0

Define a map $\mathrm{D}: \mathrm{X} \rightarrow \mathrm{X}$ by

$$
\mathrm{D}(\mathrm{x})=\left\{\begin{array}{c}
2 i f x=0,1 \\
0 i f x=2
\end{array}\right.
$$

Then it is easily checked that D is a left derivation of X.
Proposition 3.7: Let D be a left derivation of a BCIK-algebra
X. Then for all $x, y \in X$, we have

1. $x^{*} D(x)=y^{*} D(y)$.
2. $\quad D(x)=a_{D(x)} \cdot x$.
3. $D(x)=D(x) \wedge x$.
4. $\mathrm{D}(\mathrm{x}) \in \mathrm{L}_{\mathrm{p}}(\mathrm{X})$.

Proof.

(1) Let $x, y \in X$. Then
$D(0)=D\left(x^{*} x\right)=(x * D(x)) \wedge(x * D(x))=x^{*} D(x)$.
Similarly, $D(0)=y^{*} D(y)$. So, $D(x)=y^{*} D(y)$.
2) Let $x \in X$. Then
$\mathrm{D}(\mathrm{x})=\mathrm{D}(\mathrm{x} * 0)$
$=\left(x^{*} D(0)\right) \wedge(0 * D(x))$
$=(0 * D(x)) *((0 * D(x)) *(x * D(0)))$
$\left.\leq 0^{*}\left(0^{*}(x * D(x))\right)\right)$
$=0$ * $\left(0^{*}\left(\mathrm{x}^{*}(\mathrm{x} * \mathrm{D}(\mathrm{x}))\right)\right)$
$=0$ * $\left(0^{*}(\mathrm{D}(\mathrm{x}) \wedge \mathrm{x})\right)$
$=a_{D(x) \cdot x}$.
Thus $D(x) \leq a_{D(x)}$.x. But
$a_{D(x) \cdot x}=0\left(0^{*}(D(x) \wedge x)\right) \leq D(x) \wedge x \leq D(x)$.
Therefore, $D(x)=a_{D(x) \cdot x}$.
(1) Let $x \in X$. Then using (2), we have
$D(x)=a_{D(x)} \cdot x \leq D(x) \wedge x$.
But we know that $\mathrm{D}(\mathrm{x}) \wedge \mathrm{x} \leq \mathrm{D}(\mathrm{x})$, and hence (3) holds.
(2) Since $a_{x} \in L_{p}(X)$, for all $x \in X$, we get $D(x) \in L_{p}(X)$ by (2).

Remark 3.8: Proposition 3.3(4) implies that $D(X)$ is a subset of $L_{p}(X)$.

Proposition 3.9: Let D be a left derivation of a BCIK-algebra X. Then for all $x, y \in X$, we have

1. $Y^{*}\left(y^{*} D(x)\right)=D(x)$.
2. $D(x) * y \in L_{p}(X)$.

Proposition 3.10: Let D be a left derivation of a BCIKalgebra of a BCIK-algebra X. Then

1. $\mathrm{D}(0) \in \mathrm{L}_{\mathrm{p}}(\mathrm{X})$.
2. $D(x)=0+D(x)$, for all $x \in X$.
3. $D(x+y)=x+D(y)$, for all $x, y \in L_{p}(X)$.
4. $D(x)=x$, for all $x \in X$ if and only if $D(0)=0$.
5. $D(x) \in G(X)$, for all $x \in G(X)$.

Proof.

1. Follows by Proposition 3.3(4).
2. Let $x \in X$. From Proposition $3.3(4)$, we get $D(x)=a_{D(x)}$, so we have $\mathrm{D}(\mathrm{x})=\mathrm{a}_{\mathrm{D}(\mathrm{x})}=0^{*}\left(0^{*} \mathrm{D}(\mathrm{x})\right)=0+\mathrm{D}(\mathrm{x})$.
3. Let $x, y \in L_{p}(X)$. Then
$\mathrm{D}(\mathrm{x}+\mathrm{y})=\mathrm{D}(\mathrm{x} *(0$ * y$))$
$=\left(x^{*} D\left(0^{*} y\right)\right) \wedge\left(\left(0^{*} y\right) * D(x)\right)$
$=((0 * y) * D(x)) *\left(\left(\left(0^{*} y\right) * D(x) *(x * D(0 * y))\right)\right.$
$=x$ * $D(0$ * $y)$
$=x^{*}\left(\left(0^{*} D(y)\right) \wedge\left(y^{*} D(0)\right)\right)$
$=x^{*} D(0 * y)$
$=x *(0 * D(y))$
$=x+D(y)$.
4. Let $\mathrm{D}(0)=0$ and $\mathrm{x} \in \mathrm{X}$. Then
$\mathrm{D}(\mathrm{x})=\mathrm{D}(\mathrm{x}) \wedge \mathrm{x}=\mathrm{x}^{*}(\mathrm{x} * \mathrm{D}(\mathrm{x}))=\mathrm{x}^{*} \mathrm{D}(0)=\mathrm{x} * 0=\mathrm{x}$.
Conversely, let $D(x)=x$, for all $x \in X$. So it is clear that $D(0)=$ 0.
5. Let $x \in G(x)$. Then $0^{*}=x$ and so
$\mathrm{D}(\mathrm{x})=\mathrm{D}\left(0^{*} \mathrm{x}\right)$

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
$=(0 * D(x)) \wedge\left(x^{*} D(0)\right)$
$=(x * D(0)) *((x * D(0)) *(0 * D(x))$
$=0 * D(x)$.
This give $D(x) \in G(X)$.
Remark 3.11: Proposition 3.6(4) shows that a regular left derivation of a BCIK-algebra is the identity map. So we have the following:

Proposition 3.12: A regular left derivation of a BCIK-algebra is trivial.

Remark 3.13: Proposition 3.6(5) gives that $\mathrm{D}(\mathrm{x}) \in \mathrm{G}(\mathrm{X}) \subseteq \mathrm{L}$ $\mathrm{p}(\mathrm{X})$.

Definition 3.14: An ideal A of a BCIK-algebra X is said to be D-invariant if $D(A) \subset A$.
Now, Proposition 3.8 helps to prove the following theorem.
Theorem 3.15: Let D be a left derivation of a BCIK-algebra X. Then D is regular if and only if ideal of X is D-invariant.

Proof.

Let D be a regular left derivation of a BCIK-algebra X. Then Proposition 3.8. gives that $\mathrm{D}(\mathrm{x})=\mathrm{x}$, for all
$x \in X$. Let $y \in D(A)$, where A is an ideal of X. Then $y=D(x)$ for some $x \in A$. Thus
$\mathrm{Y}^{*} \mathrm{x}=\mathrm{D}(\mathrm{x})^{*} \mathrm{x}=\mathrm{x}^{*} \mathrm{x}=0 € \mathrm{~A}$.
Then $y \in A$ and $D(A) \subset A$. Therefore, A is D-invariant.
Conversely, let every ideal of X be D-invariant. Then $D(\{0\})$ $\subset\{0\}$ and hence $D(0)$ and D is regular.
Finally, we give a characterization of a left derivation of a psemi simple BCIK-algebra.

Proposition 3.16: Let D be a left derivation of a p-semisimple BCIK-algebra. Then the following hold for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$:

1. $D\left(x^{*} y\right)=x^{*} D(y)$.
2. $\mathrm{D}(\mathrm{x})^{*} \mathrm{x}=\mathrm{D}(\mathrm{y})^{*} \mathrm{Y}$.
3. $D(x) * x=y * D(y)$.

Proof.

1. Let $x, y \in X$. Then
$D\left(x^{*} y\right)=\left(x^{*} D(y)\right) \wedge \wedge(y * D(x))=x^{*} D(y)$.
2. We know that
$\left(x^{*} y\right) *(x * D(y)) \leq D(y) * y$ and $\left(y^{*} \mathrm{x}\right) *(\mathrm{y} * \mathrm{D}(\mathrm{x})) \leq \mathrm{D}(\mathrm{x})^{*} \mathrm{x}$.
This means that
$\left.\left(\left(\mathrm{x}^{*} \mathrm{y}\right) *\left(\mathrm{x}^{*} \mathrm{D}(\mathrm{y})\right)\right)\right)^{*}(\mathrm{D}(\mathrm{y}) * \mathrm{y})=0$, and
$\left(\left(y^{*} \mathrm{x}\right) *(\mathrm{y} * \mathrm{D}(\mathrm{x}))\right)^{*}(\mathrm{D}(\mathrm{x}) * \mathrm{x})=0$.
So
$((x * y) *(x * D(y))) *(D(y) * y)=((y * x) *(y * D(x))) *(D(x)$

* x). (I)

Using Proposition 3.3(1), we get,
$\left(x^{*} y\right) * D(x * y)=(y * x) * D(y * x) .(I I)$
By (I), (II) yields
$(x * y) *(x * D(y))=(y * x) *(y * D(x))$.
Since X is a p-semi simple BCIK-algebra. (I) implies that $\mathrm{D}(\mathrm{x}){ }^{*} \mathrm{x}=\mathrm{D}(\mathrm{y}) * \mathrm{y}$.
3. We have, $\mathrm{D}(0)=\mathrm{x} * \mathrm{D}(\mathrm{x})$. From (2), we get $\mathrm{D}(0) * 0=$ $D(y) * y$ or $D(0)=D(y) * y$.
So $D(x) * x=y * D(y)$.

Theorem 3.17: In a p-semi simple BCIK-algebra X a self-map D of X is left derivation if and only if and if it is derivation.

Proof.

Assume that D is a left derivation of a BCIK-algebra X. First, we show that D is a (r, l)-derivation of X. Then
$D\left(x^{*} y\right)=x^{*} D(y)$
$=(\mathrm{D}(\mathrm{x}) * \mathrm{y}) *((\mathrm{D}(\mathrm{x}) * \mathrm{Y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y})))$
$=\left(x^{*} D(y)\right) \wedge(D(x) * y)$.
Now, we show that D is a (r, l)-derivation of X. Then
$\mathrm{D}(\mathrm{x} * \mathrm{Y})=\mathrm{x} * \mathrm{D}(\mathrm{y})$
$=\left(x^{*} 0\right) * D(y)$
$=\left(x^{*}(D(0) * D(0)) * D(y)\right.$
$=\left(x^{*}\left(\left(x^{*} D(x)\right) *(D(y) * y)\right)\right) * D(y)$
$=(x *((x * D(y)) *(D(x) * y))) * D(y)$
$=\left(x^{*} D(y) *((x * D(y)) *(D(x) * Y))\right.$
$=(D(x) * y) \wedge(x * D(y))$.
Therefore, D is a derivation of X .
Conversely, let D be a derivation of X. So it is a (r, l)derivation of X. Then
$D\left(x^{*} y\right)=(x * D(y)) \wedge(D(x) * y)$
$=(D(x) * y)^{*}((D(x) * y) *(x * D(y)))$
$=x^{*} D(y)=(y * D(x)) *((y * D(x)) *(x * D(y)))$
$=(x * D(y)) \wedge\left(y^{*} D(x)\right)$.
Hence, D is a left derivation of X.

4. \mathbf{t}-Derivations in BCIK-algebra /p-Semi simple BCIKalgebra

The following definitions introduce the notion of t-derivation for a BCIK-algebra.

Definition 4.1: Let X be a BCIK-algebra. Then for $t \in X$, we define a self-map $\mathrm{d}_{\mathrm{t}}: \mathrm{X} \rightarrow \mathrm{X}$ by $\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{x} * \mathrm{t}$
for all $\mathrm{x} \in \mathrm{X}$.
Definition 4.2: Let X be a BCIK-algebra. Then for any $t \in X$, a self-map $d_{t}: X \rightarrow X$ is called a left-rifht $t-d e r i v a t i o n ~ o r ~(l, r)-t-$ derivation of X if it satisfies the identity $d_{t}\left(x^{*} Y\right)=\left(d_{t}(x) * y\right)$ $\wedge\left(x^{*} d_{t}(y)\right)$ for all $x, y \in X$.
Definition 4.3: Let X be a BCIK-algebra. Then for any $t \in X$, a self-map $d_{t}: X \rightarrow X$ is called a left-right $t-d e r i v a t i o n ~ o r ~(l, r)-t-$ derivation of X if it satisfies the identity $d_{t}(x * y)=\left(x * d_{t}(y)\right)$ $\wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x})^{*} \mathrm{y}\right)$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.
Moreover, if d_{t} is both a (l, r) and a (r, l) - t -derivation on X , we say that d_{t} is a t -derivation on X .

Example 4.4: Let $X=\{0,1,2\}$ be a BCIK-algebra with the following Cayley table:

$*$	0	1	2
0	0	0	2
1	1	0	2
2	2	2	0

For any $t \in X$, define a self-map $d_{t}: X \rightarrow X$ by $d_{t}(x)=x * t$ for all $x \in X$. Then it is easily checked that d_{t} is a t-derivation of X.

Proposition 4.5: Let d_{t} be a self-map of an associative BCIKalgebra X. Then d_{t} is a (l, r)- t-derivation of X.
Proof. Let X be an associative BCIK-algebra, then we have
$\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y})=(\mathrm{x} * \mathrm{y})$
$=\left\{x^{*}(\mathrm{y} * \mathrm{t})\right\}^{*} 0$
$=\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *[\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\}]$
$=\{x *(y * t)\} *[\{x *(y * t)\} *\{(x * y) * t\}]$

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
$=\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *[\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\}]$
$=((x * t) * y) \wedge(x *(y * t))$
$=\left(d_{t}(x) * y\right) \wedge\left(x^{*} d_{t}(y)\right)$.
Proposition 4.6: Let d_{t} be a self-map of an associative BCIKalgebra X. Then, d_{t} is a $(r, l)-t$-derivation of X.
Proof. Let X be an associative BCIK-algebra, then we have $\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y})=(\mathrm{x} * \mathrm{y}) * \mathrm{t}$
$=\{(x * t) * y\}$
$=\{(x * t) * y\} *[\{(x * t) * y\} *\{(x * t) * y)]$
$=\{(x * t) * y\}^{*}\left[\{(x * t) * y\}^{*}\left\{(x * y)^{*} t\right\}\right]$
$=\{(x * t) * y\} *\left[\{(x * t) * y\}^{*}\left\{x^{*}(y * t)\right\}\right]$
$=\left(x^{*}\left(y^{*} t\right)\right) \wedge((x * t) * y)$
$=\left(x^{*} d_{t}(y)\right) \wedge\left(d_{t}(x) * y\right)$
Combining Propositions 4.5 and 4.6 , we get the following Theorem.

Theorem 4.7: Let d_{t} be a self-map of an associative BCIKalgebra X. Then, d_{t} is a t-derivation of x.
Definition 4.8: A self-map d_{t} of a BCIK-algebra X is said to be t -regular if $\mathrm{d}_{\mathrm{t}}(0)=0$.

Example 4.9: Let $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}\}$ be a BCIK-algebra with the following Cayley table:

$*$	0	a	b
0	0	0	b
a	a	0	b
b	b	b	0

1. For any $t \in X$, define a self-map $d_{t}: X \rightarrow X$ by
$\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{x}^{*} \mathrm{t}=\left\{\begin{array}{c}b \text { if } x=0, a \\ 0 \text { if } x=b\end{array}\right.$
Then it is easily checked that d_{t} is (l, r) and (r, l)- t derivations of X , which is not t -regular.
2. For any $t \in X$, define a self-map d't: $X \rightarrow X$ by $\mathrm{d}_{\mathrm{t}}{ }^{\prime}(\mathrm{x})=\mathrm{x}^{*} \mathrm{t}=0$ if $\mathrm{x}=0, \mathrm{a}, \mathrm{b}$ if $\mathrm{x}=\mathrm{b}$.
Then it is easily checked that d_{t}^{\prime} is (l, r) and (r, l)-tderivations of X, which is t-regular.

Proposition 4.10: Let d_{t} be a self-map of a BCIK-algebra X. Then

1. If d_{t} is a $(l, r)-t$ derivation of x, then $d_{t}(x)=d_{t}(x) \wedge x$ for all $x \in X$.
2. If d_{t} is a $(r, l)-t$-derivation of X, then $d_{t}(x)=x \wedge d_{t}(x)$ for all $\mathrm{x} \in \mathrm{X}$ if and only if d_{t} is t -regular.

Proof.

1. Let d_{t} be a (l, r) - t -derivation of X , then
$\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0)$
$=\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right)$
$=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge\left(\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}(0)\right)$
$=\left\{\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}(0)\right\} *\left[\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right\} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right]$
$=\left\{\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}(0)\right\} *\left[\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\} * \mathrm{~d}_{\mathrm{t}}(0)\right]$
$\leq \mathrm{x}^{*}\left\{\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\}$
$=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge \mathrm{x}$.
But $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge \mathrm{x} \leq \mathrm{d}_{\mathrm{t}}(\mathrm{x})$ is trivial so (1) holds.
2. Let d_{t} be a (r, l) - t -derivation of X . If $\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{x} \leq \mathrm{d}_{\mathrm{t}}(\mathrm{x})$ then $\mathrm{d}_{\mathrm{t}}(0)=0 \wedge \mathrm{~d}_{\mathrm{t}}(0)$
$=\mathrm{d}_{\mathrm{t}}(0) *\left\{\mathrm{~d}_{\mathrm{t}}(0) * 0\right\}$
$=\mathrm{d}_{\mathrm{t}}(0) * \mathrm{~d}_{\mathrm{t}}(0)$
$=0$

Thereby implying d_{t} is t -regular. Conversely, suppose that d_{t} is t-regular, that is $d_{t}(0)=0$, then we have
$\mathrm{d}_{\mathrm{t}}(0)=\mathrm{d}_{\mathrm{t}}\left(\mathrm{x}^{*} 0\right)$
$=\left(\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}(0)\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right)$
$=\left(x^{*} 0\right) \wedge d_{t}(x)$
$=\mathrm{x} \wedge \mathrm{d}_{\mathrm{t}}(\mathrm{x})$.
The completes the proof.
Theorem 4.11: Let d_{t} be a (l, r)-t-derivation of a p-semi simple BCIK-algebra X. Then the following hold:

1. $d_{t}(0)=d_{t}(x) * x$ for all $x \in X$.
2. d_{t} is one-0ne.
3. If there is an element $x \in X$ such that $d_{t}(x)=x$, then d_{t} is identity map.
4. If $x \leq y$, then $d_{t}(x) \leq d_{t}(y)$ for all $x, y \in X$.

Proof.

1. Let d_{t} be a (l, r)-t-derivation of a p -semi simple BCIKalgebra X. Then for all $x \in X$, we have
$x^{*} x=0$ and so
$\mathrm{d}_{\mathrm{t}}(0)=\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{x})$
$=\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right)$
$=\left\{\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\}^{*}\left[\left\{\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\}^{*}\left\{\mathrm{~d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}\right\}\right]$
$=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}$
2. Let $d_{t}(x)=d_{t}(y) \Rightarrow x^{*} t=y^{*} t$, then we have $x=y$ and so d_{t} is one-one.
3. Let d_{t} be t-regular and $x \in X$. Then, $0=d_{t}(0)$ so by the above part(1), we have $0=d_{t}(x) * x$ and, we obtain $d_{t}(x)$ $=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{X}$. Therefore, d_{t} is the identity map.
4. It is trivial and follows from the above part (3).

Let $\mathrm{x} \leq \mathrm{y}$ implying $\mathrm{x} * \mathrm{y}=0$. Now,
$\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})=(\mathrm{x} * \mathrm{t}) *(\mathrm{y} * \mathrm{t})$
$=x$ * y
$=0$.
Therefore, $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})$. This completes proof.
Definition 4.12: Let d_{t} be a t-derivation of a BCIK-algebra X. Then, d_{t} is said to be an isotone t -derivation if $\mathrm{x} \leq \mathrm{y} \Rightarrow \mathrm{d}_{\mathrm{t}}(\mathrm{x})$ $\leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Example 4.13: In Example $4.9(2), \mathrm{d}_{\mathrm{t}}{ }^{\prime}$ is an isotone t derivation, while in Example 4.9(1), d_{t} is not an isotone t derivation.

Proposition 4.14: Let X be a BCIK-algebra and d_{t} be a $t-$ derivation on X. Then for all $x, y \in X$, the following hold:

1. If $d_{t}(x \wedge y)=d_{t}(x) d_{t}(x) d_{t}(x)$, then d_{t} is an isotone $t-$ derivation
2. If $d_{t}(x \wedge y)=d_{t}(x) * d_{t}(y)$, then d_{t} is an isotone $t-$ derivation.

Proof.

1. Let $d_{t}(x \wedge y)=d_{t}(x) \wedge d_{t}(x)$. If $x \leq y \Rightarrow x \wedge y=x$ for all $x, y \in X$. Therefore, we have
$\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{x} \wedge \mathrm{y})$
$=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge \mathrm{d}_{\mathrm{t}}(\mathrm{y})$
$\leq d_{t}(y)$.
Henceforth $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})$ which implies that d_{t} is an isotone t derivation.

Let $d_{t}(x * y)=d_{t}(x) * d_{t}(y)$. If $x \leq y \Rightarrow x^{*} y=0$ for all $x, y \in X$.
Therefore, we have
$\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}\left(\mathrm{x}^{*} 0\right)$
$=d_{t}\left\{x^{*}\left(x^{*} y\right)\right\}$

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
$=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y})$
$=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) *\left\{\mathrm{~d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right\}$
$\leq d_{t}(y)$.
Thus, $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})$. This completes the proof.
Theorem 4.15: Let d_{t} be a t-regular (r, l)- t -derivation of a BCIK-algebra X. Then, the following hold:

1. $d_{t}(x) \leq x$ for all $x \in X$.
2. $d_{t}(x) * y \leq x * d_{t}(y)$ for all $x, y \in X$.
3. $d_{t}(x * y)=d_{t}(x) * y \leq d_{t}(x) * d_{t}(y)$ for all $x, y \in X$.
4. $\operatorname{Ker}\left(\mathrm{d}_{\mathrm{t}}\right)=\left\{\mathrm{x} \in \mathrm{X}: \mathrm{d}_{\mathrm{t}}(\mathrm{x})=0\right\}$ is a sub algebra of X .

Proof.

1. For any $x \in X$,
we have $\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0)=\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right)=(\mathrm{x} * 0)$ $\wedge\left(d_{t}(\mathrm{x})^{*} 0\right)=\mathrm{x} \wedge \mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{x}$.
2. Since $d_{t}(x) \leq x$ for all $x \in X$, then $d_{t}(x) * y \leq x * y \leq x *$ $d_{t}(y)$ and hence the proof follows.
3. For any $x, y \in X$, we have
$\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y})=\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right)$
$=\left\{\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right\}^{*}\left[\left\{\mathrm{~d}_{\mathrm{t}}(\mathrm{x})^{*} \mathrm{y}\right\}^{*}\left\{\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\}\right]$
$=\left\{\mathrm{d}_{\mathrm{t}}(\mathrm{x}) *{ }^{*}\right\}^{*} 0$
$=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y} \leq \mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})$.
4. Let $\mathrm{x}, \mathrm{y} \in \operatorname{ker}\left(\mathrm{d}_{\mathrm{t}}\right) \Rightarrow \mathrm{d}_{\mathrm{t}}(\mathrm{x})=0=\mathrm{d}_{\mathrm{t}}(\mathrm{y})$. From (3), we have $\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})=0 * 0=0$ implying $\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y}) \leq 0$ and so $d_{t}\left(x^{*} y\right)=0$. Therefore, $x^{*} y \in \operatorname{ker}\left(d_{t}\right)$. Consequently, $\operatorname{ker}\left(\mathrm{d}_{\mathrm{t}}\right)$ is a sub algebra of X . This completes the proof.

Definition 4.16: Let X be a BCIK-algebra and let $\mathrm{d}_{\mathrm{t}}, \mathrm{d}_{\mathrm{t}}$ ' be two self-maps of X. Then we define
d_{t} o $d_{t}^{\prime}: X \rightarrow X$ by (d_{t} o $\left.d_{t}^{\prime}\right)(x)=d_{t}\left(d_{t}^{\prime}(x)\right)$ for all $x \in X$.
Example 4.17: Let $X=\{0, a, b\}$ be a BCIK-algebra which is given in Example 4.4. Let d_{t} and $\mathrm{d}_{\mathrm{t}}^{\prime}$ be two
self-maps on X as define in Example 4.9(1) and Example 4.9(2), respectively.

Now, define a self-map d_{t} o d_{t} : $\mathrm{X} \rightarrow \mathrm{X}$ by
$\left(\mathrm{d}_{\mathrm{t}} \mathrm{od}_{\mathrm{t}}^{\prime}\right)(\mathrm{x})=\left\{\begin{array}{l}0 \text { if } x=a, b \\ b \text { if } x=0 .\end{array}\right.$
Then, it easily checked that $\left(d_{t}\right.$ o $\left.d_{t}^{\prime}\right)(x)=d_{t}\left(d_{t}^{\prime}(x)\right)$ for all $x \in$ X.

Proposition 4.18: Let X be a p-semi simple BCIK-algebra X and let $\mathrm{d}_{\mathrm{t}}, \mathrm{d}_{\mathrm{t}}^{\prime}$ be (l,r)-t-derivations of X .
Then, d_{t} o d d_{t}^{\prime} is also a (l, r)-t-derivation of X.
Proof. Let X be a p-semi simple BCIK-algebra. d_{t} and d_{t} ' are (l, $r)$-t-derivations of X. Then for all $x, y \in X$, we get
$\left(d_{t} \circ d_{t}^{\prime}\right)(x * y)=d_{t}\left(d_{t}^{\prime}(x, y)\right)$
$=d_{t}\left[\left(d_{t}^{\prime}(x) * y\right) \wedge\left(x^{*} d_{t}(y)\right)\right]$
$=\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right) *\left\{\left(\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right)^{*}\left(\mathrm{~d}_{\mathrm{t}}{ }^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right\}\right]$
$=\mathrm{d}_{\mathrm{t}}\left(\mathrm{d}_{\mathrm{t}}{ }^{\prime}(\mathrm{x})^{*} \mathrm{y}\right)$
$=\left\{\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right)\right\}^{*}\left[\left\{\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}\left(\mathrm{d}_{\mathrm{t}}{ }^{\prime}(\mathrm{y})\right)\right\}^{*}\left\{\mathrm{~d}_{\mathrm{t}}\left(\mathrm{d}_{\mathrm{t}}{ }^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right\}\right]$
$=\left\{\mathrm{d}_{\mathrm{t}}\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right\} \wedge\left\{\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right)\right\}$
$=\left(\left(d_{t} \circ d_{t}^{\prime}\right)(x) * y\right) \wedge\left(x *\left(d_{t} o d_{t}^{\prime}\right)(y)\right)$.
Therefore, $\left(d_{t} o d_{t}{ }^{\prime}\right)$ is a $(l, r)-t$-derivation of X.
Similarly, we can prove the following.

Proposition 4.19: Let X be a p-semi simple BCIK-algebra and let d_{t}, d_{t}^{\prime} be (r, l)-t-derivations of X . Then, $\mathrm{d}_{\mathrm{t}} \mathrm{o} \mathrm{d}_{\mathrm{t}}$ ' is also a (r, l)-t-derivation of X .

Combining Propositions 3.18 and 3.19, we get the following.
Theorem 4.20: Let X be a p-semi simple BCIK-algebra and let d_{t}, d_{t}^{\prime} be t-derivations of X. Then, $d_{t} o d_{t}^{\prime}$ is also a t derivation of X.

Now, we prove the following theorem
Theorem 4.21: Let X be a p-semi simple BCIK-algebra and let d_{t}, d_{t}^{\prime} be t-derivations of X.
Then d_{t} o $d_{t}^{\prime}=d_{t}^{\prime}$ o d_{t}.
Proof. Let X be a p-semi simple BCIK-algebra. d_{t} and $\mathrm{d}_{\mathrm{t}}{ }^{\prime}, \mathrm{t}$ derivations of X. Suppose d_{t}^{\prime} is a
(l, r)-t-derivation, then for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, we have
$\left(d_{t} o d_{t}^{\prime}\right)(x * y)=d_{t}\left(d_{t}{ }^{\prime}\left(x^{*} y\right)\right)$
$=d_{t}\left[\left(d_{t}^{\prime}(x) * y\right) \wedge\left(x^{*} d_{t}(y)\right)\right]$
$=d_{t}\left[\left(x * d_{t}^{\prime}(y)\right) *\left\{\left(x * d_{t}(y)\right) *\left(d_{t}^{\prime}(x) * y\right)\right\}\right]$
$=\mathrm{d}_{\mathrm{t}}\left(\mathrm{d}_{\mathrm{t}}{ }^{\prime}(\mathrm{x}) * \mathrm{y}\right)$
As d_{t} is a (r, l) - t -derivation, then
$=\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x})\right)^{*} \mathrm{y}\right)$
$=d_{t}^{\prime}(x) * d_{t}(y)$.
Again, if d_{t} is a (r, l)-t-derivation, then we have
$\left(d_{t} o d_{t}^{\prime}\right)(x * y)=d_{t}^{\prime}\left[d_{t}(x * y)\right]$
$=\mathrm{d}_{\mathrm{t}}^{\prime}\left[\left(\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right)\right]$
$=\mathrm{d}_{\mathrm{t}}^{\prime}\left[\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right]$
But d_{t}^{\prime} is a $(l, r)-t$-derivation, then
$=\left(d_{t^{\prime}}^{\prime}(x) * d_{t}(y)\right) \wedge\left(x * d_{t}^{\prime}\left(d_{t}(y)\right)\right.$
$=\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})$
Therefore, we obtain
$\left(d_{t} \circ d_{t}^{\prime}\right)(x * y)=\left(d_{t}^{\prime} \circ d_{t}\right)(x * y)$.
By putting $y=0$, we get
$\left(d_{t}\right.$ o $\left.d_{t}^{\prime}\right)(x)=\left(d_{t}^{\prime}\right.$ o $\left.d_{t}\right)(x)$ for all $x \in X$.
Hence, d_{t} o $d_{t}^{\prime}=d_{t}^{\prime} \circ d_{t}$. This completes the proof.
Definition 4.22: Let X be a BCIK-algebra and let d_{t}, d_{t} two self-maps of X. Then we define $d_{t}{ }^{*} d_{t}: X \rightarrow X$ by $\left(d_{t}{ }^{*} d_{t}{ }^{\prime}\right)(x)=$ $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$.
Example 4.23: Let $X=\{0, a, b\}$ be BCIK-algebra which is given in Example 3.4. let d_{t} and d_{t}^{\prime} be two

Self-maps on X as defined in Example 4.9 (1) and Example 4.10 (2), respectively.

Now, define a self-map $\mathrm{d}_{\mathrm{t}}{ }^{*} \mathrm{~d}_{\mathrm{t}}{ }^{\prime}: \mathrm{X} \rightarrow \mathrm{X}$ by $\left(\mathrm{d}_{\mathrm{t}}{ }^{*} \mathrm{~d}_{\mathrm{t}}{ }^{\prime}\right)(\mathrm{x})=$ $\left\{\begin{array}{c}0 \text { if } x=a, b \\ b \text { if } x=0 .\end{array}\right.$

Then, it is easily checked that $\left(d_{t}{ }^{*} d_{t}^{\prime}\right)(x)=d_{t}(x) * d_{t}{ }^{\prime}(x)$ for all $x \in X$.
Theorem 4.24: Let X be a p-semi simple BCIK-algebra and let d_{t}, d_{t}^{\prime} be t-derivations of X.

Then $\mathrm{d}_{\mathrm{t}}{ }^{*} \mathrm{~d}_{\mathrm{t}}{ }^{\prime}=\mathrm{d}_{\mathrm{t}}{ }^{*} \mathrm{~d}_{\mathrm{t}}$.
Proof. Let X be a p-semi simple BCIK-algebra. d_{t} and $d_{t}{ }^{\prime}, t-$ derivations of X .

Since $d_{t}{ }^{\prime}$ is a (r, l)-t-derivation of X, then for all $x, y \in X$, we have

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
$\left(d_{t}\right.$ o $\left.d_{t}^{\prime}\right)\left(x^{*} y\right)=d_{t}\left(d_{t}^{\prime}\left(x^{*} y\right)\right)$
$=d_{t}\left[\left(x^{*} d_{t}{ }^{\prime}(y)\right) \wedge\left(d_{t}{ }^{\prime}(x) * y\right)\right]$
$=d_{t}\left[\left(x * d_{t}^{\prime}(y)\right]\right.$
But d_{t} is a (l, r)-r-derivation, so
$=\left(d_{t}(x) * d_{t}^{\prime}(y)\right) \wedge\left(x^{*} d_{t}\left(d_{t}^{\prime}(y)\right)\right.$
$=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})$.
Again, if d_{t}^{\prime} is a $(\mathrm{l}, \mathrm{r})-\mathrm{t}$-derivation of X , then for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, we have
$\left(d_{t} o d_{t}^{\prime}\right)(x * y)=d_{t}\left[d_{t}^{\prime}\left(x^{*} y\right)\right]$
$=\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x})^{*} \mathrm{y}\right) \wedge\left(\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}^{\prime}}(\mathrm{y})\right)\right]$
$=d_{t}\left[\left(x^{*} d_{t}^{\prime}(y)\right) *\left\{\left(x * d_{t}^{\prime}(y)\right) *\left(d_{t}^{\prime}(x) * y\right)\right\}\right]$
$=d_{t}\left(d_{t}^{\prime}(x) * y\right)$.
As d_{t} is a (r, l) - t-derivation, then
$=\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x})\right)^{*} \mathrm{y}\right)$
$=d_{t}^{\prime}(x) * d_{t}(y)$.
Henceforth, we conclude
$\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})=\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})$
By putting $y=x$, we get
$\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x})^{*} \mathrm{~d}_{\mathrm{t}}(\mathrm{x})$
$\left(\mathrm{d}_{\mathrm{t}} * \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{x})=\left(\mathrm{d}_{\mathrm{t}}^{\prime} * \mathrm{~d}_{\mathrm{t}}\right)(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$.
Henced ${ }_{t}^{*} d_{t}^{\prime}=d_{t}^{\prime} * d_{t}$. This completes the proof.

5. f-derivation of BCIK-algebra

In what follows, let be an endomorphism of X unless otherwise specified.
Definition 5.1: Let X be a BCIK algebra. By a left f -derivation (briefly, (l, r)-f-derivation) of X, a self-map $\mathrm{d}_{\mathrm{f}}\left(\mathrm{x}^{*} \mathrm{y}\right)=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x})^{*}\right.$ $f(y)) \wedge\left(f(x) * d_{f}(y)\right)$ for all $x, y \in X$ is meant, where f is an endomorphism of X. If d_{f} satisfies the identity $d_{f}\left(x^{*} y\right)=(f(x)$ $\left.{ }^{*} d_{f}(y)\right) \wedge\left(d_{f}(x) * f(y)\right)$ for all $x, y \in X$, then it is said that d_{f} is a right-left f-derivation (briefly, (r, l)-f-derivation) of X. Moreover, if d_{f} is both an (r, l)-f-derivation, it is said that d_{f} is an f-derivation.
Example 5.2: Let $\mathrm{X}=\{0,1,2,3,4,5\}$ be a BCIK-algebra with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	2	2	2	2
1	1	0	2	2	2	2
2	2	2	0	0	0	0
3	3	2	1	0	0	0
4	4	2	1	1	0	1
5	5	2	1	1	1	0

Define a Map df: $\mathrm{X} \rightarrow \mathrm{X}$ by
$\mathrm{d}_{\mathrm{f}}=\left\{\begin{array}{l}2 \text { if } x=0,1, \\ 0 \text { otherwise },\end{array}\right.$
and define and endomorphism f of X by
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}2 \text { if } x=0,1, \\ 0 \text { otherwise },\end{array}\right.$
That it is easily checked that d_{f} is both derivation and f derivation of X.

Example 5.3: Let X be a BCIK-algebra as in Example 2.2. Define a map $\mathrm{d}_{\mathrm{f}}: \mathrm{X} \rightarrow \mathrm{X}$ by
$\mathrm{d}_{\mathrm{f}}=\left\{\begin{array}{c}2 \text { if } x=0,1, \\ 0 \text { otherwise },\end{array}\right.$

Then it is easily checked that d_{f} is a derivation of X.
Define an endomorphism f of X by
$f(x)=0$, for all $x \in X$.
Then d_{f} is not an f-derivation of X since
$\mathrm{d}_{\mathrm{f}}(2 * 3)=\mathrm{d}_{\mathrm{f}}(0)=2$,
but
$\left(\mathrm{d}_{\mathrm{f}}(2) * \mathrm{f}(3)\right) \wedge\left(\mathrm{f}(2) * \mathrm{~d}_{\mathrm{f}}(3)\right)=(0 * 0) \wedge\left(0^{*} 0\right)=0 \wedge 0=0$,
And thus $\mathrm{d}_{\mathrm{f}}(2 * 3) \neq\left(\mathrm{d}_{\mathrm{f}}(2) * \mathrm{f}(3)\right) \wedge\left(\mathrm{f}(2) * \mathrm{~d}_{\mathrm{f}}(3)\right)$.
Remark 5.4: From Example 5.3, we know that there is a derivation of X which is not an f-derivation X.
Example 2.5: Let $X=\{0,1,2,3,4,5\}$ be a BCIK-algebra with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	3	2	3	2
1	1	1	5	4	3	2
2	2	2	0	3	0	3
3	3	3	2	0	2	0
4	4	2	1	5	0	3
5	5	3	4	1	2	0

Define a map $\mathrm{d}_{\mathrm{f}}: \mathrm{X} \rightarrow \mathrm{X}$ by
$\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\left\{\begin{array}{lll}0 & \text { if } & x=0,1, \\ 2 & \text { if } & x=2,4, \\ 3 & \text { if } & x=3,5,\end{array}\right.$
and define an endomorphism f of X by

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
0 \text { if } x=0,1 \\
2 \text { if } x=2,4 \\
3 \text { if } x=3,5
\end{array}\right.
$$

Then it is easily checked that d_{f} is both derivation and f derivation of X .
Example 5.6: Let X be a BCIK-algebra as in Example 5.5.
Define a map $\mathrm{d}_{\mathrm{f}} \mathrm{X} \rightarrow \mathrm{X}$ by
$\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\left\{\begin{array}{l}0 \text { if } x=0,1, \\ 2 \text { if } x=2,4, \\ 3 \text { if } x=3,5,\end{array}\right.$
Then it is easily checked that d_{f} is a derivation of X.
Define an endomorphism f of X by
$\mathrm{f}(0)=0, \mathrm{f}(1)=1, \mathrm{f}(2)=3 \mathrm{f}(3)=2, \mathrm{f}(4)=5, \mathrm{f}(5)=4$.
Then d_{f} is not an f-derivation of X since
$\mathrm{d}_{\mathrm{f}}(2 * 3)=\mathrm{d}_{\mathrm{f}}(3)=3$,
but
$\left(\mathrm{d}_{\mathrm{f}}(2) * \mathrm{f}(3)\right) \wedge\left(\mathrm{f}(2) * \mathrm{~d}_{\mathrm{f}}(3)\right)=(2 * 2) \wedge(3 * 3)=0 \wedge 0=0$,
And thus $\mathrm{d}_{\mathrm{f}}(2 * 3) \neq\left(\mathrm{d}_{\mathrm{f}}(2) * \mathrm{f}(3)\right) \wedge\left(\mathrm{f}(2) * \mathrm{~d}_{\mathrm{f}}(3)\right)$.
Example 5.7: Let X be a BCIK-algebra as in Example 2.5. Define a map $\mathrm{d}_{\mathrm{f}}: \mathrm{X} \rightarrow \mathrm{X}$ byd $_{\mathrm{f}}(0)=0, \mathrm{~d}_{\mathrm{f}}(1)=1, \mathrm{~d}_{\mathrm{f}}(2)=3, \mathrm{~d}_{\mathrm{f}}(3)$ $=2, \mathrm{~d}_{\mathrm{f}}(4)=5, \mathrm{~d}_{\mathrm{f}}(5)=4$,

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

Then d_{f} is not a derivation of X since
$\mathrm{d}_{\mathrm{f}}(2 * 3)=\mathrm{d}_{\mathrm{f}}(3)=2$,
$\left(\mathrm{d}_{\mathrm{f}}(2) * 3\right) \wedge\left(2 * \mathrm{~d}_{\mathrm{f}}(3)\right)=(3 * 3) \wedge(2 * 2)=0 \wedge 0=0$,
And thus And thus $\mathrm{d}_{\mathrm{f}}(2 * 3) \neq\left(\mathrm{d}_{\mathrm{f}}(2) * 3\right) \wedge\left(2 * \mathrm{~d}_{\mathrm{f}}(3)\right)$.
Define an endomorphism f of X by
$\mathrm{f}(0)=0, \mathrm{f}(1)=1, \mathrm{f}(2)=3, \mathrm{f}(3)=2, \mathrm{f}(4)=5, \mathrm{f}(5)=4$.
Then it is easily checked that d_{f} is an f-derivation of X .
Remark 5.8: From Example 5.7, we know there is an fderivation of X which is not a derivation of X.

For convenience, we denote $\mathrm{f}_{\mathrm{x}}=0 *(0 * \mathrm{f}(\mathrm{x}))$ for all $\mathrm{x} \in \mathrm{X}$. Note that $\mathrm{f}_{\mathrm{x}} \in \mathrm{L}_{\mathrm{p}}(\mathrm{X})$.
Theorem 5.9: Let d_{f} be a self-map of a BCIK-algebra X define by $\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\mathrm{f}_{\mathrm{x}}$ for all $\mathrm{x} \in \mathrm{X}$.

Then d_{f} is an (l, r)-f-derivation of X . Moreover, if X is commutative, then d_{f} is an (r, l)-f-derivation of X .
Proof. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$
Since
0 * $\left(0^{*}\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})\right)\right)=0 *\left(0 *\left((0 *(0 * \mathrm{f}(\mathrm{x})))^{*} \mathrm{f}(\mathrm{y})\right)\right)$
$=0$ * $((0$ * $((0 * f(y)) *(0 * f(x))))$
$=0{ }^{*}(0 *(0 * f(y * x)))=0 * f(y * x)$
$=0 *(f(y) * f(x))=(0 * f(y)) *(0 * f(x))$
$=(0 *(0 * f(x))) * f(y)=f_{x} * f(y)$,
We have $f_{x} * f(y) \in L_{p}(X)$, and thus
$\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})=\left(\mathrm{f}(\mathrm{x}) * \mathrm{f}_{\mathrm{y}}\right) *\left(\left(\mathrm{f}(\mathrm{x}) * \mathrm{f}_{\mathrm{y}}\right) *\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})\right)\right)$,
It follows that
$\mathrm{d}_{\mathrm{f}}\left(\mathrm{x}^{*} \mathrm{x}\right)=\mathrm{f}_{\mathrm{x}} * \mathrm{x}=0 *(0 * \mathrm{f}(\mathrm{x} * \mathrm{y}))=0 *(0 *(\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{y})))$
$=\left(0 *(0 * f(x)) *(0 *(0 * f(y)))=f_{x} * f_{y}\right.$
$=\left(0 *\left(0 * f_{x}\right)\right) *(0 *(0 * f(y)))=0 *\left(0 *\left(f_{x} * f(y)\right)\right)$
$=\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})=\left(\mathrm{f}(\mathrm{x}) * \mathrm{f}_{\mathrm{y}}\right) *\left(\left(\mathrm{f}(\mathrm{x}) * \mathrm{f}_{\mathrm{y}}\right) *\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})\right)\right)$
$=\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})\right) \wedge\left(\mathrm{f}(\mathrm{x}) \wedge \mathrm{f}_{\mathrm{y}}\right)=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) \wedge\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right)$,
And so d_{f} is an ($1, r$)-f-derivation of X. Now, assume that X is commutative. So $\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})$ and $\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})$ belong to the same branch $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, we have
$\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})=\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})=\left(0 *\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})\right)\right)$
$=\left(0 *\left(0 * f_{x}\right)\right) *(0 *(0 * f(y)))$
$=\mathrm{f}_{\mathrm{x}} * \mathrm{f}_{\mathrm{x}} \in V\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}_{\mathrm{x}}\right)$,
And so $\mathrm{f}_{\mathrm{x}} * \mathrm{f}_{\mathrm{x}}=(0 *(0 * \mathrm{f}(\mathrm{x})))^{*}\left(0 *\left(0 * \mathrm{f}_{\mathrm{y}}\right)\right)=0 *(0 *(\mathrm{f}(\mathrm{x})$ * $\left.\left.\mathrm{f}_{\mathrm{y}}\right)\right)=0{ }^{*}\left(0^{*}\left(\mathrm{f}(\mathrm{x}){ }^{*} \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right) \leq \mathrm{f}(\mathrm{x}){ }^{*} \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right.$, which implies that $\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y}) \in \mathrm{V}\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}_{\mathrm{x}}\right)$. Hence, $\mathrm{d}_{\mathrm{f}}(\mathrm{y}) * \mathrm{f}(\mathrm{y})$ and $\mathrm{f}(\mathrm{x}){ }^{*} \mathrm{~d}_{\mathrm{f}}(\mathrm{y})$ belong to the same branch, and so
$\mathrm{d}_{\mathrm{f}}(\mathrm{x} * \mathrm{x})=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) \wedge\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right)$
$=\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right)$.
This completes the proof.
Proposition 5.10: Let d_{f} be a self-map of a BCIK-algebra. Then the following hold.

1. If d_{f} is an $(l, r)-f$-derivation of X, then $d_{f}(x)=d_{f}(x) \wedge$ $f(x)$ for all $x \in X$.
2. If d_{f} is an ($\left.\mathrm{r}, \mathrm{l}\right)$-f-derivation of X , then $\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \wedge \mathrm{d}_{\mathrm{f}}$ (x) for all $\mathrm{x} \in \mathrm{X}$ if and only if $\mathrm{d}_{\mathrm{f}}(0)=0$.

Proof.

1. Let d_{f} is an $(r, l)-f$-derivation of X, Then, $\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\mathrm{d}_{\mathrm{f}}(\mathrm{x} * 0)=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(0)\right) \wedge\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right)$
$=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * 0\right) \wedge\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right)=\mathrm{d}_{\mathrm{f}}(\mathrm{x}) \wedge\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right)$
$=\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right) *\left(\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right) * \mathrm{~d}_{\mathrm{f}}(\mathrm{x})\right)$
$=\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right) *\left(\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right) * \mathrm{~d}_{\mathrm{f}}(0)\right)$
$\leq \mathrm{f}(\mathrm{x}) *\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{x})\right)=\mathrm{d}_{\mathrm{f}}(\mathrm{x}) \wedge \mathrm{f}(\mathrm{x})$.
But $\mathrm{d}_{\mathrm{f}}(\mathrm{x}) \wedge \mathrm{f}(\mathrm{x}) \leq \mathrm{d}_{\mathrm{f}}(\mathrm{x})$ is trivial and so (1) holds.
2. Let d_{f} be an $(\mathrm{r}, \mathrm{l})-\mathrm{f}$-derivation of X . If $\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{x})$ for all $x \in X$, then for $x=0, d_{f}(0)=f(0) * d_{f}(0)=0 \wedge f(0)$ $=\mathrm{d}_{\mathrm{f}}(0) *\left(\mathrm{~d}_{\mathrm{f}}(0) * 0\right)=0$.

Conversely, if $\mathrm{d}_{\mathrm{f}}(0)=0$, then $\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\mathrm{d}_{\mathrm{f}}(\mathrm{x} * 0)=\left(\mathrm{f}(\mathrm{x}) *\left(\mathrm{~d}_{\mathrm{f}}\right.\right.$ (0)) $\wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(0)\right)=$
$\left.\left(\mathrm{f}(\mathrm{x})^{*} 0\right)\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x})^{*} 0\right)=\mathrm{f}(\mathrm{x}) \wedge \mathrm{d}_{\mathrm{f}}(\mathrm{x})$, ending the proof.
Proposition 5.11: Let d_{f} be an (l, r)-f-derivation of a BCIKalgebra X. Then,

1. $d_{f}(x) \in L_{p}(X)$, then is $d_{f}(0)=0 *\left(0 * d_{f}(x)\right)$;
2. $\quad d_{f}(a)=d_{f}(0) *(0 * f(a))=d_{f}(0)+f(a)$ for all a $\in L_{p}(X)$;
3. $d_{f}(a) \in L_{p}(X)$ for all $a \in L_{p}(X)$;
4. $d_{f}(a+b)=d_{f}(a)+d_{f}(b)-d_{f}(0)$ for all $a, b \in L_{p}(X)$.

Proof.

1. The proof follows from Proposition 5.10(1).
2. Let $\mathrm{G} \in \mathrm{L}_{\mathrm{p}}(\mathrm{X})$, then $\mathrm{a}=0^{*}\left(0^{*} \mathrm{a}\right)$, and so $\mathrm{f}(\mathrm{a})=0^{*}\left(0^{*}\right.$ $\mathrm{f}(\mathrm{a})$), that is, $\mathrm{f}(\mathrm{b}) \in \mathrm{L}_{\mathrm{p}}(\mathrm{X})$.

Hence
$\mathrm{d}_{\mathrm{f}}(\mathrm{a})=\mathrm{d}_{\mathrm{f}}(0 *(0 * a))$
$=\left(\mathrm{d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right) \wedge\left(\mathrm{f}(0) * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right)$
$=\left(\mathrm{d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right) \wedge\left(0 * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right)$
$=\left(0 * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right) *\left(\left(0 * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right) *\left(\mathrm{~d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right)\right)$
$=\left(0 * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right) *\left(\left(0^{*}\left(\mathrm{~d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right)\right) * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right)$
$=0 *\left(0 *\left(\mathrm{~d}_{\mathrm{f}}(0) *(0 * \mathrm{f}(\mathrm{a}))\right)\right)$
$=d_{f}(0) *(0 * f(a))=d_{f}(0)+f(a)$.
3. The proof follows directly from (2).
4. Let $a, b \in L_{p}(X)$. Note that $a+b \in L_{p}(X)$, so from (2), we note that
$\mathrm{d}_{\mathrm{f}}(\mathrm{a}+\mathrm{b})=\mathrm{d}_{\mathrm{f}}(0)+\mathrm{f}(\mathrm{a})+\mathrm{d}_{\mathrm{f}}(0)+\mathrm{f}(\mathrm{b})-\mathrm{d}_{\mathrm{f}}(0)=\mathrm{d}_{\mathrm{f}}(\mathrm{a})+\mathrm{d}_{\mathrm{f}}(0)-$ $d_{f}(0)$.
Proposition 5.12: Let d_{f} be a (r, l)-f-derivation of a BCIKalgebra X. Then,

1. $d_{f}(a) \in G(X)$ for all a $\in G(X)$;
2. $d_{f}(a) \in L_{p}(X)$ for all a $\in G(X)$;
3. $d_{f}(a)=f(a) * d_{f}(0)=f(a)+d_{f}(a)$ for all $a, b \in L_{p}(X)$;
4. $d_{f}(a+b)=d_{f}(a)+d_{f}(b)-d_{f}(0)$ for all $a, b \in L_{p}(X)$.

Proof.

1. For any a $€ \mathrm{G}(\mathrm{X})$, we have $\mathrm{d}_{\mathrm{f}}(\mathrm{a})=\mathrm{d}_{\mathrm{f}}(0$ * a$)=\left(\mathrm{f}(0)\right.$ * d_{f} (a) $) \wedge\left(d_{f}(0)+f(a)\right)$
$=\left(d_{f}(0)+f(a)\right) *\left(\left(d_{f}(0)+f(a)\right) *\left(0 * d_{f}(0)\right)\right)=0 * d_{f}(0)$, and so $\mathrm{d}_{\mathrm{f}}(\mathrm{a}) \in \mathrm{G}(\mathrm{X})$.
2. For any a $\in L_{p}(X)$, we get
$\mathrm{d}_{\mathrm{f}}(\mathrm{a})=\mathrm{d}_{\mathrm{f}}\left(0^{*}\left(0^{*} \mathrm{a}\right)\right)=\left(0^{*} \mathrm{~d}_{\mathrm{f}}\left(0^{*} \mathrm{a}\right)\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right)$
$=\left(\mathrm{d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right) *\left(\left(\mathrm{~d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right) *\left(0 * \mathrm{~d}_{\mathrm{f}}(0 * a)\right)\right)$
$=0 * d_{f}(0 * a) \in L_{p}(X)$.
3. For any a $\in \mathrm{L}_{\mathrm{p}}(\mathrm{X})$, we get
$\mathrm{d}_{\mathrm{f}}(\mathrm{a})=\mathrm{d}_{\mathrm{f}}(\mathrm{a} * 0)=\left(\mathrm{f}(\mathrm{a}) * \mathrm{~d}_{\mathrm{f}}(0)\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{a}) * \mathrm{f}(0)\right)$
$=\mathrm{d}_{\mathrm{f}}(\mathrm{a}) *\left(\mathrm{~d}_{\mathrm{f}}(\mathrm{a}) *\left(\mathrm{f}(\mathrm{a}) * \mathrm{~d}_{\mathrm{f}}(0)\right)\right)=\mathrm{f}(\mathrm{a}) * \mathrm{~d}_{\mathrm{f}}(0)$
$=f(a) *\left(0 * d_{f}(0)\right)=f(a)+d_{f}(a)$.
4. The proof from (3). This completes the proof.

Using Proposition 5.12, we know there is an (l,r)-f-derivation which is not an (r,l)-f-derivation as shown in the following example.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

Example 5.13: Let Z be the set of all integers and "-" the minus operation on Z . Then ($\mathrm{Z},-, 0$) is a BCIK-algebra. Let d_{f} : $\mathrm{X} \rightarrow \mathrm{X}$ be defined by $\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\mathrm{f}(\mathrm{x})-1$ for all $\mathrm{x} \in \mathrm{Z}$.

Then, $\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x})-\mathrm{f}(\mathrm{y})\right) \wedge\left(\mathrm{f}(\mathrm{x})-\mathrm{d}_{\mathrm{f}}(\mathrm{y})\right)=(\mathrm{f}(\mathrm{x})-1-\mathrm{f}(\mathrm{y})) \wedge(\mathrm{f}(\mathrm{x})$
$-(f(y)-1))$
$=(f(x-Y)-1) \wedge(f(x-y)+1)$
$=(f(x-Y)+1)-2=f(x-Y)-1$
$=d_{f}(\mathrm{x}-\mathrm{y})$.
Hence, d_{f} is an (l, r)-f-derivation of X. $\operatorname{But}_{\mathrm{f}}(0)=\mathrm{f}(0)-1=-1$ $\neq 1=\mathrm{f}(0)-\mathrm{d}_{\mathrm{f}}(0)=0-\mathrm{d}_{\mathrm{f}}(0)$,
that is, $\mathrm{d}_{\mathrm{f}}(0) \notin \mathrm{G}(\mathrm{X})$. Therefore, d_{f} is not an (r, l)-f-derivation of X by Proposition 2.12(1).

6. Regular f-derivations

Definition 6.1: An f-derivation d_{f} of a BCIK-algebra X is said to be a regular if $d_{f}(0)=0$
Remark 6.2: we know that the f-derivations d_{f} in Example 5.5 and 5.7 are regular.

Proposition 6.3: Let X be a commutative BCIK-algebra and let d_{f} be a regular (r, l)-f-derivation of X . Then the following hold.

1. Both $\mathrm{f}(\mathrm{x})$ and $\mathrm{d}_{\mathrm{f}}(\mathrm{x})$ belong to the same branch for all $\mathrm{x} \in$ X .
2. d_{f} is an $(l, r)-f$-derivation of X.

Proof.

1. Let $\mathrm{x} \in \mathrm{X}$. Then,
$0=\mathrm{d}_{\mathrm{f}}(0)=\mathrm{d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}{ }^{*} \mathrm{x}\right)$
$=\left(f\left(\mathrm{a}_{\mathrm{x}}\right) * \mathrm{~d}_{\mathrm{f}}(\mathrm{x})\right) \wedge\left(\mathrm{d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right) * \mathrm{f}(\mathrm{x})\right)$
$=\left(\mathrm{d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right) * \mathrm{f}(\mathrm{x})\right) *\left(\left(\mathrm{~d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right) * \mathrm{f}(\mathrm{x})\right) *\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right)\right)\right)$
$=\left(\mathrm{d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right) * \mathrm{f}(\mathrm{x})\right) *\left(\left(\mathrm{~d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right) * \mathrm{f}(\mathrm{x})\right) *\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right)\right)\right)$
$=f_{x} * d_{f}\left(a_{x}\right)$ since $f_{x} * d_{f}\left(a_{x}\right) \in L_{p}(X)$,
And so $\mathrm{f}_{\mathrm{x}} \leq \mathrm{d}_{\mathrm{f}}(\mathrm{x})$. This shows that $\mathrm{d}_{\mathrm{f}}(\mathrm{x}) \in \mathrm{V}(\mathrm{X})$, Clearly, $\mathrm{f}(\mathrm{x}) €$ $\mathrm{V}(\mathrm{X})$.
2. By (1), we have $\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y}) \in \mathrm{V}\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}_{\mathrm{y}}\right)$ and $\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y}) €$ $\mathrm{V}\left(\mathrm{f}_{\mathrm{x}}{ }^{*} \mathrm{f}_{\mathrm{y}}\right)$. Thus
$\mathrm{d}_{\mathrm{f}}(\mathrm{x} * \mathrm{y})=\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right)=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) \wedge$ $\left(f(x) * d_{f}(y)\right)$, which implies that
d_{f} is an (l,r)-f-derivation of X .
Remark 6.4: The f-derivations d_{f} in Examples 5.5 and 5.7 are regular f -derivations but we know that the (l, r)-f-derivation d_{f} in Example 5.2 is not regular. In the following, we give some properties of regular f-derivations.

Definition 6.5: Let X be a BCIK-algebra. Then define $\operatorname{kerd}_{f}=$ $\left\{x \in X / d_{f}(x)=0\right.$ for all f-derivations $\left.d_{f}\right\}$.
Proposition 6.6: Let d_{f} be an f -derivation of a BCIK-algebra X . Then the following hold:

1. $\mathrm{d}_{\mathrm{f}}(\mathrm{x}) \leq \mathrm{f}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$;
2. $d_{f}(x) * f(y) \leq f(x) * d_{f}(y)$ for all $x, y \in X ;$
3. $\quad d_{f}(x * y)=d_{f}(x) * f(y) \leq d_{f}(x) * d_{f}(y)$ for all $x, y \in X$;
4. kerd_{f} is a sub algebra of X. Especially, if f is monic, then $\operatorname{kerd}_{f} \subseteq \mathrm{X}_{+}$.

Proof.

1. The proof follows by Proposition 5.10(2).
2. Since $d_{f}(x) \leq f(x)$ for all $x \in X$, then $d_{f}(x) * f(y) \leq f(x)$ * $f(y) \leq f(x) * d_{f}(y)$.
3. For any $x, y \in X$, we have
$\mathrm{d}_{\mathrm{f}}(\mathrm{x} * \mathrm{y})=\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right)$
$\left.=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) *\left(\left(\mathrm{~d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right)^{*} \mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right)\right)$
$=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) * 0=\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y}) \leq \mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})$,
Which proves (3).
4. Let $\mathrm{x}, \mathrm{y} \in \operatorname{kerd}_{\mathrm{f}}$, then $\mathrm{d}_{\mathrm{f}}(\mathrm{x})=0=\mathrm{d}_{\mathrm{f}}(\mathrm{y})$, and so $\mathrm{d}_{\mathrm{f}}(\mathrm{x} * \mathrm{y})$ $\leq \mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})=0 * 0=0$ by (3),
and thus $\mathrm{d}_{\mathrm{f}}(\mathrm{x} * \mathrm{y})=0$, that is, $\mathrm{x} * \mathrm{y} \in \operatorname{kerd}_{\mathrm{f}}$, then $0=\mathrm{d}_{\mathrm{f}}(\mathrm{x}) \leq$ $\mathrm{f}(\mathrm{x})$ by (1), and so $\mathrm{f}(\mathrm{x}) \in \mathrm{X}_{+}$,
that is, $0 * f(x)=0$, and thus $f(0 * x)=f(x)$, which that $0 * x=$ x, and so $x \in X_{+}$, that is,
$\operatorname{kerd}_{f} \subseteq \mathrm{X}_{+}$.
Theorem 6.7: Let be monic of a commutative BCIK-algebra X. Then X is p-semi simple if and only if
$\operatorname{kerd}_{f}=\{0\}$ for every regular f-derivation d_{f} of X.

Proof.

Assume that X is p -semi simple BCIK-algebra and let d_{f} be a regular f-derivation of X. Then $X_{+}=\{0\}$, and
So $\operatorname{kerd}_{f}=\{0\}$ by using Proposition 6.6(4), Conversely, let $\operatorname{kerd}_{f}=\{0\}$ for every regular f-derivation d_{f} of X. Define a selfmap d_{f} of X by $d^{*} f(0)=f_{x}$ for all $x \in X$. Using Theorem 5.9, d_{f}^{*} is an f-derivation of X. Clearly, $\mathrm{d}_{\mathrm{f}}^{*}(0)=\mathrm{f}_{0}=0 *(0 * f(0))=0$, and so d_{f}^{*} is a regular f-derivation of X. It follows from the hypothesis that ker $d^{*}{ }_{f}=\{0\}$. In addition, $d_{f}^{*}(x)=f_{x}=0 *(0 *$ $\mathrm{f}(\mathrm{x}))=\mathrm{f}\left(0^{*}\left(0^{*} \mathrm{x}\right)\right)=\mathrm{f}(0)=0$ for all $\mathrm{x} \in \mathrm{X}_{+}$, and thus $\mathrm{x} \in$ ker d_{f}. Hence, by Proposition 6.6(4), $\mathrm{X}_{+} \in$ ker $\mathrm{d}_{\mathrm{f}}^{*}=\{0\}$. Therefore, X is p-semi simple.
Definition 6.8: An ideal A of a BCIK-algebra X is said to be an f-ideal if $f(A) \subseteq A$.

Definition 6.9: Let d_{f} be a self-map of a BCIK-algebra X. An fideal A of X is said to be d_{f}-invariant if
$\mathrm{d}_{\mathrm{f}}(\mathrm{a}) \subseteq \mathrm{A}$.
Theorem 6.10: Let d_{f} be a regular (r, l)-f-derivation of a BCIK-algebra X, then every f-ideal A of X is
$\mathrm{d}_{\mathrm{f}}(\mathrm{A}) \subseteq \mathrm{A}$.
Theorem 6.11: Let d_{f} be a regular (r, l)-f-derivation of a BCIK-algebra X , then every f-ideal A of X is
d_{f}-invariant.

Proof.

By Proposition 6.10(2), we have $\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \wedge \mathrm{d}_{\mathrm{f}}(\mathrm{x}) \leq \mathrm{f}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$. Let $\mathrm{y} \in \mathrm{d}_{\mathrm{f}}(\mathrm{A})$. Let $\mathrm{y} \in \mathrm{d}_{\mathrm{f}}(\mathrm{A})$.
Then $y=d_{f}(x)$ for some $x \in A$. It follows that $y * f(x)=d_{f}(x)$ * $f(x)=0 \in A$. Since $x \in A$, then
$f(x) € f(A) \subseteq A$ as A is an f-ideal. It follows that $y \in A$ since A is an ideal of X. Hence $d_{f}(A) \subseteq A$,
and thus A is d_{f} - invariant.
Theorem 6.12: Let d_{f} be an f -derivation of a BCIK-algebra X . Then d_{f} is regular if and only if every f-ideal of X is $d_{f}{ }^{-}$ invariant.

Proof. Let d_{f} be a derivation of a BCIK-algebra X and assume that every f-ideal of X is d_{f}-invariant. Then
Since the zero ideal $\{0\}$ is f-ideal and d_{f}-invariant, we have d_{f} $(\{0\}) \subseteq\{0\}$, which implies that $\mathrm{d}_{\mathrm{f}}(0)=0$.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

Thus d_{f} is regular. Combining this and Theorem 6.10, we complete the proof.

7. Regularity of generalized derivations

To develop our main results, the following:
Definition 7.1: [8]. Let θ and ϕ be two endomorphisms of X. A self-map $\left.\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}\right): \mathrm{X} \rightarrow \mathrm{X}$ is called

1. An inside (θ, ϕ)-derivation of
$\left.(\forall \mathrm{x}, \mathrm{y} \in \mathrm{X})\left(\mathrm{d}_{(} \theta, \phi\right)\left(\mathrm{x}^{*} \mathrm{y}\right)=\left(\mathrm{d}_{(} \theta, \phi\right)(\mathrm{x})^{*} \theta(\mathrm{y})\right) \wedge\left(\phi(\mathrm{x})^{*}\right.$ $\left.\mathrm{d}_{(} \boldsymbol{\theta}, \phi_{\mathrm{J}}(\mathrm{y}) \mathrm{f}\right)$,
2. An outside $\left({ }^{\theta}, \phi^{\phi}\right)$-derivation of X if it satisfies: $(\forall \mathrm{x}, \mathrm{y} \in \mathrm{X})\left(\mathrm{d}(\theta, \phi)(\mathrm{x} * \mathrm{y})=\left(\left(\phi(\mathrm{x})^{*} \mathrm{~d}_{(} \theta, \phi\right)\right.\right.$ $\left.(\mathrm{y})) \wedge\left(\mathrm{d}_{(} \theta, \phi\right)(\mathrm{x})^{*} \theta(\mathrm{y})\right)$,
3. A (θ, ϕ)-derivation of X if it is both inside (θ, ϕ) derivation and an outside (θ, ϕ)-derivation.

Example 7.2: [8]. Consider a BCIK- algebra $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}\}$ with the following Cayley table:

$*$	0	a	b
0	0	0	b
a	a	0	b
b	b	b	0

Define a map
$\mathrm{d}_{(} \boldsymbol{\theta}, \phi_{)}: \mathrm{X} \rightarrow \mathrm{X}, \mathrm{x} \mapsto\left\{\begin{array}{c}\text { bif } x \in\{0, a\}, \\ 0 \text { if } x=b,\end{array}\right.$
and define two endomorphisms
$\theta: \mathrm{X} \rightarrow \mathrm{X}, \mathrm{x} \mapsto\left\{\begin{array}{c}0 \text { if } x \in\{0, a\}, \\ b \text { if } x=b,\end{array}\right.$
And $\phi: \mathrm{X} \rightarrow \mathrm{X}$ such that $\theta(\mathrm{x})=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{X}$.
It is routine to verify that $\mathrm{d}_{(} \boldsymbol{\theta}, \phi_{)}$is both an inside (θ, ϕ) derivation and an outside (θ, ϕ)-derivation of X .

Lemma 7.3: [8]. For any outside (θ, ϕ)-derivationd (θ, ϕ) of a BCIK-algebra X , the following are equivalent:

1. $(\forall \mathrm{x} \in \mathrm{X})\left(\mathrm{d}_{(} \theta, \phi_{)}(\mathrm{x})=\theta(\mathrm{x}) \wedge \mathrm{d}_{(} \theta, \phi_{)}(\mathrm{x})\right)$
2. $\left.\mathrm{d}_{(} \theta, \phi\right)(0)=0$.

Definition 7.4: Let $\mathrm{d}_{(} \boldsymbol{\theta}, \phi_{)}: \mathrm{X} \rightarrow \mathrm{X}$ be an inside (or out side) (θ, ϕ)-derivation of a BCIK-algebra X . Then $\mathrm{d}_{(} \theta, \phi$) is said to be regular if $\mathrm{d}_{(} \theta, \phi_{)}(0)=0$.

Example 7.5: The inside (or outside) (θ, ϕ)-derivationd (θ, ϕ) of X in Example 7.2. is not regular.

Proposition 7.6: Let $\left.\mathrm{d}_{(} \theta, \phi\right)$ be a regular outside $\left.\theta, \phi\right)$ derivation of a BCIK-algebra X. Then

1. Both $\theta(\mathrm{x})$ and $\left.\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}\right)(\mathrm{x})$ belong to the same branch for all $x \in X$.
2. $(\forall \mathrm{x} \in \mathrm{X})\left(\mathrm{d}_{(} \theta, \phi\right)(\mathrm{x} \leq \theta(\mathrm{x}))$.
3. $(\forall \mathrm{x}, \mathrm{y} \in \mathrm{X})\left(\mathrm{d}_{(} \theta, \phi_{)}(\mathrm{x}) * \theta(\mathrm{y}) \leq \theta(\mathrm{x}) * \mathrm{~d}_{(} \theta, \phi_{)}(\mathrm{y})\right)$.

Proof.

1. For any $x \in X$, we get
$0=\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)}=\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)}\left(\mathrm{a}_{\mathrm{x}} * \mathrm{x}\right)$
$=\left(\theta\left(\mathrm{a}_{\mathrm{x}}\right)^{*} \mathrm{~d}_{(} \theta, \phi_{)}(\mathrm{x})\right) \wedge\left(\left(\mathrm{d}_{(} \theta, \phi_{)}\left(\mathrm{a}_{\mathrm{x}}\right)^{*} \phi(\mathrm{x})\right)\right.$
$=\left(\left(\mathrm{d}_{(} \boldsymbol{\theta}, \phi\right)\left(\mathrm{a}_{\mathrm{x}}\right)^{*} \phi(\mathrm{x})\right)^{*}\left(\left(\mathrm{~d}_{(} \boldsymbol{\theta}, \phi\right)\left(\mathrm{a}_{\mathrm{x}}\right)^{*} \phi(\mathrm{x})\right)^{*}\left(\boldsymbol{\theta}\left(\mathrm{a}_{\mathrm{x}}\right)^{*}\right.$ $\left.\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)}(\mathrm{x})\right)$

Since $\theta\left(\mathrm{a}_{\mathrm{x}}\right)^{*} \mathrm{~d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)}(\mathrm{x}) \in \mathrm{L}_{\mathrm{p}}(\mathrm{X})$. Hence $\theta\left(\mathrm{a}_{\mathrm{x}}\right) \leq \mathrm{d}_{(} \boldsymbol{\theta}, \phi_{)}(\mathrm{x})$, and so $\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)} \in \mathrm{V}\left(\boldsymbol{\theta}\left(\mathrm{a}_{\mathrm{x}}\right)\right)$.
2. Since $\mathrm{d}_{(} \theta, \phi_{)}$is regular, $\mathrm{d}_{(} \theta, \phi_{)}=0$. It follows from Lemma 7.3. that
$\left.\mathrm{d}_{(} \theta, \phi_{)}(\mathrm{x})=\theta(\mathrm{x}) \wedge \mathrm{d}_{(} \theta, \phi\right)(\mathrm{x}) \leq \theta(\mathrm{x})$.
3. Since $\left.\mathrm{d}_{(} \theta, \phi\right)(\mathrm{x}) \leq \theta(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$, we have $\left.\mathrm{d}_{(} \boldsymbol{\theta}, \phi_{)}(\mathrm{x})^{*} \boldsymbol{\theta}(\mathrm{y}) \leq \boldsymbol{\theta}(\mathrm{x})^{*} \boldsymbol{\theta}(\mathrm{y}) \leq \boldsymbol{\theta}(\mathrm{x})^{*} \mathrm{~d}_{(} \boldsymbol{\theta}, \phi\right)(\mathrm{y})$

If we take $\theta=\phi=f$ in proposition 7.6 , then we have the following corollary.
Corollary 7.7: [6]. If d_{f} is a regular ($\left.\mathrm{r}, \mathrm{l}\right)$ - f -derivation of a BCIK-algebra X , then both $\mathrm{f}(\mathrm{x})$ and $\mathrm{d}_{\mathrm{f}}(\mathrm{x})$ belong to the same branch for allx $\in \mathrm{X}$.
Now we provide conditions for an inside (or outside)
(θ, ϕ)-derivation to be regular.
Theorem 7.8: Let $\mathrm{d}_{(} \theta, \phi$) be an inside (θ, ϕ)-derivationof a BCIK-algebra X. If there exists $a \in X$ such that $\mathrm{d}_{(} \boldsymbol{\theta}, \phi_{)}(\mathrm{x}) * \theta(\mathrm{a})=0$ for all $\mathrm{x} \in \mathrm{X}$, then $\mathrm{d}_{(} \boldsymbol{\theta}, \phi$) is regular.

Proof. Assume that there exists $\mathrm{a} \in \mathrm{X}$ such that $\left.\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}\right)(\mathrm{x})^{*}$ $\theta(\mathrm{a})=0$ for all $\mathrm{x} \in \mathrm{X}$. Then
$\left.0=\mathrm{d}_{(} \theta, \phi_{)}\left(\mathrm{x}^{*} \mathrm{a}\right)=\left(\left(\mathrm{d}_{(} \theta, \phi_{)}(\mathrm{x})^{*} \theta(\mathrm{a})\right) \wedge \phi(\mathrm{x})^{*} \mathrm{~d}_{(} \theta, \phi_{)}(\mathrm{a})\right)\right)^{*} \mathrm{a}$ $=\left(0 \wedge\left(\phi(\mathrm{x}) * \mathrm{~d}_{(} \theta, \phi\right)(\mathrm{a})\right)^{*} \mathrm{a}=0 * \mathrm{a}$,

And so $\left.\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}\right)(0)=\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)}\left(0{ }^{*} \mathrm{x}\right)=\left(\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)}(0) * \boldsymbol{\theta}(\mathrm{a})\right)=$ 0 . Hence $\mathrm{d}_{(} \boldsymbol{\theta}, \phi_{)}$is regular.

Theorem 7.9: If Xis a BCIK-algebra, then every inside (or outside) (θ, ϕ)-derivation of X is regular.

Proof. Let $\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}$) be an inside ($\boldsymbol{\theta}, \boldsymbol{\phi}$) -derivation of a BCIKalgebra. Then
$\left.\left.\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}\right)(0)=\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}\right)(0 * \mathrm{x})$
$=\left(\mathrm{d}_{(} \theta, \phi_{)}(0) * \theta(\mathrm{x})\right) \wedge\left(\phi(0) \wedge \mathrm{d}_{(} \theta, \phi_{)}(\mathrm{x})\right)$
$\left.=\left(\mathrm{d}_{(} \theta, \phi\right)(0) * \theta(\mathrm{x})\right) \wedge 0=0$.
If $\left.\mathrm{d}_{(} \theta, \phi\right)$ is an outside (θ, ϕ)-derivation of a BCIK—algebra X , then
$\left.\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}\right)(0)=\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)}(0 * \mathrm{x})$
$=\left(\theta(0) * \mathrm{~d}_{(} \theta, \phi_{)}(\mathrm{x})\right) \wedge\left(\mathrm{d}_{(} \theta, \phi_{)}(0) * \theta(\mathrm{x})\right)$
$=0 \wedge\left(\mathrm{~d}_{(} \theta, \phi_{)}(0) * \theta(\mathrm{x})\right)=0$.
Hence $\mathrm{d}_{(} \boldsymbol{\theta}, \phi_{\mathrm{J}}$ is regular.
To prove our results, we define the following notions:
Definition 7.10: For an inside (or outside) (θ, ϕ)derivationd $(\boldsymbol{\theta}, \boldsymbol{\phi})$ of a BCIK-algebra X , we say that an ideal A
of X, we say that an ideal A of X is a θ-ideal (resp. ϕ-ideal) if $\theta(\mathrm{A}) \subseteq \mathrm{A}($ resp. $\phi(\mathrm{A}) \subseteq \mathrm{A})$.

Definition 7.11: For an inside (or outside) (θ, ϕ)derivationd $\left(\boldsymbol{\theta}, \boldsymbol{\phi}_{)}\right.$of a BCIK-algebra X , we say that an ideal A of X, we say that an ideal A of X is $d_{(} \theta, \phi_{)}$-invariant if $\left.\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}\right) \subseteq \mathrm{A}$.

Example 7.12: Let $\mathrm{d}_{(} \theta, \phi$) be an outside (θ, ϕ)-derivation ofX which is described Example 7.2. we know that $A:=\{0, a\}$ is both a θ-ideal and ϕ-ideal of X . But $\mathrm{A}:=\{0, \mathrm{a}\}$ is an ideal of X which is not $\mathrm{d}_{(} \theta, \phi_{)}$-invariant.

Theorem 7.13: Let $\mathrm{d}_{(} \theta, \phi$) be a outside (θ, ϕ)-derivation of a BCIK-algebra X . Then every $\boldsymbol{\theta}$-ideal of X is $\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)^{-}}$ invariant.
Proof. Let A be a θ-ideal of X . Since $\mathrm{d}_{(} \boldsymbol{\theta}, \phi_{)}$is regular, it follows from Lemma 7.3 that $\left.\left.\mathrm{d}_{(} \theta, \phi\right)=\theta(\mathrm{x}) \wedge \mathrm{d}_{(} \theta, \phi\right)$ $(\mathrm{x}) \leq \boldsymbol{\theta}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$. Let $\mathrm{y} \in \mathrm{X}$ be such that $\left.\mathrm{y} \in \mathrm{d}_{(} \theta, \phi\right)(\mathrm{A})$. Then $\mathrm{y}=\mathrm{d}_{(} \theta, \phi_{)}(\mathrm{x})$ for some $\mathrm{x} \in \mathrm{A}$. Thus $\mathrm{y} * \boldsymbol{\theta}(\mathrm{x})=$ $\left.\mathrm{d}_{(} \theta, \phi\right)(\mathrm{x}) * \theta(\mathrm{x})=0 \in \mathrm{~A}$.

Note that $\theta(\mathrm{x}) \in \theta(\mathrm{A}) \subseteq \mathrm{A}$. Since A is an ideal of X , it follows that $\mathrm{y} \in \mathrm{A}$ so that $\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)}(\mathrm{A}) \subseteq \mathrm{A}$. Therefore A is $\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)^{-}}$ invariant.
If we take $\theta=\phi=1_{\mathrm{x}}$ in Theorem 7.13. 1_{x} is the identity map, then we have the following corollary.
Corollary 7.14: [4]. Let d be a regular (r, l)-derivation of a BCIK-algebra X . Then every ideal of X is d -invariant.
If we take $\theta=\phi=\mathrm{f}$ in Theorem 3.13, then we have the following corollary.
Corollary 7.15: [6]. Let d_{f} be a regular (r, l)-f-derivation of a BCIK-algebra X . Then every f-ideal of X is $\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)}$-invariant.

Theorem 7.16: Let $\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}$) be an outside (θ, ϕ)-derivation of a BCIK-algebra X . If every $\boldsymbol{\theta}$-ideal of X is $\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)^{-}}$ invariant, then $\mathrm{d}_{(} \theta, \phi_{)}$is regular.

Proof. Assume that every θ-ideal of X is $\mathrm{d}_{(} \boldsymbol{\theta}, \phi_{)}$-invariant. Since the zero ideal $\{0\}$ is clearly θ-ideal and $\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)^{-}}$ invariant, we have $\mathrm{d}_{(} \theta, \phi_{)}(\{0\}) \subseteq\{0\}$, and so
$\left.\mathrm{d}_{(} \theta, \phi\right)=0$. Hence $\mathrm{d}_{(} \theta, \phi_{)}$is regular.
Combining Theorem 7.13. and 7.16., we have a characterization of a regular outside (θ, ϕ)-derivation.

Theorem 7.17: For an outside (θ, ϕ)-derivationd (θ, ϕ) of a BCIK-algebra X , the following are equivalent:

1. $\left.\mathrm{d}_{(} \theta, \phi\right)$ is regular.
2. Every $\boldsymbol{\theta}$-ideal of X is $\mathrm{d}_{(} \boldsymbol{\theta}, \boldsymbol{\phi}_{)}$-invariant.

If we take $\theta=\phi=1_{\mathrm{x}}$ in Theorem 3.17. where 1_{x} is the identity map, then we have the following corollary.
Corollary 7.18: [4]. Let d be an (r, l)-derivation of a BCIKalgebra X . Then d is regular if and only if every ideal of X is d invariant.

If we take $\theta=\phi=\mathrm{f}$ in Theorem 3.17, then we have the following corollary.
Corollary 7.19: [6]. For an (r, l)-f-derivation d_{f} of a BCIKalgebra X , the following are equivalent:

1. d_{f} is regular.
2. Every f-ideal of X is d_{f}-invarient.

CONCULUTION

In this present paper, we have consider the notions of regular inside (or outside) (θ, ϕ)-derivation, θ-ideal, ϕ ideal and invariant inside (or outside) (θ, ϕ)-derivation of a BCIK-algebra, and investigated related properties. The theory of derivations of algebraic structures is a direct descendant of the development of classical Galosis theory. In our opinion, these definitions and main results can be similarly extended to some other algebraic system such as subtraction algebras, B -algebras, MV-algebras, d -algebras, Q algebras and so forth.
In our future study the notion of regular (θ, ϕ)-derivation on various algebraic structures which may have a lot applications (θ, ϕ)-derivation BCIK-algebra, may be the following topics should be considered:

1. To find the generalized $(\boldsymbol{\theta}, \boldsymbol{\phi})$-derivation of BCIKalgebra,
2. To find more result in $(\boldsymbol{\theta}, \boldsymbol{\phi})$-derivation of BCIK-algebra and its applications,
3. To find the $(\boldsymbol{\theta}, \boldsymbol{\phi})$-derivation of B -algebras, Q -algebras, subtraction algebras, d-algebra and so forth.

Acknowledgment

The author would like to thank Editor-in-Chief and referees for the valuable suggestions and corrections for the improvement of this paper.

References

[1] Y. Imai, K. Iseki, On axiom systems of propositional calculi XIV, proc. Japan Academy, 42(1966), 19-22.
[2] Y.B. Jun and X.L. Xin On derivations of BCI - algebras, inform. Sci., 159(2004), 167-176.
[3] S Rethina Kumar, "Solvable Pseudo Commutators BCIK-Algebras', International Journal of Research Publication and Reviews Vol(3), Issue(2)(2021) Page 269-275, March 2021.
[4] S Rethina Kumar, "t-Regular t-Derivations On pSemisimple BCIK-Algebras" EPRA International Journal of Multidisciplinary Research. Volume 7, Issue 3, pp.198-209, March 2021.
[5] S Rethina Kumar "PI-Lattices a Classical of bounded Commutative BCIK-Algebras" International Journal of Scientific Research in Mathematical Statistical Science, Recently Summited on March 2021.
[6] S Rethina Kumar "f-Regular f-Derivations on f-Semi simple BCIK-Algebra". International Journal of Multidisciplinary Research Review, Volume 7, Issue 3, pp37-56, March 2021.
[7] S Rethina Kumar "Regular Left Derivations On p-semi simple BCIK-algebra". International Journal of Trend in scientific Research and Development. Volume 5, Issue 3, pp559-602, March 2021.
[8] Generalizations of derivations in BCI-algebras, Appl. Math. Inf. Sci. 9 (2015).

