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ABSTRACT 

In this paper we study the regularity of inside(or outside) ( ϕθ ; )-derivations 

in p-semi simple BCIK – algebra X and prove that let d( φθ , ): X →X be an 

inside ( φθ , )-derivation of X. If there exists a∈  X such that d( φθ , )(x) * θ (a) 

= 0, then d( φθ , ) is regular for all x∈X. It is also show that if X is a BCIK-

algebra, then every inside(or outside) ( φθ , )-derivation of X is regular. 

Furthermore the concepts of θ - ideal, φ -ideal and invariant inside (or 

outside) ( φθ , )-derivation of X are introduced and their related properties are 

investigated. Finally we obtain the following result: If d( φθ , ): X →X is an 

outside ( φθ , )-derivation of X, then d( φθ , ) is regular if and only if every φ -

ideal of X is d( φθ , )-invariant. 
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1. INTRODUCTION  

This In 1966, Y. Imai and K. Iseki [1,2] defined BCK – algebra 

in this notion originated from two different sources: one of 

them is based on the set theory the other is form the classical 

and non – classical propositional calculi. In 2021 [6], S 

Rethina Kumar introduce combination BCK–algebra and 

BCI–algebra to define BCIK–algebra and its properties and 

also using Lattices theory to derived the some basic 

definitions, and they also the idea introduced a regular f-

derivation in BCIK-algebras. We give the Characterizations f-

derivation p-semi simple algebra and its properties. In 

2021[4], S Rehina Kumar have given the notion of t-

derivation of BCIK-algebras and studied p-semi simple 

BCIK—algebras by using the idea of regular t-derivation in 

BCIK-algebras have extended the results of BCIK-algebra in 

the same paper they defined and studied the notion of left 

derivation of BCIK-algebra and investigated some properties 

of left derivation in p-semi simple BCIK-algebras. In 2021 

[7], S Rethina Kumar have defined the notion of Regular left 

derivation and generalized left derivation determined by a 

Regular left derivation on p-semi simple BCIK-algebra and 

discussed some related properties. Also, In 2021 [3,4,5], S 

Rethina Kumar have introduced the notion of generalized 

derivation in BCI-algebras and established some results.  

The present paper X will denote a BCIK-algebra unless 

otherwise mentioned. In 2021[3,4,5,6,7], S Rethina Kumar 

defined the notion of derivation on BCIK-algebra as follows: 

A self-map d: X →X is called a left-right derivation (briefly 

on (l, r)-derivation) of X if d(x * y) = d(x) * y ∧  x * d(y) holds 

for all x, y ∈  X. Similarly, a self-map d: X →X is called a  

 

right-left derivation (briefly an (r, l)-derivation) of X if d(x * 

y) = x * d(y) ∧  d(x) * y holds for all x, y∈  X. Moreover if d is 

both (l, r)-and (r, l)-derivation, it is a derivation on X. 

Following [3,4,5,6], a self-map df: X →X is said to be a right-

left f-derivation or an (l, r)-f-derivation or an (l, r)-f-

derivation of X if it satisfies the identity df (x * y) = df(x) * 

f(y) ∧  f(x) * df(y) for all x, y ∈  X. Similarly, a self-map df: X 

→X is said to be a right-left f-derivation or an (r, l)-f-

derivation of X if it satisfies the identity df (x * y) = f(x) * 

df(y) ∧ df(x) * f(y) for all x, y ∈  X. Moreover, if df is an f-

derivation, where f is an endomorphism. Over the past 

decade, a number of research papers have been devoted to 

the study of various kinds of derivations in BCIK-algebras 

(see for [3,4,5,6,7] where further references can be found). 

 The purpose of this paper is to study the regularity of inside 

(or outside) ( φθ , )-derivation in BCIK-algebras X and their 

useful properties. We prove that let d( φθ , ): X →X be an 

inside ( φθ , )-derivation of X and if there exists a ∈  X such 

that d( φθ , )(x)(x) * θ (a) = 0, then d( φθ , ) is regular for all x 

∈X. It is derivation of X is regular. Furthermore, we 

introduce the concepts of θ -ideal, φ -ideal and invariant 

inside (or outside) ( φθ , )-derivation of X and investigated 

their related properties. We also prove that if d( φθ , ): X →X 

is an outside ( φθ , )-derivation of X, then d( φθ , ) is regular if 

and only if every θ -ideal of X is d( φθ , ) –invariant.  
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2. Preliminaries 

Definition 2.1: [5] BCIK algebra 

 Let X be a non-empty set with a binary operation * and a 

constant 0. Then (X, *, 0) is called a BCIK Algebra, if it 

satisfies the following axioms for all x, y, z Є X: 

(BCIK-1) x*y = 0, y*x = 0, z*x = 0 this imply that x = y = z. 

(BCIK-2) ((x*y) * (y*z)) * (z*x) = 0. 

(BCIK-3) (x*(x*y)) * y = 0. 

(BCIK-4) x*x = 0, y*y = 0, z*z = 0. 

(BCIK-5) 0*x =0, 0*y = 0, 0*z = 0. 

For all x, y, z Є X. An inequality ≤ is a partially ordered set on 

X can be defined x ≤ y if and only if  

(x*y) * (y*z) = 0. 

Properties 2.2: [5] I any BCIK – Algebra X, the following 

properties hold for all x, y, z Є X: 

1. 0 Є X. 

2. x*0 = x. 

3. x*0 = 0 implies x = 0. 

4. 0*(x*y) = (0*x) * (0*y). 

5. X*y = 0 implies x = y. 

6. X*(0*y) = y*(0*x). 

7. 0*(0*x) = x. 

8. x*y Є X and x Є X imply y Є X. 

9. (x*y) * z = (x*z) * y 

10.  x*(x*(x*y)) = x*y. 

11.  (x*y) *(y*z) = x*y. 

12.  0 ≤ x ≤ y for all x, y Є X. 

13.  x ≤ y implies x*z ≤ y*z and z*y ≤ z*x. 

14.  x*y ≤ x. 

15.  x*y ≤ z ⇔ x*z ≤ y for all x, y, z Є X 

16.  x*a = x*b implies a = b where a and b are any natural 

numbers (i. e)., a, b Є N 

17.  a*x = b*x implies a = b. 

18.  a*(a*x) = x. 

Definition 2.3: [4, 5, 10], Let X be a BCIK – algebra. Then, for 

all x, y, z Є X: 

1. X is called a positive implicative BCIK – algebra if (x*y) * 

z = (x*z) * (y*z). 

2. X is called an implicative BCIK – algebra if x*(y*x) = x. 

3. X is called a commutative BCIK – algebra if x*(x*y) = 

y*(y*x). 

4. X is called bounded BCIK – algebra, if there exists the 

greatest element 1 of X, and for any  

5. x Є X, 1*x is denoted by GGx, 

6. X is called involutory BCIK – algebra, if for all x Є X, GGx = 

x. 

Definition 2.4: [5] Let X be a bounded BCIK-algebra. Then 

for all x, y Є X: 

1. G1 = 0 and G0 = 1, 

2. GGx≤ x that GGx = G(Gx), 

3. Gx * Gy≤ y*x, 

4. y ≤ x implies Gx ≤ Gy,  

5. Gx*y = Gy*x 

6. GGGx = Gx. 

Theorem 2.5: [5] Let X be a bounded BCIK-algebra. Then for 

any x, y Є X, the following hold: 

1. X is involutory, 

2. x*y = Gy * Gx, 

3. x*Gy = y * Gx, 

4. x ≤ Gy implies y ≤ Gx. 

Theorem 2.6: [5] Every implicative BCIK-algebra is a 

commutative and positive implicative BCIK-algebra. 

Definition 2.7: [4,5] Let X be a BCIK-algebra. Then: 

1. X is said to have bounded commutative, if for any x, y Є 

X, the set A(x,y) = {t Є X: t*x ≤ y} has the greatest 

element which is denoted by x o y, 

2. (X, *, ≤) is called a BCIK-lattices, if (X, ≤) is a lattice, 

where ≤ is the partial BCIK-order on X, which has been 

introduced in Definition 2.1. 

Definition 2.8: [5] Let X be a BCIK-algebra with bounded 

commutative. Then for all x, y, z Є X: 

1. y ≤ x o (y*x), 

2. (x o z) * (y o z) ≤ x*y, 

3. (x*y) * z = x*(y o z), 

4. If x ≤ y, then x o z ≤ y o z, 

5. z*x ≤ y ⇔ z ≤ x o y. 

Theorem 2.9: [4,5] Let X be a BCIK-algebra with condition 

bounded commutative. Then, for all x, y, z Є X, the following 

are equivalent: 

1. X is a positive implicative, 

2. x ≤ y implies x o y = y, 

3. x o x = x, 

4. (x o y) * z = (x*z) o (y*z), 

5. x o y = x o (y*x). 

Theorem 2.10: [4,5] Let X be a BCIK-algebra. 

1. If X is a finite positive implicative BCIK-algebra with 

bounded and commutative the (X, ≤) is a distributive 

lattice, 

2. If X is a BCIK-algebra with bounded and commutative, 

then X is positive implicative if and only if (X, ≤) is an 

upper semi lattice with x ˅ y = x o y, for any x, y Є X, 

3. If X is bounded commutative BCIK-algebra, then BCIK-

lattice (X, ≤) is a distributive lattice, where x ˄ y = 

y*(y*x) and x ˅ y= G(Gx ˄ Gy). 

Theorem 2.11: [4,5] Let X be an involutory BCIK-algebra, 

Then the following are equivalent: 

1. (X, ≤) is a lower semi lattice, 

2. (X, ≤) is an upper semi lattice, 

3. (X, ≤) is a lattice. 

Theorem 2.12: [5] Let X be a bounded BCIK-algebra. Then: 

1. every commutative BCIK-algebra is an involutory BCIK-

algebra. 

2. Any implicative BCIK-algebra is a Boolean lattice (a 

complemented distributive lattice). 

Theorem 2.13: [5, 11] Let X be a BCK-algebra, Then, for all 

x, y, z Є X, the following are equivalent: 

1. X is commutative, 

2. x*y = x*(y*(y*x)), 

3. x*(x*y) = y*(y*(x*(x*y))), 

4. x≤ y implies x = y*(y*x). 
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3. Regular Left derivation p-semi simple BCIK-algebra 

Definition 3.1: Let X be a p-semi simple BCIK-algebra. We 

define addition + as x + y = x*(0*y) for all  

x, y Є X. Then (X, +) be an abelian group with identity 0 and x 

–y = x*y. Conversely, let (X, +) be an abelian group with 

identity 0 and let x – y =x*y. Then X is a p-semi simple BCIK-

algebra and x + y = x*(0*y),  

for all x, y Є X (see [6]). We denote x ꓥ y = y * (y * x), 0 * (0 * 

x) = ax and  

L p(X) = {a Є X / x * a = 0 implies x = a, for all x Є X}. 

For any x Є X. V(a) = {a Є X / x * a = 0} is called the branch of 

X with respect to a. We have 

x * y Є V (a * b), whenever x Є V(a) and y Є V(b), for all x, y Є 

X and all a, b Є L p(X), for 0 * (0 * ax) = ax which implies that ax 

* y Є L p(X) for all y Є X. It is clear that G(X) ⊂  L p(X) and x * 

(x * a) = a and  

a * x Є L p(X), for all a Є L p(X) and all x Є X. 

Definition 3.2: ([5]) Let X be a BCIK-algebra. By a (l, r)-

derivation of X, we mean a self d of X satisfying the identity 

d(x * y) = (d(x) * y) ∧  (x * d(y)) for all x, y Є X. 

If X satisfies the identity 

d(x * y) = (x * d(y)) ∧  (d(x) * y) for all x, y Є X, 

then we say that d is a (r, l)-derivation of X 

Moreover, if d is both a (r, l)-derivation and (r, l)-derivation 

of X, we say that d is a derivation of X. 

Definition 3.3: ([5]) A self-map d of a BCIK-algebra X is said 

to be regular if d (0) = 0. 

Definition 3.4: ([5]) Let d be a self-map of a BCIK-algebra X. 

An ideal A of X is said to be d-invariant, if d(A) = A. 

In this section, we define the left derivations 

Definition 3.5: Let X be a BCIK-algebra By a left derivation 

of X, we mean a self-map D of X satisfying 

D(x * y) = (x * D(y)) ∧  (y * D(x)), for all x, y Є X. 

Example 3.6: Let X = {0,1,2} be a BCIK-algebra with Cayley 

table defined by 

* 0 1 2 

0 0 0 2 

1 1 0 2 

2 2 2 0 

Define a map D: X →X by 

 D(x) = 





.20

1,02

=
=

ifx

ifx
 

Then it is easily checked that D is a left derivation of X. 

Proposition 3.7: Let D be a left derivation of a BCIK-algebra 

X. Then for all x, y Є X, we have 

1. x * D(x) = y * D(y). 

2. D(x) = aD(x)ꓥx. 

3. D(x) = D(x) ∧  x. 

4. D(x) Є L p(X). 

 

Proof. 

(1) Let x, y Є X. Then 

D(0) = D(x * x) = (x * D(x)) ∧  (x * D(x)) = x * D(x). 

Similarly, D(0) = y * D(y). So, D(x) = y * D(y). 

2) Let x Є X. Then 

 D(x) = D(x * 0) 

 = (x * D(0)) ∧  (0 * D(x)) 

 = (0 * D(x)) * ((0 * D(x)) * (x * D(0))) 

≤  0 * (0 * (x * D(x)))) 

 = 0 * (0 * (x * (x * D(x)))) 

 = 0 * (0 * (D(x) ∧  x)) 

 = aD(x)ꓥx. 

Thus D(x) ≤ aD(x)ꓥx. But 

aD(x)ꓥx = 0(0 * (D(x) ∧  x)) ≤  D(x) ∧  x ≤  D(x). 

Therefore, D(x) = aD(x)ꓥx. 

(1) Let x Є X. Then using (2), we have 

D(x) = aD(x)ꓥx ≤  D(x) ∧  x . 

But we know that D(x) ∧  x ≤  D(x), and hence (3) holds. 

(2) Since ax Є L p(X), for all x Є X, we get D(x) Є L p(X) by 

(2). 

Remark 3.8: Proposition 3.3(4) implies that D(X) is a subset 

of L p(X). 

Proposition 3.9: Let D be a left derivation of a BCIK-algebra 

X. Then for all x, y Є X, we have 

1. Y * (y * D(x)) = D(x). 

2. D(x) * y Є L p(X). 

Proposition 3.10: Let D be a left derivation of a BCIK-

algebra of a BCIK-algebra X. Then 

1. D(0) Є L p(X). 

2. D(x) = 0 + D(x), for all x Є X. 

3. D(x + y) = x + D(y), for all x, y Є L p(X). 

4. D(x) = x, for all x Є X if and only if D(0) = 0. 

5. D(x) Є G(X), for all x Є G(X). 

Proof. 

1. Follows by Proposition 3.3(4). 

2. Let x Є X. From Proposition 3.3(4), we get D(x) = aD(x), so 

we have 

D(x) = aD(x) = 0 * (0 * D(x)) = 0 + D(x). 

3. Let x, y Є L p(X). Then 

D(x + y) = D(x * (0 * y)) 

 = (x * D(0 * y)) ∧  ((0 * y) * D(x)) 

 = ((0 * y) * D(x)) * (((0 * y) * D(x) * (x * D(0 * y))) 

 = x * D(0 * y) 

 = x * ((0 * D(y)) ∧  (y * D(0))) 

 = x * D(0 *y) 

 = x * (0 * D(y)) 

 = x + D(y). 

4. Let D(0) = 0 and x Є X. Then 

D(x) = D(x) ∧  x = x * (x * D(x)) = x * D(0) = x * 0 = x. 

Conversely, let D(x) = x, for all x Є X. So it is clear that D(0) = 

0. 

5. Let x Є G(x). Then 0 * = x and so 

D(x) = D(0 * x) 
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= (0 * D(x)) ∧  (x * D(0)) 

= (x * D(0)) * ((x * D(0)) * (0 * D(x)) 

= 0 * D(x). 

This give D(x) Є G(X). 

Remark 3.11: Proposition 3.6(4) shows that a regular left 

derivation of a BCIK-algebra is the identity map. So we have 

the following: 

Proposition 3.12: A regular left derivation of a BCIK-algebra 

is trivial. 

Remark 3.13: Proposition 3.6(5) gives that D(x) Є G(X) ⊆  L 

p(X). 

Definition 3.14: An ideal A of a BCIK-algebra X is said to be 

D-invariant if D(A) ⊂ A.  

Now, Proposition 3.8 helps to prove the following theorem. 

Theorem 3.15: Let D be a left derivation of a BCIK-algebra X. 

Then D is regular if and only if ideal of X is D-invariant. 

Proof. 

Let D be a regular left derivation of a BCIK-algebra X. Then 

Proposition 3.8. gives that D(x) = x, for all  

x Є X. Let y Є D(A), where A is an ideal of X. Then y = D(x) for 

some x Є A. Thus 

 Y * x = D(x) * x = x * x = 0 Є A. 

Then y Є A and D(A) ⊂ A. Therefore, A is D-invariant. 

Conversely, let every ideal of X be D-invariant. Then D({0}) 

⊂  {0} and hence D(0) and D is regular. 

Finally, we give a characterization of a left derivation of a p-

semi simple BCIK-algebra. 

Proposition 3.16: Let D be a left derivation of a p-semi-

simple BCIK-algebra. Then the following hold for all x, y Є X: 

1. D(x * y) = x * D(y). 

2. D(x) * x = D(y) * Y. 

3. D(x) * x = y * D(y). 

Proof. 

1. Let x, y Є X. Then 

D(x * y) = (x * D(y)) ∧ ∧  (y * D(x)) = x * D(y). 

2. We know that 

(x * y) * (x * D(y)) ≤  D(y) * y and 

(y * x) * (y * D(x)) ≤  D(x) * x. 

This means that 

((x * y) * (x * D(y))) * (D(y) * y) = 0, and  

((y * x) * (y * D(x))) * (D(x) * x) = 0. 

So 

((x * y) * (x * D(y))) * (D(y) * y) = ((y * x) * (y * D(x))) * (D(x) 

* x). (I) 

Using Proposition 3.3(1), we get, 

(x * y) * D(x * y) = (y * x) * D(y * x). (II) 

By (I), (II) yields 

(x * y) * (x * D(y)) = (y * x) * (y * D(x)). 

Since X is a p-semi simple BCIK-algebra. (I) implies that 

D(x) * x = D(y) * y. 

3. We have, D(0) = x * D(x). From (2), we get D(0) * 0 = 

D(y) * y or D(0) = D(y) * y. 

 So D(x) * x = y * D(y).  

Theorem 3.17: In a p-semi simple BCIK-algebra X a self-map 

D of X is left derivation if and only if and if it is derivation. 

Proof. 

Assume that D is a left derivation of a BCIK-algebra X. First, 

we show that D is a (r, l)-derivation of X. Then 

D( x * y) = x * D(y) 

= (D(x) * y) * ((D(x) * Y) * (x * D(y))) 

= (x * D(y)) ∧  (D(x) * y). 

Now, we show that D is a (r, l)-derivation of X. Then 

D(x * Y) = x * D(y) 

 = (x * 0) * D(y) 

 = (x * (D(0) * D(0)) * D(y) 

 = (x * ((x * D(x)) * (D(y) * y))) * D(y) 

 = (x * ((x * D(y)) * (D(x) * y))) * D(y) 

 = (x * D(y) * ((x * D(y)) * (D(x) * Y)) 

 = (D(x) * y) ∧  (x * D(y)). 

Therefore, D is a derivation of X. 

Conversely, let D be a derivation of X. So it is a (r, l)-

derivation of X. Then  

D(x * y) = (x * D(y)) ∧  (D(x) * y) 

= (D(x) * y) * ((D(x) * y) * (x * D(y))) 

= x * D(y) = (y * D(x)) * ((y * D(x)) * (x * D(y))) 

= (x * D(y)) ∧  (y * D(x)). 

Hence, D is a left derivation of X. 

4. t-Derivations in BCIK-algebra /p-Semi simple BCIK-

algebra 

The following definitions introduce the notion of t-derivation 

for a BCIK-algebra. 

Definition 4.1: Let X be a BCIK-algebra. Then for t Є X, we 

define a self-map dt: X →X by dt(x) = x * t  

for all x Є X. 

Definition 4.2: Let X be a BCIK-algebra. Then for any t Є X, a 

self-map dt: X →X is called a left-rifht t-derivation or (l,r)-t-

derivation of X if it satisfies the identity dt(x * Y) = (dt(x) * y) 

∧  (x * dt(y)) for all x, y Є X. 

Definition 4.3: Let X be a BCIK-algebra. Then for any t Є X, a 

self-map dt: X →X is called a left-right t-derivation or (l, r)-t-

derivation of X if it satisfies the identity dt(x * y) = (x * dt(y)) 

∧ (dt(x) * y) for all x, y Є X. 

Moreover, if dt is both a (l, r)and a (r, l)-t-derivation on X, we 

say that dtis a t-derivation on X. 

Example 4.4: Let X = {0,1,2} be a BCIK-algebra with the 

following Cayley table: 

* 0 1 2 

0 0 0 2 

1 1 0 2 

2 2 2 0 

For any t Є X, define a self-map dt: X →X by dt(x) = x * t for 

all x Є X. Then it is easily checked that dt is a t-derivation of X. 

Proposition 4.5: Let dt be a self-map of an associative BCIK-

algebra X. Then dt is a (l, r)-t-derivation of X. 

Proof. Let X be an associative BCIK-algebra, then we have 

dt(x * y) = (x * y) 

= {x * (y * t)} * 0 

= {x * (y * t)} * [{x * (y * t)} *{x * (y *t)}] 

= {x * (y * t)} * [{x * (y *t)} * {(x * y) * t}] 
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= {x * (y * t)} * [{x * (y * t)} * {(x * t) * y}] 

= ((x * t) * y) ∧  (x * (y * t)) 

= (dt(x) * y) ∧  (x * dt(y)). 

Proposition 4.6: Let dt be a self-map of an associative BCIK-

algebra X. Then, dt is a (r, l)-t-derivation of X. 

Proof. Let X be an associative BCIK-algebra, then we have 

dt(x * y) = (x * y) * t 

= {(x * t) * y} * 0 

= {(x * t) * y} * [{(x * t) * y} * {(x * t) * y)] 

= {(x * t) * y} * [{(x * t) * y} * {(x * y) * t}] 

= {(x * t) * y} * [{(x * t) * y} * {x * (y * t)}] 

= (x * (y * t)) ∧  ((x * t) * y) 

= (x * dt(y)) ∧  (dt(x) * y) 

Combining Propositions 4.5 and 4.6, we get the following 

Theorem. 

Theorem 4.7: Let dt be a self-map of an associative BCIK-

algebra X. Then, dt is a t-derivation of x. 

Definition 4.8: A self-map dt of a BCIK-algebra X is said to be 

t-regular if dt(0) = 0. 

Example 4.9: Let X = {0, a, b} be a BCIK-algebra with the 

following Cayley table: 

* 0 a b 

0 0 0 b 

a a 0 b 

b b b 0 

1. For any t Є X, define a self-map dt: X →X by 

dt(x) = x * t = 





=
=

bxif

axifb

0

,0
 

Then it is easily checked that dt is (l, r) and (r, l)-t-

derivations of X, which is not t-regular. 

2. For any t Є X, define a self-map d’t: X →X by 

dt’(x) = x * t = 0 if x = 0, a, b if x = b. 

Then it is easily checked that dt’ is (l, r) and (r, l)-t-

derivations of X, which is t-regular. 

Proposition 4.10: Let dt be a self-map of a BCIK-algebra X. 

Then 

1. If dt is a (l, r)-t- derivation of x, then dt(x) = dt(x) ∧  x for 

all x Є X. 

2. If dt is a (r, l)-t-derivation of X, then dt(x) = x ∧ dt(x) for 

all x Є X if and only if dt is t-regular. 

Proof. 

1. Let dt be a (l, r)-t-derivation of X, then 

dt(x) = dt(x * 0) 

= (dt(x) * 0) ∧  (x * dt(0)) 

= dt(x) ∧  (x * dt(0)) 

= {x * dt(0)} * [{x * dt(0)} * dt(x)] 

= {x * dt(0)} * [{x * dt(x)} * dt(0)] 

≤ x * {x * dt(x)}  

= dt(x) ∧  x. 

But dt(x) ∧  x ≤ dt(x) is trivial so (1) holds. 

2. Let dt be a (r, l)-t-derivation of X. If dt(x) = x ≤ dt(x) then 

dt(0) = 0 ∧ dt(0) 

= dt(0) * { dt(0) * 0} 

= dt(0) * dt(0) 

= 0 

Thereby implying dt is t-regular. Conversely, suppose that dt 

is t-regular, that is dt(0) = 0, then we have  

dt(0) = dt(x * 0) 

 = (x * dt(0)) ∧  (dt(x) * 0) 

 = (x * 0) ∧ dt(x) 

 = x ∧ dt(x). 

The completes the proof. 

Theorem 4.11: Let dt be a (l, r)-t-derivation of a p-semi 

simple BCIK-algebra X. Then the following hold: 

1. dt(0) = dt(x) * x for all x Є X. 

2. dt is one-0ne. 

3. If there is an element x Є X such that dt(x) = x, then dt is 

identity map. 

4.  If x ≤  y, then dt(x) ≤ dt(y) for all x, y Є X. 

Proof. 

1. Let dt be a (l, r)-t-derivation of a p-semi simple BCIK-

algebra X. Then for all x Є X, we have 

 x * x = 0 and so 

dt(0) = dt(x * x) 

 = (dt(x) * x) ∧  (x * dt(x)) 

 = {x * dt(x)} * [{x * dt(x)} * {dt(x) * x}] 

 = dt(x) * x 

2. Let dt(x) = dt(y) ⇒ x * t = y * t, then we have x = y and so 

dt is one-one. 

3. Let dt be t-regular and x Є X. Then, 0 = dt(0) so by the 

above part(1), we have 0 = dt(x) * x and, we obtain dt(x) 

= x for all x Є X. Therefore, dt is the identity map. 

4. It is trivial and follows from the above part (3). 

Let x ≤  y implying x * y = 0. Now, 

dt(x) * dt(y) = (x * t) * (y * t) 

 = x * y 

 = 0. 

Therefore, dt(x) ≤ dt(y). This completes proof. 

Definition 4.12: Let dt be a t-derivation of a BCIK-algebra X. 

Then, dt is said to be an isotone t-derivation if x ≤  y ⇒ dt(x) 

≤ dt(y) for all x, y Є X. 

Example 4.13: In Example 4.9(2), dt’ is an isotone t-

derivation, while in Example 4.9(1), dt is not an isotone t-

derivation. 

Proposition 4.14: Let X be a BCIK-algebra and dt be a t-

derivation on X. Then for all x, y Є X, the following hold: 

1. If dt(x ∧  y) = dt(x) dt(x) dt(x),  then dt is an isotone t-

derivation 

2. If dt(x ∧  y) = dt(x) * dt(y), then dt is an isotone t-

derivation. 

Proof. 

1. Let dt(x ∧  y) = dt(x) ∧ dt(x). If x ≤  y ⇒  x ∧  y = x for 

all x, y Є X. Therefore, we have 

dt(x) = dt(x ∧  y) 

 = dt(x) ∧ dt(y) 

≤ dt(y). 

Henceforth dt(x) ≤ dt(y) which implies that dt is an isotone t-

derivation. 

Let dt(x * y) = dt(x) * dt(y). If x ≤  y ⇒  x * y = 0 for all x, y Є X. 

Therefore, we have 

dt(x) = dt(x * 0) 

 = dt{x * (x * y)} 
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 = dt(x) * dt(x * y) 

 = dt(x) * { dt(x) * dt(y)} 

≤ dt(y). 

Thus, dt(x) ≤ dt(y). This completes the proof. 

Theorem 4.15: Let dt be a t-regular (r, l)-t-derivation of a 

BCIK-algebra X. Then, the following hold: 

1. dt(x) ≤  x for all x Є X. 

2. dt(x) * y ≤  x * dt(y) for all x, y Є X. 

3. dt(x * y) = dt(x) * y ≤ dt(x) * dt(y) for all x, y Є X. 

4. Ker(dt) = { x Є X: dt(x) = 0} is a sub algebra of X. 

Proof. 

1. For any x Є X,  

we have dt(x) = dt(x * 0) = (x * dt(0)) ∧  (dt(x) * 0) = (x * 0) 

∧  (dt(x) * 0) = x ∧ dt(x) ≤  x. 

2. Since dt(x) ≤  x for all x Є X, then dt(x) * y ≤  x * y ≤  x * 

dt(y) and hence the proof follows. 

3. For any x, y Є X, we have 

dt(x * y) = (x * dt(y)) ∧  (dt(x) * y) 

 = {dt(x) * y} * [{dt(x) * y} * {x * dt(x)}] 

 = {dt(x) * y} * 0 

 = dt(x) * y ≤ dt(x) * dt(x). 

4. Let x, y Є ker (dt) ⇒ dt(x) = 0 = dt(y). From (3), we have 

dt(x * y) ≤ dt(x) * dt(y) = 0 * 0 = 0 implying dt(x * y) ≤  0 

and so dt(x * y) = 0. Therefore, x * y Є ker (dt). 

Consequently, ker(dt) is a sub algebra of X. This 

completes the proof. 

Definition 4.16: Let X be a BCIK-algebra and let dt,dt’ be two 

self-maps of X. Then we define  

dt o dt’: X →X by (dt o dt’)(x) = dt(dt’(x)) for all x Є X. 

Example 4.17: Let X = {0, a, b} be a BCIK-algebra which is 

given in Example 4.4. Let dt and dt’ be two  

self-maps on X as define in Example 4.9(1) and Example 

4.9(2), respectively. 

 Now, define a self-map dt o dt’: X →X by 

 (dt o dt’)(x) = 





=
=

.0

,0

xifb

baxif
 

Then, it easily checked that (dt o dt’) (x) = dt(dt’(x)) for all x Є 

X. 

Proposition 4.18: Let X be a p-semi simple BCIK-algebra X 

and let dt, dt’ be (l, r)-t-derivations of X. 

 Then, dt o dt’ is also a (l, r)-t-derivation of X. 

Proof. Let X be a p-semi simple BCIK-algebra. dt and dt’ are (l, 

r)-t-derivations of X. Then for all x, y Є X, we get 

(dt o dt’) (x * y) = dt(dt’(x,y)) 

= dt[(dt’(x) *y) ∧  (x * dt(y))] 

= dt[(x * dt’(y)) * {(x * dt(y)) * (dt’(x) * y)}] 

= dt(dt’(x) * y) 

= {x * dt(dt’(y))} * [{x * dt(dt’(y))} * {dt(dt’(x) * y)}] 

= { dt(dt’(x) * y)} ∧  {x * dt(dt’(y))} 

= ((dt o dt’)(x) * y) ∧  (x * (dt o dt’)(y)). 

Therefore, (dt o dt’) is a (l, r)-t-derivation of X. 

Similarly, we can prove the following. 

Proposition 4.19: Let X be a p-semi simple BCIK-algebra 

and let dt,dt’ be (r, l)-t-derivations of X. Then, dt o dt’ is also a 

(r, l)-t-derivation of X. 

Combining Propositions 3.18 and 3.19, we get the following. 

Theorem 4.20: Let X be a p-semi simple BCIK-algebra and 

let dt,dt’ be t-derivations of X. Then, dt o dt’ is also a t-

derivation of X. 

 Now, we prove the following theorem 

Theorem 4.21: Let X be a p-semi simple BCIK-algebra and 

let dt,dt’ be t-derivations of X.  

Then dt o dt’ = dt’ o dt. 

Proof. Let X be a p-semi simple BCIK-algebra. dt and dt’, t-

derivations of X. Suppose dt’ is a  

(l, r)-t-derivation, then for all x, y Є X, we have 

(dt o dt’) (x * y) = dt(dt’(x * y))  

= dt[(dt’(x) *y) ∧  (x * dt(y))] 

= dt[(x * dt’(y)) * {(x * dt(y)) * (dt’(x) * y)}] 

= dt(dt’(x) * y) 

As dt is a (r, l)-t-derivation, then 

= (dt’(x) * dt(y)) ∧  (dt(dt’(x)) * y) 

= dt’(x) * dt(y). 

Again, if dt is a (r, l)-t-derivation, then we have 

(dt o dt’) (x * y) = dt’[dt(x * y)] 

= dt’[(x * dt(y)) ∧  (dt(x) * y)] 

= dt’[x * dt(y)] 

But dt’ is a (l, r)-t-derivation, then 

= (dt’(x) * dt(y)) ∧  (x * dt’(dt(y)) 

= dt’(x) * dt(y) 

Therefore, we obtain 

(dt o dt’) (x * y) = (dt’ o dt) (x * y). 

By putting y = 0, we get 

(dt o dt’) (x) = (dt’ o dt) (x) for all x Є X. 

Hence, dt o dt’ = dt’ o dt. This completes the proof. 

Definition 4.22: Let X be a BCIK-algebra and let dt,dt’ two 

self-maps of X. Then we define dt * dt’: X →X by (dt * dt’)(x) = 

dt(x) * dt’(x) for all x Є X. 

Example 4.23: Let X = {0, a, b} be a BCIK-algebra which is 

given in Example 3.4. let dt and dt’ be two 

 Self-maps on X as defined in Example 4.9 (1) and Example 

4.10 (2), respectively. 

 Now, define a self-map dt * dt’: X →X by (dt * dt’)(x) = 





=
=

.0

,0

xifb

baxif
 

Then, it is easily checked that (dt * dt’) (x) = dt(x) * dt’(x) for 

all x Є X. 

Theorem 4.24: Let X be a p-semi simple BCIK-algebra and 

let dt,dt’ be t-derivations of X.  

Then dt * dt’ = dt’ * dt. 

Proof. Let X be a p-semi simple BCIK-algebra. dt and dt’, t-

derivations of X. 

Since dt’ is a (r, l)-t-derivation of X, then for all x, y Є X, we 

have 
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(dt o dt’) (x * y) = dt(dt’(x * y)) 

= dt[(x * dt’(y)) ∧  (dt’(x) * y)] 

= dt[(x * dt’(y)] 

But dtis a (l, r)-r-derivation, so 

= (dt(x) * dt’(y)) ∧  (x * dt(dt’(y))  

= dt(x) * dt’(x). 

Again, if dt’ is a (l, r)-t-derivation of X, then for all x, y Є X, we 

have 

(dt o dt’) (x * y) = dt[dt’(x * y)] 

= dt[(dt’(x) *y) ∧  (x * dt’(y))] 

= dt[(x * dt’(y)) * {(x * dt’(y)) * (dt’(x) * y)}] 

= dt(dt’(x) * y). 

As dt is a (r, l)-t-derivation, then 

= (dt’(x) * dt(y)) ∧  (dt(dt’(x)) * y) 

= dt’(x) * dt(y). 

Henceforth, we conclude 

dt(x) * dt’(y) = dt’(x) * dt(y) 

By putting y =x, we get 

dt(x) * dt’(x) = dt’(x) * dt(x) 

(dt * dt’) (x) = (dt’ * dt)(x) for all x Є X. 

Hencedt * dt’ = dt’ * dt. This completes the proof. 

5. f-derivation of BCIK-algebra 

In what follows, let be an endomorphism of X unless 

otherwise specified. 

Definition 5.1: Let X be a BCIK algebra. By a left f-derivation 

(briefly, (l, r)-f-derivation) of X, a self-map df (x * y) = (df (x) * 

f(y)) ∧  (f(x) * df (y)) for all x, y Є X is meant, where f is an 

endomorphism of X. If df satisfies the identity df (x * y) = (f(x) 

* df (y)) ∧  (df (x) * f(y)) for all x, y Є X, then it is said that df 

is a right-left f-derivation (briefly, (r, l)-f-derivation) of X. 

Moreover, if df is both an (r, l)-f-derivation, it is said that df is 

an f-derivation. 

Example 5.2: Let X = {0,1,2,3,4,5} be a BCIK-algebra with the 

following Cayley table: 

* 0 1 2 3 4 5 

0 0 0 2 2 2 2 

1 1 0 2 2 2 2 

2 2 2 0 0 0 0 

3 3 2 1 0 0 0 

4 4 2 1 1 0 1 

5 5 2 1 1 1 0 

Define a Map df: X → X by 

df = 



 =

,0

,1,02

otherwise

xif
 

and define and endomorphism f of X by 

 f(x) = 



 =

,0

,1,02

otherwise

xif
 

That it is easily checked that df is both derivation and f-

derivation of X. 

Example 5.3: Let X be a BCIK-algebra as in Example 2.2. 

Define a map df: X → X by 

df = 



 =

,0

,1,02

otherwise

xif
 

Then it is easily checked that df is a derivation of X. 

Define an endomorphism f of X by 

 f(x) = 0, for all x Є X. 

Then df is not an f-derivation of X since  

df (2 * 3) = df (0) = 2, 

but 

(df (2) * f(3)) ∧  (f(2) * df (3)) = (0*0) ∧  (0*0) = 0 ∧  0 = 0, 

And thus df (2 * 3) ≠ (df (2) * f(3)) ∧  (f(2) * df (3)). 

Remark 5.4: From Example 5.3, we know that there is a 

derivation of X which is not an f-derivation X. 

Example 2.5: Let X = {0,1,2,3,4,5} be a BCIK-algebra with the 

following Cayley table: 

* 0 1 2 3 4 5 

0 0 0 3 2 3 2 

1 1 1 5 4 3 2 

2 2 2 0 3 0 3 

3 3 3 2 0 2 0 

4 4 2 1 5 0 3 

5 5 3 4 1 2 0 

 Define a map df: X → X by 

df (x) = 









=
=
=

,5,33

,4,22

,1,00

xif

xif

xif

 

and define an endomorphism f of X by 

 f (x) = 









=
=
=

,5,33

,4,22

,1,00

xif

xif

xif

 

Then it is easily checked that df is both derivation and f-

derivation of X. 

Example 5.6: Let X be a BCIK-algebra as in Example 5.5. 

Define a map df: X → X by 

df (x) = 









=
=
=

,5,33

,4,22

,1,00

xif

xif

xif

 

Then it is easily checked that df is a derivation of X. 

Define an endomorphism f of X by 

f (0) = 0, f (1) = 1, f(2) = 3 f (3) = 2, f (4) = 5, f (5) = 4. 

Then df is not an f-derivation of X since  

df (2 * 3) = df (3) = 3, 

but 

 (df (2) * f(3)) ∧  (f(2) * df (3)) = (2*2) ∧  (3*3)=0 ∧ 0 = 0, 

And thus df (2 * 3) ≠ (df (2) * f(3)) ∧  (f(2) * df (3)). 

Example 5.7: Let X be a BCIK-algebra as in Example 2.5. 

Define a map df: X → X bydf (0) = 0, df (1) = 1,df (2) = 3,df (3) 

= 2, df (4) = 5, df (5) = 4, 
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Then df is not a derivation of X since 

df (2 * 3) = df (3) = 2, 

(df (2) * 3) ∧  (2 * df (3)) = (3 * 3 ) ∧  (2 * 2) = 0 ∧  0 = 0, 

And thus And thus df (2 * 3) ≠ (df (2) * 3) ∧  (2 * df (3)). 

Define an endomorphism f of X by 

f (0) = 0, f (1) = 1, f (2) = 3, f (3) = 2, f (4) = 5, f (5) = 4. 

Then it is easily checked that df is an f-derivation of X. 

Remark 5.8: From Example 5.7, we know there is an f-

derivation of X which is not a derivation of X. 

For convenience, we denote fx = 0 * (0 * f(x)) for all x Є X. 

Note that fx Є L p(X). 

Theorem 5.9: Let df be a self-map of a BCIK-algebra X define 

by df (x) = fx for all x Є X. 

Then df is an (l, r)-f-derivation of X. Moreover, if X is 

commutative, then df is an (r, l)-f-derivation of X. 

Proof. Let x, y Є X  

Since 

0 * (0* (fx * f(y))) = 0 * (0 * ((0 * (0 * f(x)) * f(y))) 

= 0 * ((0 * ((0 * f(y)) * (0 * f(x)))) 

= 0 * (0 * (0 * f(y * x))) = 0 * f(y *x) 

= 0 * (f(y) * f(x)) = (0 * f(y)) * (0 * f(x)) 

= (0 * (0 * f(x))) * f(y) = fx * f(y), 

We have fx * f(y) Є L p(X), and thus 

fx * f(y) = (f(x) * fy) * ((f(x) * fy) * (fx * f(y))),  

It follows that 

df (x * x)= fx * x = 0 * (0 * f(x*y)) = 0 * (0 * (f(x) * f(y))) 

= (0 * (0 * f(x)) * (0 * (0 * f(y))) = fx * fy 

= (0 * (0 * fx)) * (0 * (0 * f(y))) = 0 * (0 * (fx * f(y))) 

= fx * f(y) = (f(x) * fy) * ((f(x) * fy) * (fx * f(y))) 

= (fx * f(y)) ∧  (f(x) ∧ fy) = (df (x) * f(y)) ∧  (f(x) * df (y)), 

And so df is an (l, r)-f-derivation of X. Now, assume that X is 

commutative. So df (x) * f(y) and f(x) * df (y) belong to the 

same branch x, y Є X, we have 

df (x) * f(y) = fx * f(y) = (0 * (fx * f(y))) 

= (0 * (0 * fx)) * (0 * (0 * f(y))) 

= fx * fx Є V (fx * fx), 

And so fx * fx = (0 * (0 * f(x))) * (0 * (0 * fy)) = 0 * (0 * (f(x) * 

fy)) = 0 * (0 * (f(x) * df (y)) ≤  f(x) * df (y), which implies that 

f(x) * df (y) Є V(fx * fx). Hence, df (y) * f(y) and f(x) * df (y) 

belong to the same branch, and so 

df (x * x) = (df (x) * f(y)) ∧  (f(x) * df (y)) 

= (f(x) * df (y)) ∧  (df (x) * f(y)). 

This completes the proof. 

Proposition 5.10: Let df be a self-map of a BCIK-algebra. 

Then the following hold. 

1. If df is an (l, r)-f-derivation of X, then df (x) = df (x) ∧  

f(x) for all x Є X. 

2. If df is an (r, l)-f-derivation of X, then df (x) = f (x) ∧ df 

(x) for all x Є X if and only if df (0) = 0. 

Proof. 

1. Let df is an (r, l)-f-derivation of X, Then, 

df (x) = df (x * 0) = (df (x) * f(0)) ∧  (f(x) * df (0)) 

= (df (x) * 0) ∧  (f(x) * df (0)) = df (x) ∧  (f(x) * df (0)) 

= (f(x) * df (0)) * ((f(x) * df (0)) * df (x)) 

= (f(x) * df (0)) * ((f(x) * df (0)) * df (0)) 

≤  f(x) * (f(x) * df (x)) = df (x) ∧  f(x). 

But df (x) ∧  f(x) ≤ df (x) is trivial and so (1) holds. 

2. Let df be an (r, l)-f-derivation of X. If df (x) = f(x) * df (x) 

for all x Є X, then for x = 0, df (0) = f(0) * df (0) = 0 ∧  f(0) 

= df (0) * (df (0) * 0) = 0. 

Conversely, if df (0) = 0, then df (x) = df (x * 0) = (f(x) * (df 

(0)) ∧  (df (x) * f(0)) =  

(f(x) * 0)) ∧  (df (x) * 0) = f(x) ∧ df (x), ending the proof. 

Proposition 5.11: Let df be an (l, r)-f-derivation of a BCIK-

algebra X. Then, 

1. df (x) Є L p(X), then is df (0) = 0 * (0 * df (x)); 

2. df (a) = df (0) * (0 * f(a)) = df (0) + f(a) for all a Є L p(X); 

3. df (a) Є L p(X) for all a Є L p(X); 

4. df (a + b) = df (a) + df (b) - df (0) for all a, b Є L p(X). 

Proof.  

1. The proof follows from Proposition 5.10(1). 

2. Let a Є L p(X), then a = 0 * (0 * a), and so f(a) = 0 * (0 * 

f(a)), that is, f(b) Є L p(X).  

Hence 

df (a) = df(0 * (0 * a)) 

= (df(0) * f(0 * a)) ∧  (f(0) * df(0 * a)) 

= (df(0) * f(0 * a)) ∧  (0 * df(0 * a)) 

= (0 * df(0 * a)) * ((0 * df(0 * a)) * (df (0) * f(0 * a))) 

= (0 * df(0 * a)) * ((0 * (df(0) * f(0 * a))) * df(0 * a)) 

= 0 * (0 * (df(0) * (0 * f(a)))) 

= df(0) * (0 * f(a)) = df(0) + f(a). 

3. The proof follows directly from (2). 

4. Let a, b Є L p(X). Note that a + b Є L p(X), so from (2), we 

note that  

df (a + b) = df(0) + f(a) + df(0) + f(b) - df(0) = df(a) + df(0) - 

df(0). 

Proposition 5.12: Let df be a (r, l)-f-derivation of a BCIK-

algebra X. Then, 

1. df (a) Є G(X) for all a Є G(X); 

2. df (a) Є L p(X) for all a Є G(X); 

3. df (a) = f(a) * df (0) = f(a) + df (a) for all a, b Є L p(X); 

4. df (a + b) = df (a) + df (b) - df (0) for all a, b Є L p(X). 

Proof. 

1. For any a Є G(X), we have df (a) = df (0 * a) = (f(0) * df 

(a)) ∧  (df(0) + f(a)) 

= (df(0) + f(a)) * ((df(0) + f(a)) * (0 * df(0))) = 0 * df(0), and so 

df(a) Є G(X). 

2. For any a Є L p(X), we get 

df (a) = df (0 * (0 * a)) = (0 * df (0 * a)) ∧  (df(0) * f(0 * a)) 

= (df(0) * f(0 * a)) * ((df(0) * f(0 * a)) * (0 * df(0 * a))) 

= 0 * df(0 * a) Є L p(X). 

3. For any a Є L p(X), we get 

df (a) = df (a * 0) = (f(a) * df (0)) ∧  (df(a) * f(0)) 

= df (a) * (df (a) * (f(a) * df (0))) = f(a) * df (0) 

= f(a) * (o * df (0)) = f(a) + df (a). 

4. The proof from (3). This completes the proof. 

Using Proposition 5.12, we know there is an (l,r)-f-derivation 

which is not an (r,l)-f-derivation as shown in the following 

example. 
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Example 5.13: Let Z be the set of all integers and “-“ the 

minus operation on Z. Then (Z, -, 0) is a BCIK-algebra. Let df: 

X → X be defined by df (x) = f(x) – 1 for all x Є Z. 

Then,(df (x) – f(y)) ∧  (f(x) - df (y)) = (f(x) – 1 – f(y)) ∧  (f(x) 

– (f(y) – 1)) 

= (f(x – Y) – 1) ∧  (f(x – y) + 1) 

= (f(x – Y) + 1) – 2 = f(x – Y) – 1 

= df (x - y). 

Hence, df is an (l, r)-f-derivation of X. But df (0) = f(0) – 1 = -1 

≠ 1 = f(0) - df (0) = 0 - df (0), 

that is, df (0) ∉  G(X). Therefore, df is not an (r, l)-f-derivation 

of X by Proposition 2.12(1). 

6. Regular f-derivations  

Definition 6.1: An f-derivation df of a BCIK-algebra X is said 

to be a regular if df (0) = 0 

Remark 6.2: we know that the f-derivations df in Example 

5.5 and 5.7 are regular. 

Proposition 6.3: Let X be a commutative BCIK-algebra and 

let df be a regular (r, l)-f-derivation of X. Then the following 

hold. 

1. Both f(x) and df (x) belong to the same branch for all x Є 

X. 

2. df is an (l, r)-f-derivation of X. 

Proof.  

1. Let x Є X. Then, 

 0 = df (0) = df (ax * x) 

= (f( ax) * df (x)) ∧  (df (ax) * f(x)) 

= (df (ax) * f(x)) * ((df (ax) * f(x)) * (f(x) * df (ax))) 

= (df (ax) * f(x)) * ((df (ax) * f(x)) * (f(x) * df (ax))) 

 = fx * df (ax) since fx * df (ax) Є L p(X), 

And so fx ≤ df (x). This shows that df (x) Є V(X), Clearly, f(x) Є 

V(X). 

2. By (1), we have f(x) * df (y) Є V(fx * fy ) and df (x) * f(y) Є 

V(fx * fy ). Thus 

df (x * y) = (f(x) * df (y)) ∧  (df (x) * f(y)) = (df (x) * f(y)) ∧  

(f(x) * df (y)), which implies that  

df is an (l, r)-f-derivation of X. 

Remark 6.4: The f-derivations df in Examples 5.5 and 5.7 are 

regular f-derivations but we know that the (l, r)-f-derivation 

df in Example 5.2 is not regular. In the following, we give 

some properties of regular f-derivations. 

Definition 6.5: Let X be a BCIK-algebra. Then define kerdf = 

{x Є X / df (x) = 0 for all f-derivations df}. 

Proposition 6.6: Let df be an f-derivation of a BCIK-algebra 

X. Then the following hold: 

1. df (x) ≤  f(x) for all x Є X; 

2. df (x) * f(y) ≤  f(x) * df (y) for all x, y Є X; 

3. df (x * y) = df (x) * f(y) ≤ df (x) * df (y) for all x, y Є X; 

4. kerdf is a sub algebra of X. Especially, if f is monic, then 

kerdf ⊆  X+. 

Proof. 

1. The proof follows by Proposition 5.10(2). 

2. Since df (x) ≤  f(x) for all x Є X, then df (x) * f(y) ≤  f(x) * 

f(y) ≤  f(x) * df (y). 

3. For any x, y Є X, we have  

df (x * y) = (f(x) * df (y)) ∧  (df (x) * f(y)) 

= (df (x) * f(y)) * ((df (x) * f(y)) * f(x) * df (y))) 

= (df (x) * f(y)) * 0 = df (x) * f(y) ≤ df (x) * df (y), 

Which proves (3). 

4. Let x, y Є kerdf, then df (x) = 0 = df (y), and so df (x * y) 

≤ df (x) * df (y) = 0 * 0 = 0 by (3), 

and thus df (x * y) = 0, that is, x * y Є kerdf, then 0 = df (x) ≤  

f(x) by (1), and so f(x) Є X+, 

that is, 0 * f(x) = 0, and thus f(0 * x) = f(x), which that 0 * x = 

x, and so x Є X+,  that is,  

kerdf ⊆  X+. 

Theorem 6.7: Let be monic of a commutative BCIK-algebra 

X. Then X is p-semi simple if and only if  

kerdf = {0} for every regular f-derivation df of X. 

Proof. 

Assume that X is p-semi simple BCIK-algebra and let df be a 

regular f-derivation of X. Then X+ = {0}, and 

So kerdf = {0} by using Proposition 6.6(4), Conversely, let 

kerdf = {0} for every regular f-derivation df of X. Define a self-

map df of X by d*
f(0) = fx for all x Є X. Using Theorem 5.9, d*

f is 

an f-derivation of X. Clearly, d*
f (0) = f0 = 0 * (0 * f(0)) = 0, and 

so d*
f is a regular f-derivation of X. It follows from the 

hypothesis that ker d*
f = {0}. In addition, d*

f (x) = fx = 0 * (0 * 

f(x)) = f(0 * (0 * x)) = f(0) = 0 for all x Є X+, and thus x Є ker 

d*
f. Hence, by Proposition 6.6(4), X+ Є ker d*

f = {0}. Therefore, 

X is p-semi simple. 

Definition 6.8: An ideal A of a BCIK-algebra X is said to be an 

f-ideal if f(A) ⊆  A. 

Definition 6.9: Let df be a self-map of a BCIK-algebra X. An f-

ideal A of X is said to be df –invariant if  

df(a) ⊆  A. 

Theorem 6.10: Let df be a regular (r, l)-f-derivation of a 

BCIK-algebra X, then every f-ideal A of X is  

df(A) ⊆  A. 

Theorem 6.11: Let df be a regular (r, l)-f-derivation of a 

BCIK-algebra X, then every f-ideal A of X is  

df –invariant. 

Proof. 

By Proposition 6.10(2), we have df(x) = f(x) ∧ df(x) ≤  f(x) 

for all x Є X. Let y Є df(A). Let y Є df(A). 

Then y = df(x) for some x Є A. It follows that y * f(x) = df(x) * 

f(x) = 0 Є A. Since x Є A, then 

 f(x) Є f(A) ⊆  A as A is an f-ideal. It follows that y Є A since A 

is an ideal of X. Hence df(A) ⊆  A, 

and thus A is df – invariant. 

Theorem 6.12: Let df be an f-derivation of a BCIK-algebra X. 

Then df is regular if and only if every f-ideal of X is df-

invariant. 

Proof. Let df be a derivation of a BCIK-algebra X and assume 

that every f-ideal of X is df–invariant. Then 

Since the zero ideal {0} is f-ideal and df –invariant, we have df 

({0}) ⊆  {0}, which implies that df(0) = 0. 
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Thus df is regular. Combining this and Theorem 6.10, we 

complete the proof.  

7. Regularity of generalized derivations 

To develop our main results, the following: 

Definition 7.1: [8]. Let φθ and  be two endomorphisms of 

X. A self-map d( φθ , ): X →X is called 

1. An inside ( φθ , )-derivation of  

( ∀ x,y∈X)(d( φθ , ) (x* y) = (d( φθ , )(x)*θ (y)) ∧ (φ (x)* 

d( φθ , )(y))), 

2. An outside (
φθ ,

)-derivation of X if it satisfies: 

( ∀ x, y ∈  X) (d( φθ , ) (x * y) = ((φ (x) * d( φθ , ) 

(y)) ∧ (d( φθ , ) (x) * θ (y)), 

3. A ( φθ , )-derivation of X if it is both inside ( φθ , )-

derivation and an outside ( φθ , )-derivation . 

Example 7.2: [8]. Consider a BCIK- algebra X= {0,a,b} with 

the following Cayley table: 

* 0 a b 

0 0 0 b 

a a 0 b 

b b b 0 

 Define a map 

d( φθ , ): X →X, x a





=
∈

,0

},,0{

bxif

axifb
 

and define two endomorphisms 

θ : X →X, x a





=
∈

,

},,0{0

bxifb

axif
 

And φ : X →X such that θ (x) = x for all x ∈X. 

 It is routine to verify that d( φθ , ) is both an inside ( φθ , )-

derivation and an outside ( φθ , )-derivation of X. 

Lemma 7.3: [8]. For any outside ( φθ , )-derivationd( φθ , ) of 

a BCIK-algebra X, the following are equivalent: 

1. ( ∀ x ∈  X) (d( φθ , ) (x) = θ (x) ∧ d( φθ , ) (x)) 

2. d( φθ , ) (0) = 0. 

Definition 7.4: Let d( φθ , ): X →X be an inside (or out side) 

( φθ , )-derivation of a BCIK-algebra X. Then d( φθ , ) is said to 

be regular if d( φθ , ) (0) = 0. 

Example 7.5: The inside (or outside) ( φθ , )-derivationd 

( φθ , ) of X in Example 7.2. is not regular. 

Proposition 7.6: Let d( φθ , )be a regular outside( φθ , )-

derivation of a BCIK-algebra X. Then 

1. Both θ (x) and d( φθ , ) (x) belong to the same branch for 

all x ∈X. 

2. ( ∀ x ∈  X) (d( φθ , ) (x ≤ θ (x)). 

3. ( ∀ x, y ∈  X) (d( φθ , ) (x) * θ (y) ≤ θ (x) * d( φθ , ) (y)). 

Proof. 

1. For any x ∈X, we get 

0 = d( φθ , ) = d( φθ , ) (ax * x) 

 = (θ (ax) * d( φθ , ) (x)) ∧  ((d( φθ , ) (ax) * φ  (x)) 

 = ((d( φθ , ) (ax) * φ  (x)) * ((d( φθ , ) (ax) * φ  (x)) * (θ (ax) * 

d( φθ , ) (x)) 

Since θ (ax) * d( φθ , ) (x)∈Lp(X). Hence θ (ax) ≤ d( φθ , ) (x), 

and so d( φθ , )∈V(θ (ax)). 

2. Since d( φθ , ) is regular, d( φθ , ) = 0. It follows from 

Lemma 7.3. that  

d( φθ , ) (x) = θ (x) ∧ d( φθ , ) (x) ≤ θ (x). 

3. Since d( φθ , ) (x) ≤ θ (x) for all x ∈X, we have 

d( φθ , ) (x)*θ (y) ≤ θ (x)*θ (y) ≤ θ (x) * d( φθ , ) (y) 

If we take f==φθ in proposition 7.6, then we have the 

following corollary. 

Corollary 7.7: [6]. If df is a regular (r, l)-f-derivation of a 

BCIK-algebra X, then both f(x) and df(x) belong to the same 

branch for allx ∈X. 

Now we provide conditions for an inside (or outside) 

( φθ , )-derivation to be regular. 

Theorem 7.8: Let d( φθ , ) be an inside ( φθ , )-derivationof a 

BCIK-algebra X. If there exists a∈  X such that 

d( φθ , ) (x) * θ (a) = 0 for all x ∈X, then d( φθ , )is regular. 

Proof. Assume that there exists a∈  X such that d( φθ , ) (x) * 

θ (a) = 0 for all x ∈X. Then 

0=d( φθ , ) (x*a)=((d( φθ , )(x)*θ (a)) ∧ φ (x)*d( φθ , ) (a)))*a 

= (0 ∧  (φ (x) * d( φθ , ) (a)) * a = 0 * a, 

And so d( φθ , ) (0) = d( φθ , ) (0 * x) = (d( φθ , ) (0) * θ (a)) = 

0. Hence d( φθ , ) is regular. 

Theorem 7.9: If Xis a BCIK-algebra, then every inside (or 

outside) ( φθ , )-derivation of X is regular. 

Proof. Let d( φθ , ) be an inside ( φθ , )-derivation of a BCIK—

algebra. Then 

d( φθ , ) (0) = d( φθ , ) (0 * x) 

= (d( φθ , ) (0) * θ (x)) ∧  (φ (0) ∧ d( φθ , ) (x)) 

= (d( φθ , ) (0) * θ (x)) ∧  0 = 0. 

If d( φθ , ) is an outside ( φθ , )-derivation of a BCIK—algebra 

X, then 

d( φθ , ) (0) = d( φθ , ) (0 * x) 

= (θ (0) * d( φθ , ) (x)) ∧  (d( φθ , ) (0) * θ (x)) 

= 0 ∧  ( d( φθ , ) (0) * θ (x)) = 0. 

Hence d( φθ , ) is regular. 

To prove our results, we define the following notions: 

Definition 7.10: For an inside (or outside) ( φθ , )-

derivationd ( φθ , ) of a BCIK-algebra X, we say that an ideal A 
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of X, we say that an ideal A of X is aθ -ideal (resp. φ -ideal) if 

θ (A) ⊆  A (resp. φ (A) ⊆  A). 

Definition 7.11: For an inside (or outside) ( φθ , )-

derivationd ( φθ , ) of a BCIK-algebra X, we say that an ideal A 

of X, we say that an ideal A of X is d( φθ , )-invariant if 

d( φθ , ) ⊆  A. 

Example 7.12: Let d( φθ , ) be an outside ( φθ , )-derivation 

ofX which is described Example 7.2. we know that A := {0,a} 

is both a θ  -ideal and φ  -ideal of X. But A := {0,a} is an ideal 

of X which is not d( φθ , )-invariant. 

Theorem 7.13: Let d( φθ , ) be a outside ( φθ , )-derivation of 

a BCIK-algebra X. Then every θ  -ideal of X is d( φθ , )-

invariant. 

Proof. Let A be a θ  -ideal of X. Since d( φθ , ) is regular, it 

follows from Lemma 7.3 that d( φθ , ) = θ (x) ∧ d( φθ , ) 

(x) ≤ θ (x) for all x ∈X. Let y∈  X be such that y∈d( φθ , ) (A). 

Then y = d( φθ , )(x) for some x ∈  A. Thus y *θ (x) = 

d( φθ , )(x) * θ (x) = 0∈  A. 

Note that θ (x)∈ θ (A) ⊆  A. Since A is an ideal of X, it follows 

that y∈  A so that d( φθ , )(A) ⊆  A. Therefore A is d( φθ , )-

invariant. 

 If we take ==φθ 1X in Theorem 7.13. 1X is the identity 

map, then we have the following corollary. 

Corollary 7.14: [4]. Let d be a regular (r, l)-derivation of a 

BCIK-algebra X. Then every ideal of X is d-invariant. 

 If we take ==φθ f in Theorem 3.13, then we have the 

following corollary. 

Corollary 7.15: [6]. Let df be a regular (r, l)-f-derivation of a 

BCIK-algebra X. Then every f-ideal of X is d( φθ , )-invariant. 

Theorem 7.16: Let d( φθ , ) be an outside ( φθ , )-derivation 

of a BCIK-algebra X. If every θ  -ideal of X is d( φθ , )-

invariant, then d( φθ , ) is regular. 

Proof. Assume that every θ -ideal of X is d( φθ , )-invariant. 

Since the zero ideal {0} is clearly θ  -ideal and d( φθ , )-

invariant, we have d( φθ , )({0}) ⊆  {0}, and so 

d ( φθ , ) = 0. Hence d( φθ , ) is regular. 

Combining Theorem 7.13. and 7.16., we have a 

characterization of a regular outside ( φθ , )-derivation. 

Theorem 7.17: For an outside ( φθ , )-derivationd( φθ , )of a 

BCIK-algebra X, the following are equivalent: 

1. d( φθ , ) is regular. 

2. Every θ  -ideal of X is d( φθ , )-invariant. 

 If we take ==φθ 1X in Theorem 3.17. where 1X is the 

identity map, then we have the following corollary. 

Corollary 7.18: [4]. Let d be an (r, l)-derivation of a BCIK-

algebra X. Then d is regular if and only if every ideal of X is d-

invariant. 

 If we take ==φθ f in Theorem 3.17, then we have the 

following corollary. 

Corollary 7.19: [6]. For an (r, l)-f-derivation df of a BCIK-

algebra X, the following are equivalent: 

1. df is regular. 

2. Every f-ideal of X is df-invarient. 

CONCULUTION 

In this present paper, we have consider the notions of 

regular inside (or outside) (θ ,φ )-derivation, θ -ideal, φ - 

ideal and invariant inside (or outside) (θ ,φ )-derivation of a 

BCIK-algebra, and investigated related properties. The 

theory of derivations of algebraic structures is a direct 

descendant of the development of classical Galosis theory. In 

our opinion, these definitions and main results can be 

similarly extended to some other algebraic system such as 

subtraction algebras, B-algebras, MV-algebras, d-algebras, Q-

algebras and so forth. 

In our future study the notion of regular (θ ,φ )-derivation 

on various algebraic structures which may have a lot 

applications (θ ,φ )-derivation BCIK-algebra, may be the 

following topics should be considered: 

1. To find the generalized (θ ,φ )-derivation of BCIK-

algebra, 

2. To find more result in (θ ,φ )-derivation of BCIK-algebra 

and its applications, 

3. To find the (θ ,φ )-derivation of B-algebras, Q-algebras, 

subtraction algebras, d-algebra and so forth. 
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