
 International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 5 Issue 1, November-December 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD38049 | Volume – 5 | Issue – 1 | November-December 2020 Page 778

Design and Analysis of High Performance

Floating Point Arithmetic Unit

Naresh Kumar1, Onkar Singh2, Harjit Singh3

1M Tech Scholar, 2Assistant Professor, ECE Department, 3Assistant Professor, EEE Department,
1, 2, 3Arni University, Indora, Himachal Pradesh, India

ABSTRACT

A floating point arithmetic unit designed to perform operations on floating

point numbers as well as fixed point numbers. Floating point numbers can

support a much wider range of values in comparison to fixed point

representation. Floating Point units are mainly used in high speed objects

recognition system, high performance computer systems, embedded systems

and mobile applications. To represent very small values or very large values,

large range is required as the integer representation is no longer appropriate

to represent these numbers so these values can be represented by using

floating point representation that is based on the IEEE-754 standard. The

proposed floating point arithmetic unit is designed using single stage

implementation. Due to single stage implementation the complex logic

operations which consist of various multiple numbers of stages are converted

into single stage implementation. So by using single stage implementation the

time requires to reach data from input to output becomes less. The proposed

unit is designed in VHDL, simulated in Questa Sim simulator and implemented

on vertex-7 FPGA.

KEYWORD: Vertex, Floating, Precision, Exponent, Fraction, Exception

How to cite this paper: Naresh Kumar |

Onkar Singh | Harjit Singh "Design and

Analysis of High Performance Floating

Point Arithmetic

Unit" Published in

International Journal

of Trend in Scientific

Research and

Development (ijtsrd),

ISSN: 2456-6470,

Volume-5 | Issue-1,

December 2020, pp.778-782, URL:

www.ijtsrd.com/papers/ijtsrd38049.pdf

Copyright © 2020 by author(s) and

International Journal of Trend in Scientific

Research and Development Journal. This

is an Open Access article distributed

under the terms of

the Creative

Commons Attribution

License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

1. INTRODUCTION

An arithmetic circuit which performs digital arithmetic

operations has many applications in digital coprocessors,

application specific circuits, etc. Because of the

advancements in the VLSI technology, many complex

algorithms that appeared impractical to put into practice,

have become easily realizable today with desired

performance parameters so that new designs can be

incorporated. The standardized methods to represent

floating point numbers have been instituted by the IEEE 754

standard through which the floating point operations can be

carried out efficiently with modest storage requirements.

In computers the number will store if it have a finite

precision. For scientific computation the numbers and

arithmetic should meet certain few criteria-

� Efficiency- Every arithmetic should be efficient to carry

out.

� Storage- Every number has a storage requirement.

� Portability- A level of portability should be there. That

means the results of one computation should match

with computation on other computers.

1.1. IEEE Single Precision Format: The IEEE single

precision format consists of 32 bits to represent a

floating point number, divided into three subfields, as

illustrated in figure 1.1

Sign Exponent Fraction

1 bit 8 bits 23 bits

Figure 1 IEEE single precision floating point format [4]

The first field is the sign bit for the fraction part. The next

field consists of 8 bits which are used for exponent the third

field consists of the remaining 23 bits and is used for the

fractional part. The sign it reflects the sign of the fraction it is

0 for positive numbers and 1 for negative numbers.

1.2. IEEE Single Precision Format:

The IEEE double precision format consists of 64 bits to

represent a floating point number, as illustrated in figure 1.3

S Exponent Fraction

1 bit 11 bits 52 bits

Figure 2 IEEE double precision floating-point format

[4]

The first bit is the sign bit for the fraction part. The next 11

bits are used for the exponent, and the remaining 52 bits are

used for the fractional part. As in the single precision format,

the sign bit is 0 for positive numbers and 1 for negative

numbers.

1.3. Advantages of floating Point Representation:

The main advantage of floating point format is that they have

much wider range of values in comparison to fixed point

format. Another advantage of floating point number is that

they are more flexible than fixed point numbers which has a

limited or no flexibility [5]. Other major advantages are there

exponentially vastly increased dynamic range available for

many applications. This large dynamic range is very useful in

dealing with larger values. The internal representation of

IJTSRD38049

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD38049 | Volume – 5 | Issue – 1 | November-December 2020 Page 779

data in floating point format is more exact than fixed point

format [8].

1.4. Applications of floating-point representation

Scientific and higher engineering applications demand

exceptionally high floating point performance which in turn

requires high speed floating point units to reduce executing

time. Floating Point units are used in high speed objects

recognition system and also in high performance computer

systems as well as embedded systems and mobile

applications [2]. Floating point units are widely used in

digital applications such as digital signal processing, digital

image processing and multimedia [5]. In medical image

recognition, greater accuracy supports the many levels of

signal input from light, x-rays, ultrasound and other sources

that must be defined and processed to create output images

with useful diagnostic information. Wide dynamic range is

essential to radar, where a system may need to track over a

range from zero to infinity, and then use only a small subset

of that range for target acquisition and identification. A wide

dynamic range can also allow a robot to deal with

unpredictable conditions, such as an obstruction to its

normally limited range of motion. By contrast with these

applications, the enormous communications market is better

served by floating-point devices [8].

The floating point format is also very useful for audio and

video applications. Audio needs wider range of values than

video applications that requirement id fulfilled by floating

point hardware [6]. Floating point unit performs addition,

subtraction, multiplication, division, square root etc that are

widely used in large set of scientific, commerce, financial and

in signal processing applications [7].

2. Floating Point Arithmetic Unit

The block diagram of the proposed floating point arithmetic

unit is given in figure 3. The unit supports four arithmetic

operations: Add, Subtract, Multiply and Divide. All the basic

mathematical arithmetic operations have been carried out in

four separate modules one for addition, one for subtraction,

one for multiplication and one for division.

The unit has following inputs:

1. Two 64-bit input operands

2. One 3-bit operation code (3 bits, 000 = add, 001 =

subtract, 010 = multiply, 011 divide)

3. Rounding mode (2 bits, 00 = nearest, 01 = zero, 10 =

possitive infinity, 11 = negative infinity)

4. Reset (Global) 5. Clock (Global)

Figure 3: Block Diagram of FPAU

The unit has following outputs:

1. 64-bit output

2. Five Exceptions

2.1. Inexact

2.2. Invalid

2.3. Overflow

2.4. Underflow

2.5. Divide-by-zero

In this design the operation to be performed on the 64-bit

operands by a 3-bit operational code and the same

operational code selects the output from that particular

module and connects it to the final output of the unit.

Particular exception signal will be high whenever that type

of exception wills occur. In this design the complex logic

operations segmented and implemented into various

multiple numbers of stages are converted into single stage

implementation in simple words we can say that the multiple

stages are converted into single stage. Once the inputs are

applied to the input terminals the final output is obtained at

the output terminals there are no intermediate stages. So

now the inputs take less time to reach at output terminals

and due to single stage implementation the number of flip

flops and other intermediate required circuits are less as a

result the area require is less in the presented design.

2.1. Fpu_Add - Floating Point Adder-

Two floating point numbers are added as shown.

(f1 x 2E1) + (f2 x 2E2) = F x 2E

Figure 4: RTL view of double precision floating point

arithmetic unit

In order to add two fractions, the associated exponents must

be equal. Thus, if the exponents E1 and E2 are different, we

must normalize one of the fractions and adjust the exponents

accordingly. The smaller number is the one that should

adjusted so that if significant digits are lost, the effect is not

significant.

The steps required to carry out floating point addition

are as follows:

1. Compare exponents. If the exponents are not equal, shift

the fraction with the smaller exponent right and add 1 to

its exponent; repeat until the exponents are equal.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD38049 | Volume – 5 | Issue – 1 | November-December 2020 Page 780

2. Add the fractions.

3. If the result is 0, set the exponents to the appropriate

representation for 0 and exit.

4. If fraction overflow occurs, shift right and add 1 to the

exponent to correct the overflow.

5. If the fraction is un normalized, shift left and subtracts 1

from the exponent until the fraction is normalized.

6. Check for exponent overflow. Set overflow indicator, if

necessary

7. Round to the appropriate number of bits.

2.2. Fpu_Sub- Floating Point Subtractor

Two floating point numbers are subtracted as shown.

(f1 x 2E1) - (f2 x 2E2) = F x 2E

In order to subtract two fractions, the associated exponents

must be equal. Thus, if the exponents E1 and E2 are different,

we must unnormalize one of the fractions and adjust the

exponents accordingly. The smaller number is the one that

should adjusted so that if significant digits are lost, the effect

is not significant.

The steps required to carry out floating point

subtraction are as follows:

1. Compare exponents. If the exponents are not equal, shift

the fraction with the smaller exponent right and add 1 to

its exponent; repeat until the exponents are equal.

2. Subtract the fractions.

3. If the result is 0, set the exponents to the appropriate

representation for 0 and exit.

4. If fraction overflow occurs, shift right and add 1 to the

exponent to correct the overflow.

5. If the fraction is un normalized, shift left and subtracts 1

from the exponent until the fraction is normalized.

6. Check for exponent overflow. Set overflow indicator, if

necessary

7. Round to the appropriate number of bits. Still

normalized? Go to back to step 4.

2.3. Fpu_Mul- Floating Point Multiplier-

Two floating point numbers are multiplied as shown.

(f1 x 2E1) x (f2 x 2E2) = (f1 x f2) x 2(E1+E2) = F x 2E

In this section, the design of multiplier for 64-bit floating

point numbers is proposed. The fraction part of the product

is the product of the fractions, and exponent part of the

product is the sum of the exponents.

The general procedure for performing floating point

multiplication is the following:

1. Add the exponents

2. Multiply the two fractions

3. If the product is zero, adjust the representation to the

proper representation for zero.

A. If the product fraction is too big, normalize by

shifting it right and incrementing the exponent.

B. If the product fraction is too small, normalize by

shifting left and decrementing the exponent .

4. If an exponent underflow or overflow occurs, generate

an exception or error indicator.

5. Round to the appropriate number of bits. If rounding

resulted in loss of normalization, go to step 3 again.

2.4. Fpu_Div- Floating Point Division

In this section, divider for floating point numbers is

designed. It uses 4 bit fractions and 4 bit exponents, with

negative numbers represented in 2’s complement. Given two

floating point numbers, the product is

(f1 x 2E1) / (f2 x 2E2) = (f1 / f2) x 2(E1-E2) = F x 2E

The floating point division is like a basic fixed point binary

number division algorithm.

The general procedure for performing floating point division

is the following:

1. Left shift divisor by the no. of bits and right shift

dividend by no. of bits.

2. Compare the divisor with the dividend.

3. If divisor is greater than dividend set the corresponding

quotient bit to zero.

4. If divisor is less than dividend subtract the divisor from

the dividend and place the result in the divisor place,

and put one in quotient position.

5. After each comparison right shift divisor by one

position.

6. Repeat the above steps by the number of bits time.

7. The number in the dividend place gives remainder and

quotient place gives quotient.

2.5. Fpu_Round-Floating Point Rounding Unit-

Rounding module is used to modifies a number and fit it in

the destination’s format. It is performed in the fpu_round

module. From the core mathematical operations such as

addition, subtraction, Multiplication and division the signals

are given to fpu round part of unit. The fpu round perform

rounding operation and in this unit four rounding modes are

defined.

The standard defines the following four rounding modes

Round to nearest even: It is a default rounding standard. In

this standard the value is rounded up or down to the nearest

infinitely precise result.

Unrounded Rounded

3.5 4

3.4 3

5.6 6

Table 1 Examples for Round to nearest even

Round-to-Zero: In this rounding mode the excess bits will

be truncated. e.g. 3.47 will be truncated to 3.5

Round-Up: In this rounding mode the number will be

rounded up towards positive infinity, e.g. 5.2 will be rounded

to 6, while -4.2 to -4

Round-Down: In this rounding mode the number will be

rounded down towards negative infinity. e.g. 5.2 will be

rounded to 5, while -4.2 to -5

2.6. Fpu_Exception- Floating Point Exception Unit-

The exceptions are occurring when an operation on any

particular operands has no outputs suitable for a reasonable

application.

The five exceptions are:

Invalid: The results which are not valid for any simple

application is called invalid exception. For example square

root of a negative number etc., output of which does not

exist.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD38049 | Volume – 5 | Issue – 1 | November-December 2020 Page 781

Division by zero: This type of exceptions is occurs when

there is infinite in the result. For e.g., 1/0 or log (0) that

returns positive or negative infinity.

Overflow: This type of exception occurs when there are very

large values in the result. These large values cannot be

represented correctly i.e. which returns ±infinity by default

Underflow: This type of exception occurs when there are

very small values in the result i.e. outside the normal range.

Inexact: This type of exception occurs whenever the result of

an arithmetic operation is not exact due to the restricted

exponent or precision range.

3. Results and Discussions:

The complete code is synthesis using Verilog, Simulate using

Questa Sim Simulator which is an advance version of model

sim simulator and implementation is done using Vertex-7

FPGA. The FPGA that is used for the implementation of the

design is the Xilinx Vertex-7 (family), XC7VLX30 (Device),

FF324 (Package) FPGA device. The working

environment/tool for the design is the Xilinx ISE 12.4.1 is

used for FPGA design flow of Verilog code.

3.1. Simulation Result of floating point addition

It is calculated for the two input operands of 64 bits each. 15

clock cycles are required by floating point unit to complete

addition process. As frequency is 282MHz so one clock cycle

completes 3.54ns and 15 clock cycles completes in 3.54ns x

15 =53.10ns. Therefore the addition process completes in

53.10ns.

Similarly others operations subtraction, multiplication also

required 53.10ns

Figure 5: Simulation Result of Floating Point Addition

3.2. Synthesis Results of Proposed FPAU:

The Table below showing the Area & Speed Results for

floating point arithmetic unit implemented on vertex 7 FPGA

Logic Utilization Used Available

Number of Slice Registers 4762 437600

Number of Slice LUTs 6525 437600

Number of fully used LUT-FF pairs 3013 91200

Number of bonded IOBs 206 2680

Number of DSP48A1s 9 1680

Maximum Frequency 282 MHz

Delay 53.10ns

Table 2: Design Summary of floating point arithmetic

unit for vertex 7 FPGA

3.3. Timing Result of Proposed Floating Point Unit

Since addition requires 15 clock cycles and maximum

frequency 282MHz so one clock cycle completes 3.54ns and

15 clock cycles completes in 3.54ns x 15 =53.10ns. Therefore

the addition process completes in 53.10ns. Similarly

subtraction operation completes in 53.10ns, multiplication

operation completes in 53.10ns and division operation

completes in 240.72ns (68 clock cycles)

4. Conclusions and Future Work

Floating point arithmetic unit has been designed to perform

four arithmetic operations, addition, subtraction,

multiplication and division on floating point numbers. The

unit has been coded in VHDL. Code has been synthesised for

the Virtex-7 FPGA board using XILINX ISE and has been

implemented and verified on the software successfully.

Single stage implementation techniques are utilized in the

proposed floating point arithmetic unit. Due to single stage

design implementation the longer combinational path can be

compensated by shorter path delays in the subsequent logic

stages and maximum frequency of the design will increased

to 282 MHz. Iin the proposed floating point unit the complex

logic operations which consist of various multiple numbers

of stages are converted into single stage implementation.

The proposed floating point unit takes 15 clock cycles for

addition operation, 15 clock cycles for subtraction operation,

15 clock cycles for multiplication operation and 68 clock

cycles for division operation. Proposed floating point unit

consumed 6525 Slice LUT and 9 DSP48A1s.

The designed arithmetic unit operates on 64-bit operands

and implemented on Virtex-7 FPGA it can also be

implemented on high performance FPGA like Virtex- 8 FPGA.

When the floating point unit implements on higher

performance FPGA like Virtex-8 both the speed and area of

the design will improve but the system becomes more costly.

It can also be extended to have more mathematical

operations like trigonometric, logarithmic and exponential

functions. When such mathematical units are also

implemented on the floating point unit it will work for more

mathematical operations. We do not require other units to

perform such operations but by implementing such extra

mathematical units the floating point unit requires more

area and system becomes more complex.

REFERENCES

[1] Yedukondala Rao Veeranki, R. Nakkeeran “Spartan 3E

Synthesizable FPGA Based Floating-Point Arithmetic

Unit” International Journal of Computer Trends and

Technology (IJCTT), volume-4, Issue-4, pp.751-755,

April 2013

[2] Jongwook Sohn, Earl E. Swartzlander “Improved

Architectures for a Fused Floating Point Add-Subtract

Unit” IEEE Transactions on Circuits and Systems-I:

regular papers, Vol. 59, No. 10, pp. 2285-2291,

October 2012

[3] KavithaSravanthi, Addula Saikumar “An FPGA Based

Double Precision Floating Point Arithmetic Unit using

Verilog” International Journal of Engineering

Research & Technology (IJERT), Vol. 2 Issue 10, pp.

576-581, October - 2017

[4] H. Yamada, T. Hottat, T. Nishiyama, F. Murabayashi, T.

Yamauchi, and H. Sawamoto “A 13.3ns Double-

precision Floating-point ALU and Multiplier”, IEEE

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD38049 | Volume – 5 | Issue – 1 | November-December 2020 Page 782

International Conference on Computer Design: VLSI

in Computers and Processors, pp. 466 – 470, 2-4 Oct

1995

[5] Addanki Puma Ramesh, A. V. N. Tilak, A.M.Prasad “An

FPGA Based High Speed IEEE-754 Double Precision

Floating Point Multiplier Using Verilog” 2013

International Conference on Emerging Trends in VLSI,

Embedded System, Nano Electronics and

Telecommunication System (ICEVENT), pp. 1-5, 7-9

Jan. 2017

[6] Ushasree G, R Dhanabal, Sarat Kumar Sahoo

“Implementation of a High Speed Single Precision

Floating Point Unit using Verilog” International

Journal of Computer Applications National conference

on VSLI and Embedded systems, pp.32-36, 2019

[7] Shamna. K, S. R Ramesh “Design and Implementation

of an Optimized Double Precision Floating Point

Divider on FPGA”, International Journal of Advanced

Science and Technology, Vol. 18, pp.41-48, May 2016

[8] Shrivastava Purnima, Tiwari Mukesh, Singh Jaikaran

and Rathore Sanjay “VHDL Environment for Floating

point Arithmetic Logic Unit - ALU Design and

Simulation” Research Journal of Engineering Sciences,

Vol. 1(2), pp.1-6, August -2012

[9] Hwa-Joon Oh, Silvia M. Mueller, Christian Jacobi,

Kevin D. Tran, Scott R. Cottier “A Fully Pipelined

Single-Precision Floating-Point Unit in the Synergistic

Processor Element of a CELL Processor” IEEE Journal

of Solid-State Circuits, Vol. 41, No. 4, pp. 759-771,

April 2006

[10] Tarek Ould Bachir, Jean-Pierre David “Performing

Floating-Point Accumulation on a modern FPGA in

Single and Double Precision” 18th IEEE Annual

International Symposium on Field-Programmable

Custom Computing Machines, pp.105-108, 2012

[11] Tashfia. Afreen, Minhaz. Uddin Md Ikram, Aqib. Al

Azad, and Iqbalur Rahman Rokon “Efficient FPGA

Implementation of Double Precision Floating Point

Unit Using Verilog HDL” , International Conference on

Innovations in Electrical and Electronics Engineering

(ICIEE'2012) , pp.230-233, Oct. 6-7, 2018

[12] Per Karlstrom, Andreas Ehliar, Dake Liu “High

Performance, Low Latency FPGA based Floating Point

Adder and Multiplier Units in a Virtex 4”, 24th Norchip

Conference, pp. 31 – 34, Nov. 2016.

[13] C. Rami Reddy, O. Homa Kesav, A. Maheswara Reddy

“High Speed Single Precision Floating Point Unit

Implementation Using Verilog” International Journal

of Advances in Electronics and Computer Science,

ISSN: 2393-2835 Volume-2, Issue-8, Aug.-2015

[14] Somsubhra Ghosh, Prarthana Bhattacharyya and Arka

Dutta “FPGA Based Implementation of a Double

Precision IEEE Floating-Point Adder” , 7th

International Conference on Intelligent Systems and

Control (ISCO) pp.271-275, 4-5 Jan. 2013

[15] Liangwei Ge, Song Chen, yuichi Nakamura “ A

Systhesis Method of General Floating Point Arithmetic

Units by Aligned Partition”, 23rd International

Conference on Circuitd/Systems, Computers and

Communications, pp. 1177-1180, 2018

[16] Dhiraj Sangwan , Mahesh K. Yadav “Design and

Implementation of Adder/Subtractor and

Multiplication Units for Floating-Point Arithmetic”

International Journal of Electronics Engineering, 2(1),

pp. 197-203, 2016

[17] Sameh Galal, Mark Horowitz “Energy-Efficient

Floating-Point Unit Design” IEEE transactions on

computers, Vol. 60, No. 7, pp. 913-922, July 2016

[18] Geetanjali Wasson “IEEE-754 compliant Algorithms

for Fast Multiplication of Double Precision Floating

Point Numbers” International Journal of Research in

Computer Science, Volume 1, Issue 1, pp. 1-7, 2014

[19] Tashfia. Afreen, Minhaz. Uddin Md Ikram, Aqib. Al

Azad, and Iqbalur Rahman Rokon “Efficient FPGA

Implementation of Double Precision Floating Point

Unit Using Verilog HDL” , International Conference on

Innovations in Electrical and Electronics Engineering

(ICIEE'2012) , pp.230-233, Oct. 6-7, 2012

[20] Monika Maan and Abhay Bindal “IMPLEMENTATION

OF HIGH SPEED DOUBLE PRECISION FLOATING

POINT UNIT ON FPGA USING VHDL” International

Journal of Advanced Research in Science and

Engineering, Vol No. 5, Issue No. 7, July 2018

