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ABSTRACT 
In this paper first we generalizes the Hilbert-Adjoint of a linear operator and 
showed that it is always closed for any linear operator with the condition that 
the domain of the operator is dense. 
 
We also proved that "Let J be a closed operator defined in H with dense 
domain then D(J*) is dense and J** = J . " 
 
We also proves Closed graph theorem for complex Hilbert spaces as a 
corollary of our results. 
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INTRODUCTION 
In this Paper we take H as the complex Hilbert space and D(J) 
denotes the domain of a linear operator J. 
 
In section 1 we generalizes the Hilbert- Adjoint for any linear 
operator with dense domain in H and prove 
 
"If J is defined everywhere on H. Then its Hilbert-adjoint is 
bounded." 
 
In section 2 we first define closable operators and show with 
the help of an example that every operator need not closable 
and if it is closable then graph of its closure is equals to the 
closure of its graph. 
 
In Section 3 we proved our result 
"Let J be a closed operator defined in H with dense domain 
then D(J*) is dense and J** = J." 
 
As a result of which Closed graph Theorem for Complex 
Hilbert Spaces comes out as Corollary. 
 
1 Hilbert-Adjoint 

1.1 Definition: Let J : H → H be a bounded operator then its 
Hilbert adjoint always exists [2] and is also a bounded linear 
operator J∗ defined everywhere on H such that 
 (Jφ,ψ) = (φ,J∗ψ) ∀ φ,ψ ∈ H 

or 
 (Jφ,ψ) = (φ,η) and J∗ψ = η (1) 

1.2 Remark: We can use (1) to generalizes the Hilbert 
Adjoint of any operator. 

1.3 Lemma: Let J : D(J) → H be any operator then J∗ψ = η in 
(1) is unique iff 

 
D(J) = H. (i.e the domain of J is dense in H.) 

 
Proof: Let J∗ψ = η in (1) is unique. Suppose           D (J)  H 

⇒ ∃ 0 6= µ ∈ H such that 

 

From (1) we have 
(Jφ,ψ) = (φ,η) + 0 
 = (φ,η) + (φ,µ) 
 = (φ,η + µ) ∀ φ ∈ D(J) 

 
Which contradicts the uniqueness of J : D(J) → H. Hence D(J) 
= H. 
Conversely 

 
Let the domain of J is dense in H. Then 

 
Hence unique. 
 
1.4 Remark: Lemma 1.3 shows that Hilbert-Adjoint of any 
linear operator J exists iff the domain of J is dense. Now using 
this Lemma we generalizes the definition of Hilbert-Adjoint 
for any linear operator. 
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1.5 Definition Let J : D(J) → H be any linear operator whose 
domain is dense the its Hilbert-Adjoint exists and is a linear 
operator J∗ : D(J∗) → H such that D(J∗) contains all ψ ∈ H such 
that ∃ η with (Jφ,ψ) = (φ,η) ∀ φ ∈ D(T) and J∗ψ = η 

Proposition 1.6: Let J be an operator defined everywhere on 
H.Then J∗ is bounded. 

Proof: Suppose J∗ is unbounded. Then ∃ a sequence (vn) each 

of norm 1 and || vn|| → ∞ as n → ∞ For each n define a 

functional Pn on H by Pn(φ) = (Jφ,vn) = (φ,J∗vn) By Schwarz 
Lemma [2] we have 

 |Pn(φ)| = |(φ,J∗vn)| 
≤ ||φ||||J∗vn|| ∀ φ ∈ H 

∴ Pn is bounded for all n. For each φ ∈ H again by Schwarz 
Lemma we have 

 |Pn(φ)| = |(Jφ,vn)| 
≤ ||Jφ|| ∀ n 

Then By Uniform Boundness Theorem [1] the sequence 
||(Pn)|| is bounded. 

⇒ ∃ K > 0 such that 
 ||Pn|| ≤ K ∀ n 
 ⇒ |(J∗vn,J∗vn)| = |Pn(J∗vn)| 

≤ ||Pn||||J∗vn|| 
≤ K||J∗vn|| 

 ⇒ ||J∗vn|| ≤ K ∀ n 

⇒ the sequence (||J∗vn||) is bounded which is a contradiction. 
Hence J∗ is bounded. 

2. Closed Linear Extension: 
2.1 Definition(Closed operator): An Operator J : D(J) 
→ H is said to be closed if its graph υ(J) = {< φ,Jφ >: φ ∈ D(J)} 
is closed in H × H, where the inner product on H × H is given 
by 

(< φ,ψ >,< η,µ >) = (φ,η) + (ψ,µ) 

Notation J˜ is said to be an extension of J if 
D(J) ⊂ D(J˜) and 

or 
J˜|D(J) = J 

υ(J) ⊂ υ(J˜) 

denoted by J ⊂ J˜ 

2.2 Definition (Closable): A linear operator J is said to 
be closable if J has an extension which is closed. 

 
If J is closable then J has a minimal closed extension called 
closure denoted by J.[1] 2.3 Proposition: if J be any closable 
operator then 

υ(J) = υ(J) 

Proof: Let J be any closable operator ⇒ J exists. 
Let L be any closed extension of J 

 
 

⇒ υ(J) ⊂ υ(L) (∵ Lis closed) 

Define an operator P with domain 

 
 D(P) = {µ :< µ,η >∈ υ(J)} 

and 
 Pµ = η 

Claim: P is well defined 
Let 
 Pµ = η1 and Pµ = η2 

 
Hence well defined. Also 

 

As L is arbitrary. Therefore P is a minimal closed extension 
of J 

 
⇒ P = J. Hence the result. 

2.4 Remark A natural question arises here that if we want to 
take the closure of any linear operator J then we can take the 
closure of υ(J) in H×H then just find a operator 

 
whose graph is equals to υ(J).But this is not always possible 
we constructed an Example 2.5 below. 

2.5 Example: Let H be any separable Hilbert Space with 
countable orthonormal basis {ηk}. Let e be an element of H 
which is not a finite linear combination of {ηk}. Let 

e  

Define an operator J : D(J) → H, where 
D(J) = set of all the finite linear combination of {ηk} and e and 

N 
J(ae + Xciηk) = ae 

i=1 
Clearly J is linear 
Claim:< e,e >,< e,0 > ∈ υ(J) 

As 
 e ∈ D(J) and Je = e 

 

Also, for each N define 
N 
 ψN = Xcknηkn ∈ D(J) and JψN = 0 ∀ N 
k=1 

 By (2)) 
Suppose ∃ an operator L whose graph is υ(J) 
⇒ Le = e and Le = 0. Which contradicts the uniqueness. 
Hence there is no operator whose graph is υ(J) 
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3. Main Results 

Theorem 3.1 Let X : H × H → H × H be an operator given by 
X < η,µ >=< µ,−η > 

. Then for any linear operator J defined in H with dense 
domain we have 

υ(J∗) = [X(υ(J))]⊥ 

Moreover J∗ is closed 

Proof: Clearly, X is linear. 
Let < η,µ >∈ H × H Then ∃ < −µ,η >∈ H × H such that 

X < −µ,η >=< η,µ > 
∴ X is surjective Also 
 ||X < η,µ > ||2    = || < µ,−η > ||2 

= ||µ||2 + ||η||2 
             = || < η,µ > ||2 

∴ X is a surjective isometry hence unitary 
Claim: υ(J∗) = [X(υ(J))]⊥ 

 
Let 
< η,µ >∈ [X(υ(J))]⊥ ⇔ (< η,µ >,X < φ,Jφ >) = 0 ∀ φ ∈ D(J) 
⇔ (< η,µ >,< Jφ,−φ >) = 0 ∀ φ ∈ D(J) 
⇔ < η,Jφ >=< µ,φ > ∀ φ ∈ D(J) 
⇔ < Jφ,η >=< φ,µ > ∀ φ ∈ D(J) 

⇔ η ∈ D(J∗),J∗η = µ 
⇔ < η,µ >∈ υ(J∗) 

As the graph is closed. Hence J∗ is closed 

Theorem 3.2 Let J be a closed operator defined in H with 
dense domain then D(J∗) is dense and J∗∗ = J 

Proof: As 

    
=   Identity) 
=   [X(Xυ(J)⊥)]⊥ (∵ X is unitary) 

              =   [Xυ(J∗)]⊥ (∵ By Theorem 3.1) (3) 

As J is closed 

 

Suppose D(J∗) is not dense. Then ∃ 0 6= η such that 

 
 

As η 6= 0 then there is no linear operator with graph υ(J). 
which is a contradiction to J is closed. 

∴ D(J∗) is dense ⇒ J∗∗ exists. Then from Theorem 3.1 and (3) 
we have 

υ(J∗∗) = [Xυ(J∗)]⊥ = υ(J) 
⇒ J = J∗∗ 

Corollary 3.3:(Closed graph Theorem) A closed operator J 
defined everywhere on H then J is bounded. 

Proof: As J is a linear operator defined everywhere on H. 
Then J∗ exists and By Proposition 1.6 it is also bounded. 

Also By Theorem 3.1 we have J∗ is closed ⇒ D(J∗) is closed 
[2]. By Theorem 3.2 we have 

  
and  = J 

⇒ J∗ is defined everywhere on H. 
Then again By Proposition 1.6 we have J∗∗ is bounded 
Hence J is bounded 
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