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ABSTRACT 

In this paper, the generalized gamma functions of the first and

are firstly introduced and investigated. It can be proven that the traditional 

gamma function is a special case of the first type of generalized gamma 

function. Besides, the iterative formula of the generalized gamma function 

will be fully derived. Finally, a numerical example is provided to illustrate 

the validity and effectiveness of our main result.
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1. INTRODUCTION 

As we know, the gamma function first arose in regard to 

the interpolation problem for factorials. In conjunction 

with the factorial function, the gamma function is a 

generalization of the factorial function. In recent years, 

various gamma functions have been widely studied and 

explored; see, for example, [1-4] and the references 

therein. The above literatures show that gamma functions 

play a pivotal role in academic analysis and engineering 

applications. In this paper, generalized continuous 

functions of the first and second types will be firstly 

proposed. The purpose of this paper is to analyze the 

generalized gamma functions, and then derive the 

iterative formula of such functions. Finally, an example is 

provided to illustrate the applicability and validity of the 

main result. 

 

2. PROBLEM FORMULATION AND MAIN RESULTS

Before presenting our main result, let us introduce 

generalized gamma function. 

 

Definition 1. The generalized gamma function of the first 

type ( )α,aG
c

 is defined by  

( ) ∫
∞ −−=
0

1
cos:, dxaxexaG

x

c

αα , with 0>α . 

 

The generalized gamma function of the second type 

( )α,aG
s

 is defined by  

( ) ∫
∞ −−=

0

1
sin:, dxaxexaG

x

s

αα , with 0>α . 

 

Remark 1.  Note that the gamma function [1], defined by 

∫
∞ −−=Γ

0

1
)( dxex

xαα , can be regarded as a special case of 
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the generalized gamma function of the first type in view of 

( )αα ,0)(
c

G=Γ . 

 

Lemma 1. For any ℜ∈a , one has

(1) ( ) ;
1

1
1,

2 +
=

a
aG

c
 

(2) ( ) .
1

1,
2 +

=
a

a
aG

s
 

Proof. Two cases are separately discussed as follows.

Case 1: ( )0=a  

In this case, one can obtain 

( ) 11,0

0

== ∫
∞

−
dxeG

x

c
 and  

( ) .001,0

0

== ∫
∞

dxG
s

 (1) 

Case 2: ( )0≠a  

 

Using the integration by parts, it can be obtained that

∫

∫
−−

−−

−=

+=

cos
1

sin

sin
1

cos

axe
a

dxaxe

axe
a

dxaxe

xx

xx

 

It is easy to see that 

( ) ( )

( ) ( ).1,
11

1,

;1,
1

1,

aG
aa

aG

aG
a

aG

cs

sc

−=

=
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It results 

( )
1

1
1,

2 +
=

a
aG

c
 and ( ) .

1
1,

2 +
=

a

a
aG

s
 (2) 

 

In summary, from (1) and (2), we conclude that 

( )
1

1
1,

2 +
=

a
aG

c
 and ( ) .

1
1,

2 +
=

a

a
aG

s
 This completes our 

proof.  

 

Now we present the recursive formula for the generalized 

gamma function. 

 

Theorem 1. For any ℜ∈a  and 0>α , one has 

( )
( )

( )
( ) .
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11
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1,

22

22









⋅



















++

+
−

+=








+
+

α
α

αα

αα

α
α

aG

aG

aa

a

a

a

a

aG

aG

s

c

s

c
 

Proof.  Two cases are separately discussed as follows. 

Case 1: ( )0=a  

 

In this case, using the integration by parts, one can obtain 

( ) ( )ααα ,01,0
cc

GG ⋅=+ , (3a) 

( ) .01,0 =+α
s

G   (3b) 

 

Case 2: ( )0≠a  

Using the integration by parts, it can be obtained that 

,cos
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cos

cos
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1

1

∫∫

∫

∫∫

∫

−−−

−−

−−−

−−

−+

−=

+−

=

dxaxex
a

dxaxex
a

axex
a

dxaxex
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1
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It follows  

 

( ) ( )

( )αα

ααα

,
1

,
1

1,

2

2
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+
−

+
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 (4a) 

and 

( ) ( )

( ).,
1

,
1

1,

2

2

αα

ααα
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aG
a
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s

cs

+
+

+
=+

 (4b) 

 

This completes our proof, in view of (3) and (4).   

 

Based on Lemma 1 and Theorem 1, we may readily obtain 

the following result. 

 

Corollary 1.  
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3.  ILLUSTRATIVE EXAMPLE 

Consider the following definite integrals: 

∫
∞

−

0

2
2cos dxxex

x   and  ∫
∞

−

0

2
2sin dxxex

x . 

 

Thus, by Corollary 1 with 2=a , it can be deduced that   

( )

.
1254

12522

52
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)3,2(
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∞
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4. CONCLUSION 

In this paper, the generalized gamma functions of the first 

and second types have been introduced and investigated. 

It can be proven that the traditional gamma function is a 

special case of the first type of generalized gamma 

function. Besides, the iterative formulas of the generalized 

gamma function have been  fully derived. Finally, a 

numerical example has been provided to illustrate the 

validity and effectiveness of our main result. 
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