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ABSTRACT 

Let NP be a zero symmetric prime near ring with multiplicative centre Z. 

Let f: NP → NP be a generalized derivation de

f ≠ 0 generalized derivation on NP for which (a) f(NP) 

∀x,y∈ NP ” Also if NP is 2-torsion free then NP is commutative ring, from 

which Herstein [2] Theorem comes out as a corollary.
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1. INTRODUCTION 

In this paper NP will denote a zero-symmetric near

with multiplicative centre Z. A generalized derivation on 

NP is defined to be an additive endomorphism satisfying 

 

f(xy) = f(x)y + xD(y) ∀x,y∈ N 

 

where D is the ordinary derivation defined on NP.

 

For x,y∈ NP, the symbol [x,y] will denote the commutator 

xy−yx, while the symbol (x,y) will denote the additive

group commutator x+y−x−y.  

 

The generalized derivation f will be called 

[x,f(x)] = 0 ∀ x ∈ NP. Finally, NP will be called prime if a,b

N and aNb = {0} implies that a = 0 or b = 0.

 

(Note that this definition implies the usual definition of 

prime near-ring. It does not seem to be known whether 

the twodefinition are equivalent.)  

 

We have proved (1) If f ≠ 0 generalized derivation on 

prime near ring N for which  

A. f(NP) ⊆ Z  

B. [f(x),f(y)] = 0 ∀x,y∈ NP  

 

Also if NP is 2-torsion free then NP is commutative ring, 

from which Herstein [2] Theorem comes out as a 

corollary.  

 

2. Preliminary results 

We begin with three quite general and useful lemmas to 

proving Theorems in Prime near Rings. 
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symmetric near-ring 

with multiplicative centre Z. A generalized derivation on 

fined to be an additive endomorphism satisfying  

fined on NP. 

NP, the symbol [x,y] will denote the commutator 

−yx, while the symbol (x,y) will denote the additive-

The generalized derivation f will be called commuting if 

NP. Finally, NP will be called prime if a,b∈ 

N and aNb = {0} implies that a = 0 or b = 0. 

finition implies the usual definition of 

ring. It does not seem to be known whether 

≠ 0 generalized derivation on 

torsion free then NP is commutative ring, 

from which Herstein [2] Theorem comes out as a 

We begin with three quite general and useful lemmas to 

 

Lemma 3.1 Let f be an arbitrary generalized derivation on 

the near-ring N. Then N satis

Distributive Law: 

 

(f(a)b + aD(b))c = f(a)bc + aD(b)c 

 

Lemma 3.2 If f be a generalized derivation on N and 

suppose that u ∈ N is not a zero divisor. then (u,x) is 

constant for every x ∈ N. 

 

Lemma 3.3 Let N have no non

admits a generalized 

derivation f. Then (N,+) is abelian.

 

3. Prime near-rings: 

We have taken NP be the prime near

 

Lemma 4.1 Let NP be a Prime near

then z is not zero divisor (ii) If Z contains a non

element z for which z + z ∈ Z then (NP,+) is abelian.

 

Proof  

A. If z ∈ Z −{0} and zx = 0. Then zNPx = 0. Hence x = 0.

B. Let z ∈ Z−{0}be an element such that z+z

x,y∈ NP. Since z + z is distributive

⇒ (x + y)(z + z) = x(z + z) + y(z + z)

= xz + xz + yz + yz 

= (x + x + y + y)z 

 

On the other hand 

(x + y)(z + z) = (x + y)z + (x + y)z

= xz + yz + xz + yz 

= (x + y + x + y)z 
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Let f be an arbitrary generalized derivation on 

Then N satisfies the following Partial 

(a)b + aD(b))c = f(a)bc + aD(b)c ∀a,b,c∈ NP 

If f be a generalized derivation on N and 

N is not a zero divisor. then (u,x) is 

Let N have no non-zero divisors of zero if N 

erivation f. Then (N,+) is abelian. 

We have taken NP be the prime near-ring. 

1 Let NP be a Prime near-ring (i) If z ∈ Z −{0} 

then z is not zero divisor (ii) If Z contains a non-zero 

Z then (NP,+) is abelian. 

−{0} and zx = 0. Then zNPx = 0. Hence x = 0. 

−{0}be an element such that z+z∈ Z and let 

NP. Since z + z is distributive 

(x + y)(z + z) = x(z + z) + y(z + z) 

(x + y)(z + z) = (x + y)z + (x + y)z 
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Then x + x + y + y = x + y + x + y. 

Hence x + y = y + x  

Hence (NP,+) is abelian. 

 

Lemma 4.2 Let NP be a Prime near-ring  

A. Let f be a non-zero generalized derivation on NP. Then 

xf(NP) = {0} ⇒ x = 0, and 

f(NP)x = {0} implies x = 0. 

B. If NP is 2-torsion free and f is a generalized derivation 

on NP s.t. f2 = 0 then f = 0 

 

Proof (i) Let xf(NP) = {0} and let r,s be arbitrary elements 

of NP. Then  

 

xf(rs) = 0 ⇒ x(f(r)s + rD(s)) = 0  

⇒xf(r)s =0 + xrD(s) = 0  

⇒xrD(s) = 0 

 

Then xND(NP) = {0} Since D(NP) ≠ 0 ⇒ x = 0  

 

A similar argument works if f(NP)x = {0} (Since Lemma 3.1 

gives distributivity to carry it through). 

Let x, y ∈ NP we have 

0 = f2(xy)  

⇒ 0 = f (f(x)y + xD(y))  

= f (f(x))y + f(x)D(y) + f(x)D(y) + xD(D(y)) 

= f2(x)y + f(x)D(y) + f(x)D(y) + xD2(y)  

⇒ 0 = 2f(x)D(y)  

⇒ f(x)D(y) = 0  

since NP is 2 torsion-free ⇒ f(x)D(NP) = {0} for each x ∈ N 

and (i) gives f = 0. 

 

Theorem 4.3 Let NP be a Prime near-ring. Let f be a non 

zero generalized derivation for which f(NP) ⊆ Z, then 

(NP,+) is abelian. Moreover, if NP is 2-torsion-free then NP 

is a commutative ring. 

 

Proof Let v be an arbitrary constant, and let x be a non 

constant. Then 

f(xv) = f(x)v + xD(v)  

= f(x)v ∈ Z  

 

Since f(x) ∈ Z −{0}, it follows easily that v ∈ Z. Since v + v is 

constant for all constants v, it follows from Lemma 2.1(ii) 

that (NP,+) is abelian, provided that there exists a non-

zero constant. Let NP is 2-torsion free near-ring. To prove 

that NP is commutative. 

 

By Lemma 3.1  

(f(a)b + aD(b))c = f(x)bc+aD(b)c ∀a,b,c∈ N and using the 

fact that f(ab) ∈ Z, we get 

 

cf(a)b + caD(b) = f(a)bc + aD(b)c 

 

Since (NP,+) is abelian and f(NP) ⊆ Z. This equation 

rearrange to yield f(a)[b,c] = D(b)[c,a], ∀a,b,c∈ NP Now 

suppose that NP is not commutative we choose b,c∈ NP 

with [b,c] ≠ 0 and letting a = f(x), we get 

 

f2(x)[b,c] = 0 ∀ x ∈ NP; 

⇒ we conclude that 

 

f2(x) = 0 ∀ x ∈ NP By Lemma 4.2(ii) f = 0 which is a 

contradiction ∵ f 6= 0. Hence our supposition is wrong. So 

NP is commutative. 

Theorem 4.4 Let NP be a Prime near-ring admitting a non 

zero generalized derivation f such that [f(x),f(y)] = 0 ∀x,y∈ 

NP. Then (NP,+) is abelian and if NP is 2-torsion free as 

well. Then NP is a commutative ring. 

 

Proof By Lemma 4.1(ii), if z and z + z commute 

elementwise with f(NP). Then z f(v) = 0 for all additive 

commutators v. Thus putting z = f(x), we get 

 

f(x)f(v) = 0 ∀ x ∈ NP 

⇒ f(c) = 0  

 

(By Lemma 4.2(i)) Since wv is also an additive 

commutator for any w ∈ NP, we have 

f(wv) = 0 ⇒ f(w)v = 0 

 

By Lemma 3.3 

v = 0. 

 

Hence (NP,+) is an abelian. Assume now that NP is 2-

torsion free. By partial distributive law 

 

f(f(x)y)f(z) = (f(f(x)y + f(x)D(y))f(z) ∀x,y,z∈ NP  

= f2(f(x))y f(z) + f(x)D(y)f(z)  

⇒ f2(f(x))yf(z) = −f(f(x)y)f(z)−f(x)D(y)f(z) 

= f(z)(f(f(x)y−f(x)D(y))  

= f(z)(f(f(x)y)  

= f(z)f2(x)y 

= f2(x)f(z)y  

⇒ f2(x)(yf(z)−f(z)y) = 0 ∀x,y,z∈ NP 

 

Replacing y by yt we get 

f2(x)(ytf(z)−f(z)yt) = 0  

⇒ f2(x)ytf(z) = f2(x)f(z)yt 

= f2(x)yf(z)t∀x,y,z,t∈ NP 

⇒ f2(x)NP [t,f(z)] = {0} ∀x,t,z∈ NP  

⇒ either f2 = 0 or f(NP) ⊆ Z (∵ NP is Prime) 

 

If f2 = 0 ⇒ By Lemma 4.2 (ii) f = 0  

which is a contradiction. (∵ f ≠0) 

⇒ f2 6= 0  

⇒ f(NP) ⊆ Z. 

 

By Theorem 4.3, NP is a commutative ring. 

Hence proved. 

 

Corollary 4.4.1 Replacing f by D we get Herstein [2] 

Theorem 

 

Conclusion 

In this paper we proved that “If f ≠ 0 generalized 

derivation on NP for which (a) f(NP) ⊆ Z (b) [f(x),f(y)] = 0 

∀x,y∈ NP ” and we also showed that if NP is 2-torsion free 

then NP is commutative ring, from which Herstein [2] 

Theorem comes out as a corollary. 
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