
 International Journal of Trend in Scientific Research and Development (IJTSRD) 

Volume 5 Issue 1, November-December 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470 

 

@ IJTSRD     |     Unique Paper ID – IJTSRD38233      |     Volume – 5 | Issue – 1     |     November-December 2020 Page 1550 

An Exponential Observer Design for a Class of 

Chaotic Systems with Exponential Nonlinearity 

Yeong-Jeu Sun 

Professor, Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan 

 

ABSTRACT 

In this paper, a class of generalized chaotic systems with exponential 

nonlinearity is studied and the state observation problem of such systems is 

explored. Using differential inequality with time domain analysis, a practical 

state observer for such generalized chaotic systems is constructed to ensure 

the global exponential stability of the resulting error system. Besides, the 

guaranteed exponential decay rate can be correctly estimated. Finally, several 

numerical simulations are given to demonstrate the validity, effectiveness, and 

correctness of the obtained result. 
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1. INTRODUCTION 

In the past few years, various types of chaotic systems have 

been widely studied; see, for example, [1-4] and the 

references therein. The investigation of chaotic systems not 

only allows us to understand the chaotic characteristics, but 

we can use the research results in various chaos 

applications; such as image processing and chaotic secure 

communication. Because the state variables of a chaotic 

system are highly sensitive to initial values and the output 

signal is unpredictable, the state variables of a chaotic 

system are always more difficult to estimate than those of a 

non-chaotic system.  

 

Due to the excessive number of state variables or the lack of 

measurement equipment, the state variables of real physical 

systems are often difficult to estimate; see, for example, [5-

10]. For chaotic systems, designing a suitable state observer 

has always been one of the goals pursued by researchers 

engaged in nonlinear systems. 

 

In this paper, the state observer for a class of generalized 

chaotic systems with exponential nonlinearity is explored 

and studied. Based on the differential inequality and time-

domain approach, a state observer of such generalized 

chaotic systems will be developed to guarantee the global 

exponential stability of the resulting error system. In 

addition, the guaranteed exponential decay rate can be 

accurately estimated. Finally, some numerical examples will 

be provided to illustrate the effectiveness of the obtained 

results. 

 

2. PROBLEM FORMULATION AND MAIN RESULTS 

In this paper, we consider the following generalized chaotic 

system with exponential nonlinearity  

 

( ) ( ) ( )txatxatx 22111 +=&   (1a) 

( ) ( ) ( ) ( )( )txtxtxftx 32112 ,,=&  (1b) 

( ) ( ) ( )
,

2
1

333

tx
etxatx +−=&   (1c) 

( ) ( ) ( ),2 21 txtxty +=   (1d) 

 

where ( ) ( ) ( ) ( )[ ] 3

321: ℜ∈= T
txtxtxtx  is the state vector, 

( ) ℜ∈ty  is the system output, 1f  is a smooth function, and 

321 ,, aaa  are the parameters of the system (1), with 03 >a  

and 122 aa > . In addition, we assume that the signal of ( )tx1  

is bounded. 

 

Remark 1: It is emphasized that the famous Ten-ring chaotic 

system [4] is a special case of the system (1). 

 

It is a well-known fact that since states are not always 

available for direct measurement, states must be estimated. 

The objective of this paper is to search a suitable state 

observer for the nonlinear system (1) such that the global 

exponential stability of the resulting error systems can be 

guaranteed. In what follows, x  denotes the Euclidean norm 

of the column vector x and a  denotes the absolute value of a 

real number a. 
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Before presenting the main result, let us introduce a 

definition which will be used in the main theorem. 

 

Definition 1. The system (1) is exponentially state 

reconstructible if there exist a state estimator 

( ) ( ) ( )( )tytzhtzE ,=&  and positive numbers k  and α  such that  

 

( ) ( ) ( ) ( ) 0,exp: ≥∀−≤−= ttktztxte α , 

 

where ( )tz  expresses the reconstructed state of the system 

(1). In this case, the positive number α  is called the 

exponential decay rate.  

 

Now we present the main result. 

 

Theorem 1. The system (1) is exponentially state 

reconstructible. Besides, a suitable state observer is given by 

( ) ( ) ( ) ( ),2 21211 tyatzaatz +−=&  (2a) 

( ) ( ) ( ),2 12 tztytz −=   (2b) 

( ) ( ) ( )
,

2
1

333

tz
etzatz +−=&   (2c) 

with the guaranteed exponential decay rate  







 −=

2
,2min: 3

12

a
aaα . 

 

Proof. Define ( )txM 1≥ , from (1), (2) with  

( ) ( ) ( ) { },3,2,1,: ∈∀−= itztxte iii  (3) 

 

it can be readily obtained that 

( ) ( ) ( )
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tztxte

21212211

111

2 −−−+=
−= &&&
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( ) ( ) .0,2 112 ≥∀−−= tteaa  

 

It results that 

( ) ( ) ( )[ ] .0,2exp0 1211 ≥∀−−= ttaaete  (4) 

 

Moreover, form (1)-(4), we have 

( ) ( ) ( )
( ) ( )[ ] ( ) ( )[ ]tztytxty
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22 −−−=
−=

 

( ) ( )[ ]tztx 112 −−=  

( )te12−=  

( ) ( )[ ] .0,2exp02 121 ≥∀−−−= ttaae  (5) 

 

Define ( )txM 1≥  and form (1)-(5), it yields 
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This implies that  
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Consequently, by (4)-(6), we conclude that 

( ) ( ) ( ) ( ) ( )
,0
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2
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with ( ) ( ) ( )( ) ( )
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completes the proof. □ 

 

 

3. NUMERICAL SIMULATIONS 

Example 1: Consider the following Ten-ring chaotic system 

[4]:  

( ) ( ) ( ),2020 211 txtxtx +=&  (7a) 

( ) ( ) ( ) ( ) ( ),285.0 31212 txtxtxtxtx −−=&  (7b) 

( ) ( ) ( )
,2

2
1

33

tx
etxtx +−=&  (7c) 

( ) ( ) ( ),2 21 txtxty +=  (7d) 
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Comparison of (7) with (1), one has  

2,20,20 321 === aaa , and 

( ) ( ) ( )( )
( ) ( ) ( ) ( ).285.0

,,

3121

3211

txtxtxtx

txtxtxf

−−=
 

 

By Theorem 1, we conclude that the system (7) is 

exponentially state reconstructible by the state observer  

( ) ( ) ( ),2020 11 tytztz +−=&  (8a) 

( ) ( ) ( ),2 12 tztytz −=  (8b) 

( ) ( ) ( )
,2

2
1

33

tz
etztz +−=&  (8c) 

 

with the guaranteed exponential decay rate 1:=α . The 

typical state trajectories of the systems (7) and (8) are 

depicted in Figure 1 and Figure 2, respectively. Besides, the 

time response of error states between the systems (7) and 

(8) is shown in Figure 3. 

 

4. CONCLUSION 

In this paper, a class of generalized chaotic system with 

exponential nonlinearity has been studied and the state 

observation problem of such systems has been explored. 

Using differential inequality with time domain analysis, a 

practical state observer for such generalized chaotic systems 

has been built to ensure the global exponential stability of 

the resulting error system. Moreover, the guaranteed 

exponential decay rate can be correctly calculated. Finally, 

several numerical simulations have been offered to 

demonstrate the validity and effectiveness of the obtained 

result. 
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Figure 1: Typical state trajectories of the system (7). 

 

0 2 4 6 8 10 12 14 16 18 20
-100

0

100

200

300

400

500

600

t (sec)

z
1
(t

);
 z

2
(t

);
 z

3
(t

)

z1: the Blue Curve

z2: the Green Curve

z3: the Red Curve

 
Figure 2: Typical state trajectories of the system (8). 
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Figure 3: The time response of error states. 

 


