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ABSTRACT

It is known that the Green function of a boundary value problem is a
meromorphic function of a spectral parameter. When the boundary conditions
contain integro-differential terms, then the meromorphism of the Green's
function of such a problem can also be proved. In this case, it is possible to
write out the structure of the residue at the singular points of the Green's
function of the boundary value problem with integro-differential
perturbations. An analysis of the structure of the residue allows us to state
that the corresponding functions of the original operator are sufficiently
smooth functions. Surprisingly, the adjoint operator can have non-smooth
eigenfunctions. The degree of non-smoothness of the eigenfunction of the
adjoint operator to an operator with integro-differential boundary conditions
is clarified. It is indicated that even those conjugations to multipoint boundary

value problems have non-smooth eigenfunctions.
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1. INTRODUCTION
Letbe 0 < x <1 and a differential expression is given

Liy) =y (x)+ nipk ) y? ),

k=0

0<x<l1

With smooth coefficients p, Oci0,1], k=0,1,...,n—1

All further arguments are shown for case n, however, the
presented results (with their corresponding modification)
are satisfied for arbitrary n.

Find a set of numbers
Q. BV @s By Vaseoos Oy By V1 0, B, suchthat g 0at
g #0, where
adf' - ol (@ +sB)u; B, o B
goguelmel sk @B Ao - pal|
au - aw, (@+sB)w B, - B

From the results of [1], [2] it follows that the set of boundary
conditions

U =ay"0+4y" 1) =0,
U,(»)=a,y* 0)+By*1)=0
(1)

U, =a " 0+By"* =0
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represent intensely regular boundary conditions. Therefore,
the system of eigen functions of the eigenvalue problem

L(y)=Ay, 0<x<l1 (2)

With boundary conditions (1) form a Riesz basis in the
functional space L,(0,1).

According to the monograph [3], the asymptotics of one
series of eigenvalues of the boundary value problem (1), (2)
has the following form

_3In, &v 1

A = (=2kmi)’ |1 +0(—
‘ ki k*

Another series of eigenvalues of the boundary value problem

(1), (2) has a similar form.

From the results of [4], it follows that the following
boundary conditions

y; 1
V.()EU, () +ZJ‘y“)(z‘)pﬁ (Hydr=0,j=1,...n (3)

s=0 o

also represent reinforced- edge conditions. Therefore, the
results of [1], [2] remain valid, so that the system of
eigenfunctions and associated functions of the operator with
boundary conditions (3) form a Riesz basis in the function

space L,(0,1).
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For further purposes, boundary conditions (3) are
conveniently rewritten in the canonical form proposed in

[5].

The equation L(y)= f(x), 0<x<1 with integral-
differential conditions of the form

V() =U,(0) - [Ly)a,(0dx =0, j=12,...n (4
0

for an arbitrary set of boundary functions

0, 0L,(0,1),0,0L,(0,1),...,a, OL,O,1).

Has the only solution y(x) forany f of L,(O,]) moreover,

the estimate ||y Lon =€ ||f(x)||lq(0!l) . The converse is also

true. If the equation L(y) = f(x), 0 <x <1 with some
additional linear conditional for any f of L,(O,1) has the

then there
L,(0.1)

is such a set of boundary
functions g, UL, (0,1),0, UL, (0,1),...,0, JL,(0,1) ,that

additional conditions will be equivalent to conditions (3).

only solution requiring ||y||L2(0,1) <c ||f(X)||

According to the above theorem, conditions (3) are
equivalent to conditions (4) for

somed, [IL,(0,1),0,0L,(0,1),...,0, JL,(0,1) Details
of the calculation of boundary functions ], 05;...,0, by
function {,ij(t)} can be found in [6].

Objectives of this research

The main purpose of this research paper is to obtain the
analytical nature of Green's functions in the vicinity of a
simple pole.

Methodology:

A descriptive research project to focus and identify the effect
of differential equations on the analytical nature of the
Green's functions in the vicinity of a simple pole. Books,
journals, and websites have been used to advance and
complete this research.

2. Literature review

The article is devoted to the construction of the Green
function of the boundary value problem for a differential
equation with strongly regular boundary conditions in the
vicinity of the pole. Questions such as the construction of the
Green function and expansion in eigenfunctions for
differential operators with strongly regular boundary
conditions are poorly understood. To study the analytical
nature of the Green's function, we develop the ideas of
[Kanguzhin, The residue and spectral decompositions of a
differential operator on a star graph, VestnikKazNU, 2018],
[Keldysh]. We note the papers [9], [10] devoted to the
expansion in eigenfunctions of differential self-adjoint and
non-self-adjoint operators.

The inverse problems for differential operators with

differential operator are considered. In [13], [15], [18], [19],
[20] some questions of spectral analysis of inverse problems
for differential operators are presented.

And in this paper, we derive a formula for expanding the
Green's function into eigenfunctions of a third-order
differential operator with strongly regular boundary
conditions.

3. Green function of an unperturbation boundary value
problem
Consideration of the boundary value eigenvalue problem

L(y)=f(x), 0<x<I
U,(y)=0,U,(y)=0,..,.U,(y) =0

Operator resolution L has the form

(L, =AD" f =[G, (x,t, ) f (Dt
0

where

yl(x’/}) Y2(xa/])
U(y) Uy,

y,(x,A)  g(x,1)
Uy, Ul(g

U,(y) U,(y,) U,(y,) U,g)
Ay(A)

-is the Green's function of the operator.

G,(x,t,A)=(-1)"

Hereat x > function g (x,t) has the following form:

y (1) Y, (1) y,(®)
yw y ) y (1)
g(x, )= : : : ,
W@y Y1)
» (%) ¥, (x) Y, (x)
If x<t,theng(x,t)=0.
U(y) U (y,) U, (y,)
A )= U,(y) U,(y,) U,(y,)
0 : : :
Uu,(y) U,(y,) U,(y,)

3.1. Perturbed boundary value problem and its Green
function
Consider the boundary value eigenvalue problem

L(y)=f(x), 0<x<I
Vi) =U,(0) = [ L(3)0,(x)dx =0
0
U,(y»)=0,Us(y»)=0,...U,(»)=0

Operator Resolution L has the form

1
-1 —_
regularly boundary conditions for the second order were (L=AD)" f(x) = IG(X’I’A)J[ (r)dr, 0<x<l
studied in [14]. In [17], spectral problems for an odd-order 0
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Where eigenfunction of the adjoint operator L" to the operator L ,
K, (x,A) G, (x,1,A) that is to say
_Iitk)  Vi(Gy) | _ K, (x,)V,(G,)
G(x,t,A) = Vi(k) _GO('X’Z’/]) W L(Mo) = Aouov 2N UD(L),
- Green's function of the operator L . L'(vy) = Ay, v, OD(L").

Here K, (x, A) - solution of a homogeneous equation
L(k,)= Ak, , 0<x<l1,

With heterogeneous boundary conditions

3.2. The main part of the Laurent series expansion of
the Green function

In this section, the main part of the Laurent expansion of the

Green function of the perturbed operator in a neighborhood

comparing relations (5) and (6), we obtain the equalities
V. (G,)

iV1 (k,)
dA A=A,

uy(x) =K, (x,A,), v, (1) =

Theorem 1. If /]0- simple eigenvalue of the operator L ,

then the eigenfunction of the operator L has the following
form

of a simple eigenvalue is calculated. In our case, the zero of »(xA) y,(x,A) v, (x,A)

the function vV («,) arethe poles of the resolvent (L-AD)". U,(v) U,(y,) U,(y,)

Let be A- simple Zero function : : .

Vi(k) =0andiv1 (k)| #0- Then the expansion in the U (y) U,(y,) U,(y,)
dA k (x,A,) =

A
Laurent series in the vicinity of a simple pole takes the
following form

resG(x,t,A)
G(X,t,/‘) = _/]0/1—/](

)

+ Right part,

where

K, (5, MV, (Gy)

A,(A)

That is, it satisfies the following perturbed boundary value
problem

L(k,(x,A))) = Ak, (x,Ay),

Vi (K, (35, ) = U, (K, (x5, A4) = [ LUk, (3, )0, (x0)dx =0,
0

res G(x,t,A) = y (5)
Jvl(/(l) U,k (x,A)) = =U, (k,(x,4,)) =0
A=A
By the Keldysh theorem [7] it is known that Theorem 2.Let be 4 — simple zero functionV, (x,) . Then
X (@) the Green's function of the operator L in the vicinity of a
G(x,t, /]) = M V) + h0 (x,t, A ), (6) simple pole has the representation
7 Kl(xaAo)‘/l(Go)
d
where h)(x,t,/])—regular in a neighborhood of a pointﬁo. a‘/l (K1)
- _ A=A
Here u,(X)—own operator function L, andv,(z)- G(x,t,A) = T2 —+G,(x,1,4,)
0

Here K;(x,A,) - own operator function L ,V(G,) - eigenfunction of the adjoint operator L" to the operator L . Moreover, itis

determined by the following formula

1
Vi(Gy) = a,(t) + A, [ g (x,t, D) (x)dx +

» (@) ¥, (1) ¥, (1)
0 Y, () (@
/]_O . : .
+
Dy(Ay) n @) vy () A
L p-1 L p-1 L p-1
I ,Bk+1y1(k)(1)An+1,k+2a1(x)dx IZﬁkﬂy;k)(I)An+l,k+20-l(x)dx I ﬁk+1y}(1k)(]‘)An+l,k+20-l(x)dx
0 k=1 0 k=1 0 k=1
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4. Conclusion

In conclusion, we note that the eigenfunction of the original
operator is a smooth function. At the same time, the
eigenfunction of the adjoint operator cannot be smooth and
the degree of its smoothness depends on the smoothness of
the boundary perturbation. These conclusions follow from
the representation of the eigenfunctions of the data in
Theorem 2. In particular, even those conjugations to
multipoint boundary value problems possess non-smooth
eigenfunctions. In this theorem 2, we give results concerning
the perturbation of only one boundary condition. Similar
results are obtained when all three boundary conditions are
perturbed.
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