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INTRODUCTION 

A semiring is an algebraic structure in which we can add 

and multiply elements, where multiplication distribu

over addition. 

The most familiar examples for semirings in classical 

algebra are the semiring of non-negative integers or the 

semiring of nonnegative real numbers with ordinary 

operations of addition and multiplication. The first 

examples of semirings appeared in the work of Dedekind 

[1]. But, then, it was the American mathematician 

Vandiver who used the term “semi-ring” in his 1934 paper 

for introducing an algebraic structure with two operations 

of addition and multiplication such that multiplication 

distributes on addition [2]. 

One of the classic areas of mathematics in which semirings 

arise is the theory of formal languages. A formal language 

is any set of words (finite strings of symbols) taken from a 

fixed finite set, called the alphabet. The set of

from a fixed alphabet can be viewed as a semiring where 

addition is the union of the languages and multiplication is 

the concatenation of the languages. Such semirings have 

applications in logic and theoretical computer science.

As a subset of all languages the set of regular languages is 

closed under union and concatenation, so is a semiring. By 

the famous result of Kleene, the regular languages are 

precisely the languages accepted by automata [3]. The 

operation of an automaton can be simulated by repeatedly 

multiplying the Boolean matrices that encode its rules [4]. 

This means that the study of regular languages boils down 

to considering finite collections of matrices over the 
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Boolean semiring {0, 1} where addition is maximum and 

multiplication is minimum. 

Tropical algebra is a relatively new area of mathematics 

which brings together ideas from algebra, order theory 

and discrete mathematics, and which has numerous 

applications in scheduling and optimization, formal 

language theory, numerical analysis and dynamical 

systems. Here the primary objects of study are the tropical 

semirings. The tropical semirings based on either the non

negative integer, the integer or real numbers, but with 

unusual semiring operations. Specifically, addit

either maximum (or minimum) and multiplication is usual 

addition. 

BASIC DEFINITIONS AND PRELIMINARENT RESULTS

Definition 1: Semiring is an algebraic structure 

where S is a set, � �,�� and 

both operations, addition “�

" ∗ ", are associative) and those operations satisfy the laws 

of distributivity for both sides:

� ∗ 	
 � ��  � ∗ 
 � � ∗ � and

	� � 
� ∗ �  � ∗ � � 
 ∗ �, for any 

�, 
, �	 ∈ �. 

The concept of semiring in this form was introduced by 

Vandiver in 1934 [2]. Sometimes we will suppose that a 

semiring S has the neutral element 0 (zero) relatively the 

addition or/and has the neutral element 1 (unit) relatively 

the multiplication and0 ∗ � 
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Definition 2: If � �,∗	� is a group then a semiring 

� �,�,∗� is named semifield. 

Definition 3: Semigroup S is named cyclic (monogenic) 

semigroup if it is generated by an element � ∈ � (i.e, 

�  ��, ��, ⋯ , �� , ⋯	�) and this fact is denoted by �  	��. 

There exist two cases: 

1. S is an infinite. 

2. S is a finite �  ��, ��, ⋯ , �� , ⋯ , ������� where ak = ak + 

n. In this case S is named the cyclic semigroup of type 

	�, ��. 

Definition 4: Semiring � �,�,∗� is named 

(multiplicatively) cyclic semiring if� �,∗�is a cyclic 

semigroup. If � �,∗� is generated by element � ∈ � we 

will write �  	��. If S has a unit 1 then �  ���	|	� ∈ ��� 

and ��  1. 

The semiring S with multiplicative semigroup of type 

	�, �� is named the cyclic semiring of type 	�, ��. 

Cyclic semifield ��� , ⋯ , ������� is named cycle of the 

cyclic semiring of type 	�, �� and denoted by C. 

In this work we will consider only multiplicatively cyclic 

semirings. Thus, further we will omit the term 

multiplicatively. 

Definition 5:  A semiring S where � �,�� is an 

idempotent semigroup (i.e., � � �  � for any � ∈ �) is 

called idempotent semiring. 

The operation of addition, called left (or right) if � � !  � 

(or � � !  !) for any �, !	 ∈ �. 

If � �,�	� is a commutative idempotent semigroup then 

� �,�	� becomes upper semilattices under the relation of 

order � ≤ ! ⟺ � � !  ! for any �, !	 ∈ �. 

 Let S be a cyclic semiring �  	��. There, is easy to 

identify that S is an idempotent semiring if � � �  � (or 

1 � 1  1, if S has unit). 

 Let A bean algebraic system then the set �$
% of all 

subsystems of A form a lattice in relation to the inclusion. 

Some times, for certain systems, for instance, for the 

semigroups and semirings it is necessary to include an 

empty subsystem. 

 In the case of a topologic algebraic system A, of course we 

consider �$
&&&&&	% a lattice of all cloused subsystems of A. 

Definition 6: Topological semiring S is a C-semiring if 

�$
&&&&&	� is a chain. 

 Now we need some previous results about semirings and 

cyclic semirings. 

Theorem 1 [5]: Any finite semifield is isomorphic to the 

product of two semifield: one with a left addition and 

another with a right addition. Any finite semifield is 

idempotent. 

Theorem 2 [5]: If a cyclic group G of order n 	|'|  �� 

with generating element c is isomorphic the product of 

two groups G1, and G2 of order m and h respectively, then 

G1 and G2 are cyclic groups and m and h are coprimes, 

	(, ℎ�  1, '�  	�*�, '�  	�+�. 

If C is a cyclic semifield, ,  	��, |,|  � then , 
	, � -� × 	- � ,�, |, � -|  (, |- � ,|  ℎ, where e is an 

unit element of C, m and h are coprimes (i.e., 	(, ℎ�  1), 

, � - has a left addition, - � , has right addition. 

Theorem 3 [6]: Let S be a finite cyclic semiring 

�  	�� ≠ , then S has left addition or right addition or 

�0 � �1  �2 , 3 ≥ max�8, 9�, 8, 9	 ∈ �. 

Let S be a finite cyclic semiring of type 	�, ��, � ≠ , and 

has non commutative addition. 

Let’s introduce a binary relation ρ on S: 

xρy ⇔ x, y ϵ C or x = y. 

Definition 7: Let S = (a) be a semiring and ρ is a relation of 

equivalence on S. A relation ρ is a congruence on S if ρ 

preserve operations of S: aρb and cρd => (a + c)ρ(b + d) 

and (ac)ρ(bd) for all a, b, c, d ϵ S. 

Definition 8: An element x0 of semiring S is named 

absorbing if x + x0 = x0 + x = x0 and xx0 = x0x = x0 for all x, y 

ϵ S. 

Theorem 4[6]: The relation ρ is a congruence. Factor 

semiring S/ρ is a finite cyclic semiring with absorbing 

element [ak] (where [ak] is the class of congruence ρ 

containing element ak). A relation ρ identify the elements 

of C another classes are singleton. Addition in semiring S is 

left or right or commutative. If addition in S/ρ left (right) 

then addition in S is left (right) respectively. 

MAIN RESULTS 

Now we reduce the classification of compact monothetic 

C-semirings. Any semiring of this form is finite or infinite. 

At first we will describe finite monothetic C-semirings. 

Lemma 1: Let S be a finite C-semiring of type 	�, �� then 

�  :; , where p is a prime number and <C, ∗	> is a p-

primary cyclic group where C is the cycle of S. 

Proof. Let S be a finite cyclic C-semiring. By Theorem 2, 

the cycle C of S is aC-semifield and ,  	, � -� × 	- � ,�, 

where |, � -|  (, |- � ,|  ℎ, m and h are coprime 

numbers and e is a unit of C. 

If ( � 1, and, ℎ � 1, then susemirings , � - and - � , are 

not comparable. So, , � -  - or - � ,  -, for both cases 

of addition in C, (left or right). 

Thus, Sub C is isomorphic a Subgr C (where Subgr C is a 

lattice of subgroups of <C, >). Then,<C, ∗	> is a p-primary 

group [7]. 

Definition9: Let S be a semiring. Subset I of S is named 

ideal of S if for all a, b ϵ S and s ϵ S a + b, sa, as ϵ I. 

Theorem 5[8]: Let S = (a) be a cyclic semiring of type (k, 

n). Subsets of form  

As = {as, …, ak, …, ak+n-1} where s ≤ k they and only they are 

ideals of S. 

Definition 10: Let S = (a) be a finite cyclic semiring of type 

(k, n) and  

As = {as, …, ak, …, ak+n-1} where s ≤ k an ideal of S, then 

xρAy ⇔ x, y ϵ As or x = y for all x, y ϵ S. 

Lemma 2: Let S be a finite cyclic semiring of type 	�, ��. 

The binary relation ρA on S is a congruence and S/ρA is a 

finite cyclic semiring of type (s, 1) with absorbing element 

[as] ([as] is the class of congruence ρA containing element 

as). 
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Proof. It is evident that S/ρA = {{a}, {a2}, … , {as-1}, {as, … , 

ak, … , ak+n-1}}. Let’s prove that ρA is a congruence. For 

operation of product the relation ρA be the same as 

congruence of Rice for semigroups. 

 Let’s prove that ρA is a congruence for addition. Let be a, b, 

c, d ϵ S and aρAb and cρAd. 

 If a, b ϵ {at,1}, c, d ϵ {at2} where t1, t2 ϵ {1, … , s-1} than a + c 

ϵ [at1 + at2] and 

 b + d ϵ [at1 + at2]. This means that (a + c)ρA(b + d). 

 If a, b ϵ {at}, c, d ϵ As = {as, … , ak, … , ak+n-1} where t ϵ {1, … , 

s-1} than by Theorem 3(a + c)ρA(b + d). 

 If a, b, c, d ϵ As = {as, … , ak, … , ak+n-1} than by Theorem 3, a 

+ c, b + d ϵ As = {as, … , ak, … , ak+n-1} and (a + c)ρA(b + d). 

Therefore we proved that ρA is a congruence.  

Lemma 3: Let S be a finite cyclic semiring of type (4, 1). 

Then, S is not a C-semiring.  

Proof: In [9] obtained Cally’s tables for addition for all 

cyclic semirings of type (4, 1).  

 Here, we can see that for these semirings S, the lattice Sub 

S isn’t a chain as a2 + a2 ≠ a3. Thus, subsemiring (a2) and 

(a3) aren’t comparable. 

Lemma 4: Let S be a finite cyclic semiring of type (4, n). 

Than S is not a C-semiring. 

Proof: Let S be a finite cyclic semiring of type (4, n). By 

lemma 2, the binary relation ρA on S is a congruence and 

S/ρA is a finite cyclic semiring of type (4, 1). Clearly, if S is a  

C-semiring, than S/ρA is a C-semiring too. But, by lemma 3, 

S/ρA is not a C-semiring, than S is not a C-semiring. 

Lemma 5: Let S be a finite cyclic semiring of type (k, 1) 

where k ≥ 4. Then S is not a C-semiring. 

Proof. At the beginning, we will prove that if SubS is not a 

chain for all cyclic semirings S of type (k, 1) where k ≥ 4, 

then for all cyclic semirings S of type (k + 1, 1) SubS is not 

a chain too.  

Assume that for all cyclic semirings S of type (k, 1) where k 

≥ 4, SubS is not a chain and exist a cyclic C-semiring S of 

type (k + 1, 1). Let xρAy ⇔ x, y ϵ Ak or x = y for all x, y ϵ S. 

By lemma 2, the binary relation ρA on S is a congruence 

and S/ρAis a finite cyclic semiring of type (k, 1). If S is a 

cyclic C-semiring than S/ρA is a cyclic C-semiring, which is 

a contradiction.  

By induction, all finite cyclic semirings S of type (k, 1) 

where k ≥ 4 are not a C-semirings. 

Lemma 6: Let S be a finite cyclic semiring of type (k, n) 

where k ≥ 4. Then S is not a C-semiring. 

Proof. Let S be a finite cyclic semiring of type (k, n) where 

k ≥ 4 and xρAy ⇔ x, y ϵ Ak or x = y for all x, y ϵ S. By lemma 

2, the binary relation ρA on S is a congruence and S/ρA is a 

finite cyclic semiring of type (k, 1). If S is a finite cyclic C-

semiring than S/ρA is a finite cyclic C-semiring, which is a 

contradiction.  

 From lemma 6 follows 

Lemma 7: Let S be a finite cyclic C-semiring of type (k, n) 

then k ≤ 3. 

Theorem 6: Let S be a finite cyclic semiring of type (k, n). 

S is a C-semiring if and only if k ≤ 3, n = pl (p is a prime) 

and if k = 3 then p ≠ 2. 

Proof. By lemma 6, n = pl where p is a prime number. By 

lemma 12, k ≤ 3. If k = 3 then |Ak| = |C| = pl is odd number 

then p ≠ 2. 

The sufficiency is evident. 

Now, let consider the case when S is an infinite compact 

semiring. 

Definition 11: The p-adic digit is an integer number 

between 0 and p – 1 (inclusive). A p-adic integer is a 

sequence {ai} i ϵ �0 of p-adic digits. We write this sequence 

… as … a2a1a0 (that is, the ai are written from left to right). 

If n ϵ �0 and n = ak-1ak-2 … a1a0 is its p-adic representation 

than we identify n with the p-adic integer {ai} i ϵ �0 with ai 

= 0 for i ≥ k. 

(For example, 1 is the p-adic integer all whose digits are 0 

except the right-most one which is 1 = … 0 … 001).  

Definition 12: If α = {ai} i ϵ �0 and β = {bi} i ϵ �0 are two p-

adic integer, we will define their sum. We define by 

induction a sequence {ci} i ϵ �0 of  

p-adic digits and a sequence {εi} i ϵ �0 of elements of {0, 1} 

as follows: 

ε0 = 0; 

ci is ai + bi + εi or ai + bi + εi – p 

according as which of these two is a  

p-adic digit 

(in other words, is between 0 and p – 1). 

In former case, εi+1 = 0 and in the latter εi+1 = 1. 

Under those circumstances, we let α + β = {ci} i ϵ �0. 

Note that the rules described above are exactly the rules 

used for adding natural Let p be a prime number. The set 

of all p-adic integers forms a compact monothetic group 

with operation of addition. We will denote this group by 

Zp. 

Evident that Zp has the generate element b0 = {ai} i ϵ �0 

where a0 = 1 and ai = 0 for i ≥ 1. 

That is, Zp = 	… 	0001�&&&&&&&&&&&&&. 

 The lattice �$
&&&&&Zp is a chain: 

Zp = G0> G1> G2> … > {e} 

.where G0 = 	… 	0001�&&&&&&&&&&&&&, G1 = 	… 	0010�&&&&&&&&&&&&&, G2 = 	… 	0100�&&&&&&&&&&&&&, etc. 

Element e is the identity of Zp. 

Theorem 7: Let S be an infinite compact monothetic 

semiring �  	��. S is a C-semiring if and only if: 

1. � �,∗	� is a group topologically isomorphic =>. S has 

left addition or right addition or � �,�	� is a chain at 

relation of order � ≤ !	 ⟺ � � !  ! for all �, !	 ∈ �. 

2. � �,∗	� contains a compact monothetic group H 

topologically isomorphic => and �  ��, ��� ∪ @ and 

� �,∗	� is a compact monothetic semigroup of type ii) 

of Theorem 3, and 8 ≤ 2. If 8  2 then : ≠ 2. S has left 

addition or right addition or � �,�	� is a chain at 

relation of order � ≤ ! ⟺ � � !  ! for all �, ! ∈ �. 
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addition or right addition or � �,�	� is a chain at relation 

of order � ≤ ! ⟺ � � !  ! for all �, ! ∈ �. In this case 

�$
	�&&&&&&& is isomorphic the lattice of cloused subsemigroups 

of � �,∗	�. Thus, Theorem 7 follows from the description 

of compact monothetic C-semigroups [10]. 

Here we will prove that if �  ��, ��� ∪ @ where H = Zp 

and S is a C-semiring than  

p ≠ 2. Really, if �  ��, ��� ∪ @and H = Z2 than closed 

subsemirings  

H = {b, b2, …, bn, …}* and H1 = {a2, b2,b3, …, bn, …}* are not 

comparable. The element b is not belongs to H1 and the 

element a2 is not belongs to H. (Here X* denote the closure 

of X). 

CONCLUSION 

In the future, we should begin to study compact semirings 

S where �$
&&&&&	� is a chain. 
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