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ABSTRACT 

The mathematical model of infectious diseases is a tool that has been used 

to study the mechanisms by which disease spread, to predict the future 

course of an outbreak and to evaluate strategies to control an epidemic. We 

envisaged a community of n individuals comprising at time t, x, susceptible, 

y infectious in circulation and z individu

recovered and immune. We further postulated infection and removal rates 

β and γ, so that there wave βxydt new infections and γydt removals in time 

tithe simplest way to do this is to introduce a birth parameter μ, so at to 

give μdt new susceptible in time dt. If the population is to remain stable the 

arrival of new susceptible must be balanced by an appropriately defined 

birth rate. The present paper represents the model in special way, in which 

the infection occurs in human`s body then the resistance of body gradually 

decays same as motion decays in damped oscillation. On solving the 

equation of model, we get solution that gives the idea about the seasonal 

variation in infection. 
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INTRODUCTION: 

The mathematical model of infectious diseases is a tool 

that has been used to study the mechanisms by which 

disease spread, to predict the future course

and to evaluate strategies to control an epidemic

and Thulke, 2008;Parshani, et. al., 2010;Valdez, et. al., 

2020;).We envisaged a community of n individuals 

comprising at time t, x, susceptible, y infectious in 

circulation and z individuals who were isolated, dead, or 

recovered and immune (Bailey, 1964; 1975)

postulated infection and removal rates 

there wave �xydt new infections and �
time dt. An additional assumption to be made here is that 

the stock of susceptible is continually 

(Barlett, 1956 and Brown, 1971). 

The simplest way to do this is to introdu

parameter�, so at to give �dt new susceptible in time dt. If 

the population is to remain stable the arrival of new 

susceptible must be balanced by an appropriately defined 

birthrate(Carrier, 1996; Cosma 2018; Sridhar and 

Majumder, 2020). The simplest model that can be 

constructed avoids explicit reference to a death rate by 

concentrating on the groups of susceptible and infective, 

the former at any rate being supposed not subject to 

(Bodmer and Cavalli, 1976). This is equivalent to 

assuming that on average the deaths of removed 

individuals are just balanced by births of new 

(Maki, and Thompson, 1973).  
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The mathematical model of infectious diseases is a tool that has been used 

he mechanisms by which disease spread, to predict the future 

course of an outbreak and to evaluate strategies to control an epidemic. We 

envisaged a community of n individuals comprising at time t, x, susceptible, 

y infectious in circulation and z individuals who were isolated, dead, or 

recovered and immune. We further postulated infection and removal rates 

γ, so that there wave βxydt new infections and γydt removals in time 

tithe simplest way to do this is to introduce a birth parameter μ, so at to 

ive μdt new susceptible in time dt. If the population is to remain stable the 

arrival of new susceptible must be balanced by an appropriately defined 

birth rate. The present paper represents the model in special way, in which 

s body then the resistance of body gradually 

decays same as motion decays in damped oscillation. On solving the 

equation of model, we get solution that gives the idea about the seasonal 
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The mathematical model of infectious diseases is a tool 

that has been used to study the mechanisms by which 

disease spread, to predict the future course of an outbreak 

and to evaluate strategies to control an epidemic(Eisinger 

and Thulke, 2008;Parshani, et. al., 2010;Valdez, et. al., 

We envisaged a community of n individuals 

comprising at time t, x, susceptible, y infectious in 

dividuals who were isolated, dead, or 

Bailey, 1964; 1975). We further �and�, so that �ydt removals in 

An additional assumption to be made here is that 

the stock of susceptible is continually replenished 

The simplest way to do this is to introduce a birth 

dt new susceptible in time dt. If 

the population is to remain stable the arrival of new 

susceptible must be balanced by an appropriately defined 

(Carrier, 1996; Cosma 2018; Sridhar and 

implest model that can be 

constructed avoids explicit reference to a death rate by 

concentrating on the groups of susceptible and infective, 

the former at any rate being supposed not subject to death 

. This is equivalent to 

ng that on average the deaths of removed 

individuals are just balanced by births of new susceptible 

MODEL DEVELOPMENT AND APPLICATION:

��
��  = - ��� + � 

�	
��  = ��� - �y   

�

��= �y 

Equilibrium values X0 and Y

differential coefficients to zero. 

x0 = 
�
� 

Thus y0 = 

�   

The equations for small departures from thes

values are obtained by writing 

x = x0 (1+ u)   

y= y0 (1+v) 

and substituting (1.3) in (1.1)

� ����  = - (u + v +uv)  

� ����= u (1 + v) 

Where  

� �� �,   � �� 

It we now neglect the product uv and eliminate 

two equations (1.4) we obtain the second order 

differential equations in v.  

���
��� + 

�
�
��
��  + 

�
�� v = 0  
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MODEL DEVELOPMENT AND APPLICATION: 

 (1.1) 

and Y0 are given by equating the 

differential coefficients to zero.  

 (1.2) 

The equations for small departures from these equilibrium 

values are obtained by writing  

 (1.3) 

and substituting (1.3) in (1.1) 

 (1.4) 

It we now neglect the product uv and eliminate u from the 

two equations (1.4) we obtain the second order 

 (1.5) 
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D2v + 
�
� Dv + 

�
�� v = 0 

or,  (�� +	 ��� +	 ���)v = 0 

So, D = 
�	��	±	 �

��!	 "�#
�  

D = - 
�
�� ± $

� %
�� −	 ��� 

Solution of the equation (1.5) is  

v = ' (���) {C1cos ( %
�� −	 ��� ) t + C2sin( %

�� −	 ���)t} 

with help of boundary condition for � = 4� 

we have v = v0'(��� cos * %
�� −	 ���+t 

v1 = v0'(��� cos,t    (1.6) 

Where,, = * %
�� −	 ���+ 

for a suitably chosen origin of time, we then obtain the 

solution for u given by  

u1 = v0-��.
�
� '(��� cos (,/+0) 

Where, cos	0 = - 
�
� -��.

�
�
 0 ≤ 	0 ≤ 2 (1.7) 

The solutions u1 and v1, which are linearized or first order 

components only, clearly involve damped harmonic trains 

of waves with period 2	2 /,. In this application to measles, � equal to two weeks the approximate incubation period 

and, from the data available to him he estimated � in 

London to be roughly 68.2 weeks. Equation (1.6) give the 

period 2	2 /, = 75.7 weeks, with a peak to peak damping 

factor of '(3� ,�� =0.58.  

For somewhat larger oscillations we ought to take in to 

account the non-linear character of the equations (1.4). 

For this purpose it is convenient to write: 

u = u1+a11u1
2+a12u,u1+a22u1

2+.............. 

u = u1+a11u1
2+a12u,u1+a22u1

2+.............. (1.8) 

Where the coefficient aij and bij, can be found in terms of 
�
� 

by straight forward substitution in (1.4). It 
�
� is small, so 

that 0 - 2/2 we have approximately: 

u = u'1 -1 +	�56�. 

v = v1 + 
�
5 v2

0'()�� cos2,t   (1.9) 

u'1 = -v0-��.1/2'()�� sin,t 

It will be noticed that the damping coefficient has 

relatively little influence on the period 
�7
8  which for small 

�
� 

is roughly 22(��)�� = 2	29��. 

And so largely depends on the birth rate for new 

susceptible and the infection rate.  

As an alternative to the foregoing approximate discussion 

we can always investigate special cases by step by step 

numerical solution of (1.1) through special care in needed 

to ensure sufficient accuracy and to avoid mistaken 

conclusion about the effect of damping.  

Another way of representing the oscillatory behavior of 

the process is to plot the path traced by the point (x,y). 

This also allows a convenient method of comparing the 

deterministic solution with path followed by actual 

realizations of the stochastic analogue. It can be shown 

that the deterministic curve found in this way has the form 

of a spiral converging on the equilibrium point (x0,y0), and 

that this occurs is spite of the non-linear form of (1.1). 

An elegant argument due to G.E.H. Reuter (Bortlett, 1956) 

is as follows.  

Consider the function 

f (u,v) = {(1+u)-log(1+u)+-��.{(1+v)-log(1+v)} (1.10) 

Differentiating with respect to t and using (4) 

-�:��. = - 
��

�	(�;�) ≤ 0    (1.11) 

Thus f continually decreases along any path for which t 

increases. Since i + 
�
�, if follows that f tends to a finite 

limite for f0 1+
�
� as t . Now the curve f = c are closed 

surround the point (x0,y0) and shrink down as c 1 + 
�
� 

By considering the second different coefficient d2f/dt2 we 

can show that f0=1+
�
�, so that the point (x, y) must actually 

tends to (x0,y0). 

An important consequence of the above discussion is that, 

while the additional of a constant influx of fresh 

susceptible is sufficient to account for epidemic waves a 

period of about the order of magnitude the damping down 

to a steady endemic state entailed by the calculations is at 

variance with observed epidemiological facts.  

ESTIMATION OF SEASONAL VARIATIONS IN INFECTION 

RATE:     

The simplest modification is to try replacing the infection 

rate � by �' = �+ �1 cos wt.  

Where, 22/w=52 weeks.  

We suppose the relative amplitude of these forced 

oscillations. < = 
��
�  to be small. 

Substituting the new value of � in (1.1) and using (1.3) 

gives equations  corresponding to(1.4). These can now be 

deal with as before by elimination u to  yield to 

modified form of (1.5). 

���
��� + 

�
�
��
��  + 

�
�� v = - 

�=
�  sin>t    (1.12) 

The particular integral of (1.12) representing the force 

oscillation term is  by standard result of type. 

V=A Cos (Wt+ ?) 

Where, A = 
�=
�  @- ��� −	>�. +	-=�.

�A1/2  (1.13) 

 

Since the rate at which new notifications actually occur is 

given by �y, we have  �y = � (1+v) 

= � (1+v1+v)     (1.14) 
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Where v1 is the first order solution (1.6). If we take � = 2 � 

= 68.2 as before the>= 2/2�, the putting in (1.13) gives A 

as approximately 8.1<. 

This shows that 10% variation in �', as envisaged by 

Soper, would lead to seasonal variations of about 80% in 

the rate of notifications.  

ALLOWANCE FOR INCUBATION PERIOD: 

Another possible source of error in the use of the simple 

continuous infection model is that is makes no allowance 

for the effect of a fairly well-defined incubation period, 

such as is clearly recognizable is measles (Ludwig, 1974 

and Larger, 1976).  

It we suppose that there is a latent period of length a after 

infection, at the  end of which the infected individual 

becomes infectious, the processes of infection and removal 

then proceeding as before, the deterministic equations will 

be  

��(�)
��  = - �x(t) y (t-a) + �    (1.15) 

��(�)
��  = - �x(t) y (t-a) + �y (t) 

The equilibrium vales are exactly the same as for (1.1). If 

we now put D= 
�
��, the  equations for u and v are found 

to be. 

-� +	 ��.u + 
�
� '!BC .v=0    (1.16) 

- 
�
� u + -� +	 �� − �

� '!BC. v = 0 

By shot Heuristic treatment of (1.16), using as operational 

method is as follows. It we assume that the infections 

period is short, both � and �are large and � tends to zero.  

The differential equations for v reduces to  

D-� +	 ��. 'BC − 	�E v = 0    (1.17) 

The form of the solution depends on the roots of  

D-� +	 ��. 'BC − 	�E = 0   

It we write this as  

a D = - log D-� +	 ��C.E 
and expand the logarithm in negative powers of D.  

We obtain  

aD = - 
�
�C + 

�
���C� - ...................   (1.18) 

The first approximation to (1.18) is given by D = √−G� 

and the second  

a D = - 
�
�C + 

�
�� 

Which is equivalent to the equation 

��=
���  + 

�
��

�=
��  + 

�
�B> = 0    (1.19) 

Comparing this shows that the approximate solution here 

is similar to the previous one, expect that we now have a 

instead of �, and the damping coefficient is halved.  

RESULT AND DISCUSSION: 

From the above discussion we see the model has 

represented in special way, in which the infection occurs 

in human body then the resistance f body gradually decays 

same as motion decays in damped oscillation (Kermack, 

and Kendrick, 1927; Hoppenstreadt, 1975). On solving 

the equation of model we get differential equation of 

damped harmonic oscillation, which shows the 

phenomenon of occurrence of the infection. Their solution 

gives the idea about the seasonal variation in infection.  
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