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ABSTRACT 

In this paper, generalized gamma distribution is considered for Bayesian 

analysis. The expressions for Bayes estimators of the parameter have been 

derived under squared error, precautionary, entropy, K-loss, and Al-Bayyati’s 

loss functions by using quasi and inverted gamma priors. 
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1. INTRODUCTION 

The generalized gamma distribution was first proposed by 

Stacy [1]. This distribution has also been considered by Stacy 

and Mirham [2] and Harter [3]. Pandey and Rao [4] 

estimates the parameter of generalized gamma distribution 

using precautionary loss function. The probability density 

function of the three-parameter generalized gamma 

distribution is given by 
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where a and λ are shape and θ is a scale parameter. 

 

The joint density function or likelihood function of (1) is 

given by 
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The log likelihood function is given by 
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Differentiating (3) with respect to θ and equating to zero, we 

get the maximum likelihood estimator of θ which is given by 
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2. Bayesian Method of Estimation 

The Bayesian inference procedures have been developed 

generally under squared error loss function 
2

L ,θ θ θ θ
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.    (5) 

The Bayes estimator under the above loss function, say, sθ
∧

 

is the posterior mean, i.e, 

( )S Eθ θ
∧

= .     (6)  

 

Zellner [5], Basu and Ebrahimi [6] have recognized that the 

inappropriateness of using symmetric loss function. 

Norstrom [7] introduced precautionary loss function is given 

as 
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The Bayes estimator under precautionary loss function is 

denoted by pθ
∧

 and is obtained by solving the following 

equation 
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In many practical situations, it appears to be more realistic 

to express the loss in terms of the ratio θ
θ

∧

 . In this case, 

Calabria and Pulcini [8] points out that a useful asymmetric 

loss function is the entropy loss 
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Also, 

the loss function ( )L δ  has been used in Dey et al. [9] and 

Dey and Liu [10], in the original form having 1p .=  Thus 

( )L δ  can written be as 

( ) ( ) 1eL b log ;  b>0.δ δ δ= − −      (9) 

 

The Bayes estimator under entropy loss function is denoted 

by Eθ
∧

 and is obtained by solving the following equation 
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Wasan [11] proposed the K-loss function which is given as 
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Under K-loss function the Bayes estimator of θ is denoted by 

Kθ
∧

 and is obtained as 
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Al-Bayyati [12] introduced a new loss function using Weibull 

distribution which is given as 
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Under Al-Bayyati’s loss function the Bayes estimator of θ is 

denoted by Alθ
∧

 and is obtained as 
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Let us consider two prior distributions of θ to obtain the 

Bayes estimators. 

 

(i) Quasi-prior: For the situation where we have no prior 

information about the parameter θ, we may use the quasi 

density as given by 
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where d = 0 leads to a diffuse prior and d = 1, a non-

informative prior. 

(ii) Inverted gamma prior: Generally, the inverted gamma 

density is used as prior distribution of the parameter θ given 

by 
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3. Posterior density under ( )1
g θ  

The posterior density of θ under ( )1
g θ , on using (2), is 

given by 
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Theorem 1 On using (17), we have 
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Proof. By definition, 

( ) ( )c cE f x dθ θ θ θ= ∫  

( )
( ) 1

1

1

1

0
1

n
a
i

i

n d
n

a

i x
n d ci

x

 e d
n d

λ

θλθ θ
λ

=

+ −

∞ −
− + −=

 
  ∑ =
Γ + −

∑
∫   

( )
( )

1

1

1

1

1

1

n d
n

a

i

i

n d c
n

a

i

i

x
n d c

n d
x

λ

λ

λ
λ

+ −

=
+ − −

=

 
  Γ + − − =
Γ + −  

 
 

∑

∑
  

( )
( ) 1

1

1

c
n

a

i

i

n d c
x

n d

λ
λ =

Γ + − −  =  Γ + −  
∑  . 

 

From equation (18), for 1c = , we have 
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From equation (18), for 2c = , we have 
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From equation (18), for 1c = − , we have 
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From equation (18), for 1c c= + , we have 
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4. Bayes Estimators under ( )1
g θ   

From equation (6), on using (19), the Bayes estimator of θ 

under squared error loss function is given by 
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From equation (8), on using (20), the Bayes estimator of θ 

under precautionary loss function is given by 
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From equation (10), on using (21), the Bayes estimator of θ 

under entropy loss function is given by 
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From equation (12), on using (19) and (21), the Bayes 

estimator of θ under K-loss function is given by 
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From equation (14), on using (18) and (22), the Bayes 

estimator of θ under Al-Bayyati’s loss function is given by 
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5. Posterior density under ( )2
g θ   

Under ( )2
g θ , the posterior density of θ, using equation 

(2), is obtained as 
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Theorem 2. On using (28), we have 
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Proof. By definition, 
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From equation (29), for 1c = , we have 
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From equation (29), for 2c = , we have 
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From equation (29), for 1c = − , we have 
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From equation (29), for 1c c= + , we have 
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6. Bayes Estimators under ( )2
g θ   

From equation (6), on using (30), the Bayes estimator of θ 

under squared error loss function is given by 
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From equation (8), on using (31), the Bayes estimator of θ 

under precautionary loss function is given by 
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From equation (10), on using (32), the Bayes estimator of θ 

under entropy loss function is given by 
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From equation (12), on using (30) and (32), the Bayes 

estimator of θ under K-loss function is given by 
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From equation (14), on using (29) and (33), the Bayes 

estimator of θ under Al-Bayyati’s loss function is given by 
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Conclusion 

In this paper, we have obtained a number of estimators of 

parameter of generalized gamma distribution. In equation 

(4) we have obtained the maximum likelihood estimator of 

the parameter. In equation (23), (24), (25), (26) and (27) we 

have obtained the Bayes estimators under different loss 

functions using quasi prior. In equation (34), (35), (36), (37) 

and (38) we have obtained the Bayes estimators under 

different loss functions using inverted gamma prior. In the 

above equation, it is clear that the Bayes estimators depend 

upon the parameters of the prior distribution. 
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