
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 4 Issue 6, September-October 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD33626 | Volume – 4 | Issue – 6 | September-October 2020 Page 1977

State Management in Angular: Using NgRx for

Scalable and Maintainable Applications

James Whitaker1, Ayesha Malik2

1Department of Computer Science, University of Cambridge, Cambridge, United Kingdom
2School of Computing and Communications, Lancaster University, Lancaster, United Kingdom

ABSTRACT

In modern web development, efficient state management is

critical to building scalable, maintainable, and high-performance

applications. As Angular applications grow in complexity,

managing asynchronous data flows, user interactions, and shared

state across components becomes increasingly challenging. This

article presents a comprehensive examination of NgRx, a reactive

state management framework for Angular based on the Redux

pattern and powered by RxJS.

The discussion explores how NgRx enables a unidirectional data

flow architecture that fosters predictability, testability, and

separation of concerns. Key constructs such as Actions,

Reducers, Selectors, Effects, and the Store are analyzed in the

context of enterprise-level application design. Best practices for

modular state management, lazy loading integration,

performance optimization, and debugging are presented,

demonstrating how NgRx transforms complex state logic into

maintainable, traceable workflows.

With real-world scenarios and architectural guidance, this article

empowers developers, solution architects, and DevOps teams to

implement NgRx as a foundation for robust, future-proof Angular

applications that scale with business and user demands.

How to cite this paper: James

Whitaker | Ayesha Malik "State

Management in Angular: Using NgRx

for Scalable and Maintainable

Applications" Published in

International

Journal of Trend in

Scientific Research

and Development

(ijtsrd), ISSN:

2456-6470,

Volume-4 | Issue-6,

October 2020,

pp.1977-1983, URL:

www.ijtsrd.com/papers/ijtsrd33626.

pdf

Copyright © 2020 by author(s) and

International Journal of Trend in

Scientific Research and Development

Journal. This is an

Open Access article

distributed under

the terms of the Creative Commons

Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

IJTSRD33626

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD33626 | Volume – 4 | Issue – 6 | September-October 2020 Page 1978

1. INTRODUCTION

Angular has emerged as a powerful front-end

framework for building dynamic, responsive, and

feature-rich Single Page Applications (SPAs).

With its component-based architecture,

dependency injection, and robust tooling, Angular

empowers developers to create scalable

applications that offer seamless user experiences

across web and mobile platforms.

As applications grow in size and complexity,

managing the flow of data and UI state across

multiple components becomes increasingly

challenging. Without a structured approach to

state management, developers often encounter

issues such as data inconsistency, duplicated logic,

tangled component hierarchies, and unpredictable

application behavior. These challenges can hinder

maintainability, reduce testability, and slow down

development velocity—especially in large-scale

enterprise applications.

To address these concerns, Angular developers

have increasingly turned to NgRx, a reactive state

management library inspired by the Redux pattern

and powered by RxJS. NgRx introduces a

unidirectional data flow model and immutable

state architecture that provides clarity and

predictability to application behavior. By modeling

state changes through Actions, updating state via

Reducers, and reacting to side effects using

Effects, NgRx enables developers to manage

complex application states in a modular and

scalable fashion.

This article explores how NgRx not only simplifies

state management in Angular applications but also

enhances testability, debuggability, and

maintainability. It aims to provide readers—

whether frontend engineers, solution architects, or

DevOps professionals—with practical insights and

best practices for integrating NgRx into real-world

Angular projects. Through structured examples

and architectural guidance, the article will

demonstrate how NgRx serves as a cornerstone

for building robust, future-proof applications that

evolve gracefully with growing feature demands.

2. Understanding State Management in

Angular

In the context of client-side applications, "state"

refers to any piece of data that determines the

behavior and rendering of the application at a

given point in time. This includes everything from

a user’s authentication status and the contents of a

shopping cart, to UI toggles and API responses.

Managing this state effectively is fundamental to

delivering a responsive and consistent user

experience.

A. Types of State in Angular Applications

State in Angular applications can generally be

categorized into three types:

 Local State: Maintained within a single

component, this includes variables used for

internal logic and view rendering—such as

form inputs or UI toggles.

 Shared State: Data that needs to be accessed

by multiple components. This often involves

parent-child or sibling-sibling communication

and is typically managed through services.

 Global State: Application-wide state that

affects many parts of the UI (e.g., user

authentication status, language preferences, or

application settings). This requires a

centralized solution for consistent access and

updates.

B. Common Approaches to State Management

in Angular

Angular offers several tools to manage state using

RxJS—a reactive programming library that

Angular deeply integrates. The most commonly

used patterns include:

 Services with BehaviorSubject or

ReplaySubject to share and persist data

across components.

 Observable streams to reactively emit and

subscribe to data changes.

 Local storage or session storage for

persisting state across sessions.

While these patterns work well for small to mid-

sized applications, they often result in tight

coupling, duplicated logic, and poor traceability

as complexity increases.

C. Limitations of Ad-Hoc and Service-Based

State Handling

In large-scale applications, relying solely on

services and ad-hoc RxJS patterns for state

management can introduce several limitations:

 Lack of a unified data flow: Changes to

shared state may be triggered from multiple

places, making it hard to track and debug.

 Tight coupling: Components may become too

reliant on service implementations, violating

separation of concerns.

 Scalability concerns: As more features and

modules are added, managing dependencies

and data integrity becomes increasingly

difficult.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD33626 | Volume – 4 | Issue – 6 | September-October 2020 Page 1979

 Limited testability: Without a structured way

to represent actions and state transitions,

writing unit tests for business logic becomes

cumbersome.

These limitations highlight the need for a more

structured, predictable, and testable approach

to state management—especially in applications

with multiple interacting modules and

asynchronous data streams. This is where a

solution like NgRx becomes invaluable.

3. Introduction to NgRx

As Angular applications grow in scale and

complexity, managing how data flows across

components becomes increasingly challenging.

Fragmented state, inconsistent data updates, and

difficulty tracing changes can hinder development

efficiency and system reliability. This is where

NgRx emerges as a powerful solution.

A. What is NgRx?

NgRx is a reactive state management library

designed specifically for Angular applications.

Inspired by the Redux pattern, NgRx provides a

structured framework for managing state through

a single source of truth, ensuring consistency and

predictability across the entire application. At its

core, NgRx promotes a unidirectional data flow

where every state change is triggered by a well-

defined event and managed in a centralized

location.

This approach is particularly useful in applications

that handle complex user interactions,

asynchronous operations, or require data

synchronization across multiple parts of the UI. By

leveraging Angular's reactive programming

foundation (RxJS), NgRx turns state into a stream

of data that can be observed, managed, and

manipulated in a controlled and scalable way.

B. Key Building Blocks of NgRx

NgRx operates through several interconnected

concepts, each playing a distinct role in managing

application state:

 Actions: These are descriptions of something

that has happened in the application. Actions

represent user interactions, system events, or

any intent to change state.

 Reducers: Reducers are responsible for taking

the current state and an action, and

determining how the state should change.

They ensure that changes happen in a

predictable and traceable manner.

 Store: The store serves as the single,

centralized container for all application state.

Instead of each component managing its own

state, the store acts as a unified source from

which components can retrieve or update

state.

 Selectors: Selectors are functions that allow

the application to retrieve specific pieces of

state from the store. They promote reuse and

maintain abstraction, so components only

access the data they need.

 Effects: Effects handle external interactions,

such as making API calls or performing

background tasks. They listen for actions and

respond by performing side effects and

dispatching new actions based on the results.

Together, these components establish a clean,

maintainable, and testable architecture for

managing state in Angular applications.

C. Relationship to Redux and RxJS

NgRx is built on the foundational principles of

Redux, a state management library originally

developed for React applications. However, NgRx

is tailored for the Angular ecosystem and

integrates seamlessly with Angular’s reactive

features, particularly RxJS. This makes NgRx ideal

for applications that require real-time updates,

asynchronous workflows, or highly interactive

interfaces.

What sets NgRx apart is its ability to combine the

structural discipline of Redux with the reactive

capabilities of RxJS, resulting in a system that is

both robust and inherently suited to modern web

application demands.

D. The Broader NgRx Ecosystem

NgRx extends beyond state management. It offers

a full suite of tools designed to support large-scale

enterprise applications. These include:

 Entity management to streamline handling of

large collections of structured data.

 Developer tools for visualizing and debugging

state changes over time.

 Lightweight local state management for

specific components or modules.

 Router integration to track and synchronize

navigation state.

This rich ecosystem ensures that NgRx can adapt

to a wide range of application needs—from simple

modules to sprawling, multi-feature platforms—

while maintaining consistency, observability, and

control.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD33626 | Volume – 4 | Issue – 6 | September-October 2020 Page 1980

4. Core Concepts of NgRx for Effective State

Management

Successfully managing state in a growing Angular

application requires a clear understanding of

NgRx's core building blocks. While NgRx is a

technical library, its conceptual model is rooted in

principles that resonate with any architect or

engineering lead aiming for clarity, consistency,

and scalability. Here's how each key concept

contributes to that goal:

A. Actions: Defining Application Behavior

Actions represent events or user intentions within

the application. They’re the formal way of

signaling that something has happened—such as

loading data, submitting a form, or encountering

an error.

In practice, actions help decouple different parts of

the application by ensuring that all state changes

are triggered through clear, consistent definitions.

This structure enhances traceability, especially in

debugging or during complex workflows.

Strategic Value:

Actions enable transparency and predictability in

application behavior—crucial for auditability and

large team collaboration.

B. Reducers: Managing State Changes

Reducers define how the state should evolve in

response to actions. These are pure, predictable

functions that take the current state and an action,

then return a new state without side effects.

By centralizing all business logic that affects state,

reducers make it easier to test, reason about, and

maintain the application over time.

Strategic Value:

Reducers ensure your application behaves

consistently, simplifies testing, and eliminates

hidden or scattered state mutations.

C. Store: Centralizing Application State

The store acts as the single source of truth for

the application's state. Instead of having

fragmented state spread across components, NgRx

consolidates it into one structured container.

This unified approach promotes maintainability

and enables advanced features like state

snapshots, time travel debugging, and dynamic

updates based on user behavior.

Strategic Value:

Centralized state management boosts

maintainability, especially in large-scale

applications where state coordination is key to a

seamless user experience.

D. Selectors: Accessing and Reusing State

Efficiently

Selectors provide a way to query the state in a

consistent, efficient, and performance-optimized

manner. They are especially useful for projecting

specific slices of the state that different parts of the

UI or logic layers care about.

Rather than accessing raw state directly, selectors

encapsulate logic for transforming or filtering

data, which promotes reusability and reduces

duplication.

Strategic Value:

Selectors enhance performance and modularity,

and reduce coupling between UI components and

the state structure.

E. Effects: Managing Side Effects and External

Interactions

Effects handle asynchronous operations and

external service interactions—such as API

requests, routing changes, or local storage

updates—outside of reducers.

They listen for specific actions, perform the

required side effect, and then dispatch new actions

based on the outcome. This keeps the core state

logic clean while enabling rich functionality.

Strategic Value:

Effects maintain the separation of concerns and

ensure that business logic is centralized while side

effects are isolated, manageable, and testable.

Together, these core concepts of NgRx form a

robust architecture for managing state in Angular

applications. By adopting this model, teams can

enhance application scalability, reduce technical

debt, and create systems that are easier to reason

about, test, and evolve. NgRx doesn’t just

streamline development—it provides a framework

for long-term success in complex, data-intensive

front-end environments.

5. Advanced Patterns and Best Practices in

NgRx

As Angular applications grow in scale and

complexity, maintaining a streamlined and

maintainable state management architecture

becomes mission-critical. NgRx offers advanced

capabilities and best practices that help teams

elevate their state handling beyond the basics.

These patterns promote scalability, modularity,

and cleaner codebases—ensuring your application

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD33626 | Volume – 4 | Issue – 6 | September-October 2020 Page 1981

remains performant and developer-friendly as it

evolves.

A. Feature-Based State Organization and

Modular Architecture

A common pitfall in growing applications is a

monolithic state structure that becomes difficult to

manage. To address this, NgRx encourages

feature-based state segmentation—organizing

state into self-contained modules aligned with

specific application features (e.g., authentication,

user profiles, or product catalog).

By modularizing state, each feature becomes

independently maintainable, testable, and scalable.

This aligns with Angular’s architectural

philosophy and simplifies cross-functional

collaboration.

Strategic Value:

Promotes autonomy across development teams,

reduces cognitive load, and improves

maintainability by isolating state management

concerns.

B. Managing Collections with NgRx Entity

Real-world applications often deal with large sets

of data—such as lists of users, products, or tasks.

Manually handling these collections (adding,

updating, removing items) can lead to redundant

logic and inconsistent patterns.

NgRx Entity abstracts these complexities by

offering standardized methods for managing

collections of entities. It introduces structure,

consistency, and built-in performance

optimization to entity management—especially

when handling pagination, sorting, or lookup

operations.

Strategic Value:

Eliminates repetitive logic, enforces consistency

across data structures, and enhances performance

and developer productivity.

C. Lazy Loading State with Feature Modules

Just as Angular supports lazy loading of modules

to optimize performance, NgRx allows lazy

loading of feature-specific state. This means that

state slices are only initialized when the

corresponding feature is accessed—minimizing

the application's initial footprint and improving

responsiveness.

This approach is essential in large enterprise

applications where not all features are used at

once.

Strategic Value:

Boosts application performance, optimizes

memory usage, and aligns state initialization with

real user behavior.

D. Reducing Boilerplate with NgRx CLI and

Modern Syntax

While NgRx is powerful, traditional

implementations required substantial

boilerplate—leading to verbosity and slower

onboarding. Modern tooling and the NgRx CLI

now automate the generation of state artifacts

(actions, reducers, effects, etc.) using intuitive

commands.

Combined with modern APIs like createAction,

createReducer, and createEffect, developers can

write more declarative, concise, and expressive

state logic.

Strategic Value:

Accelerates development cycles, reduces human

error, and ensures consistency across teams by

leveraging automation and best practices.

E. Local State Management with NgRx

Component Store

Not all state needs to be global. For localized

scenarios—such as form interactions, toggles, or

nested UI elements—introducing global state can

add unnecessary complexity. NgRx Component

Store provides a lightweight and reactive

approach to managing state at the component

level.

It enables components to encapsulate and manage

their own logic without polluting the global store,

while still benefiting from the reactivity and

composability of the broader NgRx ecosystem.

Strategic Value:

Improves component isolation, avoids

overengineering, and strikes a balance between

global coordination and local autonomy.

6. Testing NgRx Applications

Testing is a crucial aspect of building reliable and

maintainable applications, especially when dealing

with state management in a reactive framework

like NgRx. A robust testing strategy for NgRx

applications involves several layers, ensuring that

both the logic and the integration of various pieces

of state are thoroughly validated. Unit testing is

typically the first step, focusing on isolated

components of the application such as actions,

reducers, and selectors. Actions can be tested by

ensuring that they are correctly dispatched with

the appropriate payloads, while reducers are

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD33626 | Volume – 4 | Issue – 6 | September-October 2020 Page 1982

tested by simulating state changes and confirming

that the expected transformations occur. Selectors

are tested by querying the state and validating that

the correct values are returned.

For integration testing, the interactions between

different parts of the application need to be tested.

This includes verifying how the state updates

when effects trigger side effects like HTTP

requests or routing changes. Testing NgRx effects

is essential to confirm that they correctly respond

to dispatched actions, trigger the appropriate side

effects, and dispatch further actions in response.

When it comes to testing components, one of the

most effective practices is to mock the store. By

simulating the state and actions of the store, you

can isolate and test the behavior of components

without relying on the actual NgRx store. This

approach allows you to focus on how the

component reacts to changes in the state and

ensures that the component’s behavior aligns with

expectations when interacting with the global

state.

A solid testing strategy for NgRx applications

ensures that each piece of the state management

system is working as expected, and that your

application behaves predictably even as it scales.

7. Performance Optimization Techniques

Performance is critical in any Angular application,

especially as the complexity and size of the app

grow. With NgRx, optimizing performance is a key

consideration to ensure that the application

remains responsive, even when handling large

amounts of state. One of the most effective ways to

improve performance in NgRx is through

memoization in selectors. Memoization allows

the system to cache the results of selector

computations, preventing unnecessary

recalculations when the underlying state hasn't

changed. This technique significantly reduces the

number of times selectors are recalculated,

especially when dealing with expensive

computations or large datasets.

Another crucial performance optimization is the

use of the OnPush change detection strategy.

This strategy helps Angular only check for changes

when explicitly required, which reduces the

number of checks that need to be made during the

rendering process. In an NgRx-powered

application, when the state changes, Angular’s

default change detection can trigger updates to the

entire component tree. However, with OnPush,

Angular will only check components when their

input properties change or an event occurs within

the component, making the change detection

process much more efficient.

Additionally, the ngrx/component library can be

used to further reduce unnecessary renders. It

helps to handle local component state in a more

optimized way by separating it from the global

store, ensuring that only the relevant components

are re-rendered when necessary. This reduces the

load on the global store and prevents unnecessary

component renders caused by frequent state

changes.

Finally, managing large states effectively and

minimizing re-renders is essential for

performance in NgRx applications. This involves

structuring the state in such a way that changes

are isolated to smaller slices of the state tree,

reducing the number of components that need to

be updated when state changes occur. Techniques

such as lazy loading of feature modules, state

segmentation, and efficient use of selectors can

all contribute to ensuring that only the necessary

components are affected by state changes,

minimizing the impact on performance.

Conclusion

NgRx stands as a highly valuable solution for

managing state in large-scale Angular applications.

As applications grow in complexity, NgRx provides

a powerful, reactive framework that allows

developers to handle state predictably and

efficiently. By adopting NgRx, developers can

ensure a robust structure for managing

application state, improving both performance and

scalability. The use of actions, reducers, selectors,

and effects enables a clear separation of concerns,

which simplifies the development and

maintenance of complex applications.

One of the key benefits of NgRx is its emphasis on

maintainability. With a clear state management

approach, developers can easily track state

changes, handle side effects, and ensure that the

application is more testable. NgRx's alignment

with Redux principles offers a well-established

pattern that makes the application easier to debug,

test, and evolve over time. Additionally, its

scalability ensures that as applications grow, state

management remains efficient and maintainable.

Another significant advantage of NgRx is its focus

on testability. By following a predictable state

model, unit tests for actions, reducers, selectors,

and effects become straightforward, reducing the

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD33626 | Volume – 4 | Issue – 6 | September-October 2020 Page 1983

complexity of testing and enhancing confidence in

the application’s reliability.

Finally, scalability is at the core of NgRx. It allows

applications to grow in terms of state complexity

without losing performance or manageability.

NgRx's modular approach, feature-based state

organization, and the ability to handle large states

efficiently make it an excellent choice for

enterprise-grade applications that require high

performance and responsiveness.

For teams new to NgRx, it is recommended to

adopt it incrementally and pragmatically. Start

small, implementing NgRx in isolated features or

modules, and gradually expand its use as the need

for scalable and maintainable state management

grows. This approach ensures that NgRx is

implemented in a way that adds value without

introducing unnecessary complexity, making it

easier for teams to leverage its benefits over time.

In conclusion, NgRx is an essential tool for

developers aiming to build high-performing,

maintainable, and scalable Angular applications,

providing a structured approach to managing state

while aligning with modern best practices for

large-scale application development.

References;

[1] Jena, Jyotirmay. (2020). Adapting to Remote

Work: Emerging Cyber Risks and How to

Safeguard Your Organization. 11. 1763-1773.

10.61841/turcomat.v11i1.15190.

[2] Babu, Talluri Durvasulu Mohan. "Advanced

Python Scripting for Storage Automation."

(2018).

[3] Kotha, N. R. (2017). Intrusion Detection

Systems (IDS): Advancements, Challenges,

and Future Directions. International

Scientific Journal of Contemporary Research

in Engineering Science and Management,

2(1), 21-40.

[4] Sivasatyanarayanareddy, M. (2020).

Delivering Exceptional Customer

Experiences with Hyper-Personalized BPM.

[5] Kolla, S. (2020). Neo4j Graph Data Science

(GDS) library: Advanced analytics on

connected data. International Journal of

Advanced Research in Engineering and

Technology, 11(8), 1077–1086.

https://doi.org/10.34218/IJARET_11_08_10

6

[6] NALINI, Sai Vinod Vangavolu. 2020.

“Optimizing MongoDB Schemas for High-

Performance MEAN Applications”. Turkish

Journal of Computer and Mathematics

Education (TURCOMAT) 11 (3):3061-68.

https://doi.org/10.61841/turcomat.v11i3.1

5237.

[7] Goli, V. R. (2016). Web design revolution:

How 2015 redefined modern UI/UX forever.

International Journal of Computer

Engineering & Technology, 7(2), 66-77.

[8] Scifo, E. (2020). Hands-On Graph Analytics

with Neo4j: Perform graph processing and

visualization techniques using connected data

across your enterprise. Packt Publishing Ltd.

[9] Gulnes, M. P. (2020). Graph-based

representation, integration, and analysis of

neuroscience data-The case of the murine

basal ganglia (Master's thesis).

[10] Nguyen, D. T., & Nguyen, T. M. T. A

Knowledge Map Mining-Based Personalized

Learning Path Recommendation Solution for

English Learning.

[11] Machireddy, J. R. (2021). Data-Driven

Insights: Analyzing the Effects of

Underutilized HRAs and HSAs on Healthcare

Spending and Insurance Efficiency. Journal of

Bioinformatics and Artificial Intelligence,

1(1), 450-469.

