
 International Journal of Trend in Scientific Research and Development (IJTSRD) 

Volume 5 Issue 1, November-December 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470 

 

@ IJTSRD     |     Unique Paper ID – IJTSRD38275      |     Volume – 5 | Issue – 1     |     November-December 2020 Page 1465 

Oracle in Memory Configuration 

Vijay Kumar Tiwari 

IT Consultant, HCL America Inc, Texas, United States 

 
How to cite this paper: Vijay Kumar Tiwari 
"Oracle in Memory Configuration" Published in 
International Journal of Trend in Scientific 
Research and Development (ijtsrd), ISSN: 
2456-6470, Volume-5 | Issue-1, December 
2020, pp.1465, URL: 
www.ijtsrd.com/papers/ijtsrd38275.pdf 
 

Copyright © 2020 by author (s) and 
International Journal of Trend in Scientific 
Research and Development Journal. This is an 
Open Access article 
distributed under the 
terms of the Creative 
Commons Attribution License (CC BY 4.0) 
(http://creativecommons.org/licenses/by/4.0) 

 

INTRODUCTION: 

Oracle Database In-Memory provides a unique dual-format 
design that enables tables to be instantaneously represented 
in memory using traditional row format and a new in-
memory column format. The Oracle SQL Optimizer by design 
routes analytic queries to the column format and OLTP 
queries to the row format, transparently delivering best-of-
both-worlds performance. Oracle Database automatically 
maintains full transactional uniformity between the row and 
the column formats, just as it maintains uniformity between 
tables and indexes today. The new column format is a pure 
in-memory format and is not persistent on disk, so there are 
no additional storage costs or storage synchronization 
issues. 
 

How to configure 

show parameter in memory; 
� The size of the IM column store is controlled by the 

INMEMORY_SIZE parameter. 
 
If INMEMORY_SIZE parameter is set to 0 it means Database 
In-Memory is not enabled, as there is no IM column store 
allocated. 
 
We can also check the In-Memory Area by querying v$SGA. 
� Enabling Database In-Memory is actually a multi-step 

process. 
 
A. First we must allocate memory for the IM column store 

by setting the INMEMORY_SIZE parameter to a non-zero 
value that is greater than 100MB. 

i.e. 
ALTER SYSTEM SET inmemory_size = 20G scope=spfile 
sid=*; 
 
B. bounce the database so these parameter changes can 

take effect. 
 

C. confirm: 
select name, value from v$sga; 
show parameter inmemory; 
 

 

 
D. We now should have an IM column store. But Database 

In-Memory is still not in use because no objects have 
been populated into the IM column store. 

 
To confirm this you can look at two new v$ views, 
v$IM_SEGMENTS and v$IM_USER_SEGMENTS that indicate 
what objects are in the In-Memory Column Store. 
 
The IM column store we should be populated with the most 
performance-critical data in the database. 
 
Less performance-critical data can reside on lower cost flash 
or disk. Of course, if your database is small enough, you can 
populate all of your tables into the IM column store. 
 
Only objects with the INMEMORY attribute are populated 
into the IM column store. 
 
The INMEMORY attribute can be specified on a tablespace, 
table, (sub)partition, or materialized view.  
 
Queries to find the inmemory usage 

select * from gv$sga; 
select * from gv$im_segments; 
select * from gv$im_user_segments; 
select sum(inmemory_size)/1024/1024 
INMEMORY_SIZE_MB from gV$IM_SEGMENTS; 
select sum(alloc_bytes)/1024/1024 ALLOC_MB, 
sum(used_bytes)/1024/1024 USED_MB from 
gv$inmemory_area; 
 
select INST_ID, POOL, ALLOC_BYTES/1024/1024 ALLOC_MB, 
USED_BYTES/1024/1024 USED_MB, POPULATE_STATUS 
from GV$INMEMORY_AREA; 
 
Conclusion In short: 

Analytics queries/workload runs in column store while 
transaction runs against the Buffer cache. 
 
Optimizer decide by his own when to use what. In memory 
Advisor can be installed to get more detailed Picture. 

 

 
 

IJTSRD38275 


