Some New Operators on Multi Intuitionistic Fuzzy Soft Matrix Theory

P. Rajarajeswari¹, J. Vanitha²

¹Assistant Professor of Mathematics, Chikkanna Government Arts College, Tirupur, Tamil Nadu, India
²Assistant Professor of Mathematics, RVS College of Education, Sulur, Coimbatore, Tamil Nadu, India

ABSTRACT
In this paper, we have defined four new operators namely □, ◻, ⊗, ⊠ on a new type of matrix namely Multi Intuitionistic Fuzzy soft Matrix were defined and some of their properties are studied. The concepts are illustrated with suitable numerical examples.

KEYWORDS: Soft Set, Fuzzy Soft Set, Intuitionistic Fuzzy soft set, Multi-Fuzzy Soft Set

Copyright © 2020 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

1. INTRODUCTION
In real world problems we have uncertainties. Zadeh [11] in 1965, has introduced the concept namely Fuzzy sets to deal uncertainties which consists of degree of membership. Intuitionistic Fuzzy Sets are introduced by Atanasov[1,2] which are extension of Fuzzy Sets and consists of both membership value and non-membership value associated with every element. The concept Soft set theory have been introduced by Molodtsor [8] in 1999 and he also studied various properties of soft set. Representation of Soft sets in matrix form was given by Cagman et.al [5]. Maji et. Al. [7] have introduced the concept of Intuitionistic fuzzy soft set. Multi sets and Multi Fuzzy Sets were studied in [3,4] and [10]. Intuitionistic Multi fuzzy soft sets were introduced by Sujit Das and Samarjit Kar [9].

AMS Mathematics subject classification (2010): 08A72

2. PRELIMINARIES
In this section we have given some basic definitions and properties which are required for this paper.

Definition 2.1
Let X denotes a Universal set. Then the membership function µA by which a fuzzy set (FS) A is usually defined has the form µA: X → [0, 1], where [0, 1] denotes the interval of real numbers from 0 to 1 inclusive.

Definition 2.2
An Intuitionistic Fuzzy Set (IFS) A in E is defined as an object of the following form A = \{(x, µA(x), νA(x))/ x ∈ E\}, where the functions, µA : E → [0, 1] and νA : E → [0, 1] define the degree of membership and the degree of non-membership of the element x ∈ E respectively and for every x ∈ E: 0 ≤ µA(x) + νA(x) ≤ 1.

Definition 2.3
Let U be an initial Universe and E be the set of parameters. Let A ⊆ E. A pair (F,A) is called Fuzzy Soft Set over U where F is a mapping given by F:A→Ip(U), where Ip(U) denotes the collection of all fuzzy subsets of U. An fuzzy soft set is a parameterized family of fuzzy subsets of Universe U.

Definition 2.4
Let IP(U) denotes the set of all intuitionistic fuzzy set of U. A pair (F,A) is called an Intuitionistic fuzzy soft set (IFSS) of over U, where F is a mapping given by F:A→Ip(U). For any parameter e ∈ A, F(e) is an intuitionistic fuzzy subset of U and is called Intuitionistic fuzzy value set of parameter e. Clearly F(e) can be written as an Intuitionistic fuzzy set such that F(e) = \{x, µF(e)(x), νF(e)(x)/ x ∈ U\}. Here µF(e)(x), νF(e)(x) are membership and non-membership functions respectively and ∀x ∈ U, µF(e)(x) + νF(e)(x) ≤ 1,
Definition 2.5
Let IMFS(U) denotes the set of all intuitionistic multi fuzzy set of U. A pair (F,A) is called a intuitionistic multi-fuzzy soft set (IMFSS) of dimension k over U, where F is a mapping given by F: A → IMFS\(^K\)(U). An intuitionistic multi fuzzy soft set is a mapping from parameters A to IMFS\(^K\)(U). It is a parameterized family of intuitionistic multi fuzzy subsets of U. For e ∈ A, F(e) may be considered as the set of approximate elements of the intuitionistic multi fuzzy soft set (F, A).

In this section, some new Operators on Multi Intuitionistic Fuzzy Soft Matrices are defined and based on these operators some properties are studied.

Definition 3.1
Let U = \{u_1, u_2, ..., u_m\} be the universal set and E = \{e_1, e_2, ..., e_n\} be the set of parameters. Let A ⊆ E and be a Multi Intuitionistic Fuzzy Soft Set on U. Then the matrix associated with this set named Multi Intuitionistic Fuzzy Soft Matrix \(\overline{A} = [a_{ij}]_{m \times n}\), where,

\[a_{ij} = \begin{cases} (\mu_{ij}^{(K)}(u_i), v_{ij}^{(K)}(u_i)) & \text{if } e_i \in A, \\ (0^{(K)}, 1^{(K)}) & \text{if } e_i \notin A \end{cases} \]

Also 0 ≤ \(\mu_{ij}^{(K)}(u_i) + v_{ij}^{(K)}(u_i)\) ≤ 1 and \(\mu_{ij}^{(K)}(u_i), v_{ij}^{(K)}(u_i), 1^{(K)}\) represents the membership and non-membership of the Multi Intuitionistic Fuzzy Soft Set.

The set of all m × n Multi Intuitionistic Fuzzy Soft Matrices are denoted by M\(^{K}\)IVFSM.

Example 3.2
Suppose that U = \{u_1, u_2, u_3\} is the universal set of students and E = \{e_1, e_2\} is the set of parameters where e_1 = Academic performance and e_2 = Sports performance. Let A = E. Then the Multi Intuitionistic Fuzzy Soft Set (F, A), where F : n → M\(^{K}\)IFS (Multi Intuitionistic Fuzzy Sets on U) and is given by

\[F(A) = \{ F(e_1) = \{(u_1, (0.8,0.1),(0.7,0.2)), (u_2, (0.5,0.3),(0.4,0.2)), (u_3, (0.7,0.2),(0.6,0.3))\}, F(e_2) = \{(u_1, (0.7,0.2),(0.6,0.3)), (u_2, (0.4,0.2),(0.5,0.1)), (u_3, (0.7,0.1),(0.6,0.2))\}\} \]

We can represent the above Multi Intuitionistic Fuzzy Soft Set in Matrix as follows.

\[
\begin{align*}
\overline{A}^{(2)}_{3 \times 2} = & \\
\begin{pmatrix}
(0.8,0.1) & (0.7,0.2) \\
(0.5,0.3) & (0.4,0.2) \\
(0.6,0.2) & (0.8,0.1)
\end{pmatrix}
\end{align*}
\]

Definition 3.3
Let \(\overline{A} = [a_{ij}]_{m \times n} \in M^{K}\)IFSM and \(\overline{B} = [b_{ij}]_{m \times n} \in M^{K}\)IFSM. Then \(\overline{A} \times \overline{B} \) is a Multi Intuitionistic Fuzzy Soft Sub Matrix of \(\overline{B}\), denoted by \(\overline{A} \subseteq \overline{B}\) if \(\mu_{ij}^{(K)} \leq \mu_{ij}^{(K)}\) and \(v_{ij}^{(K)} \geq v_{ij}^{(K)}\) for all \(i,j\) and K.

Definition 3.4
A Multi Intuitionistic Fuzzy Soft Matrix of order m × n with cardinality K is called Multi Intuitionistic Fuzzy Soft Null (Zero) Matrix if all of its elements are \((0^{(K)},1^{(K)})\). It is denoted by \(\overline{0}^{(K)}\).

Definition 3.5
A Multi Intuitionistic Fuzzy Soft Matrix of order m × n with cardinality K is called Multi Intuitionistic Fuzzy Soft Absolute Matrix if all of its elements are \((1^{(K)},0^{(K)})\). It is denoted by \(I^{(K)}\).

Definition 3.6
If \(\overline{A} = [a_{ij}]_{m \times n} \in M^{K}\)IFSM and \(\overline{B} = [b_{ij}]_{m \times n} \in M^{K}\)IFSM then Addition, Subtraction and Multiplication of two Multi Intuitionistic Fuzzy Soft Matrices \(\overline{A}\) and \(\overline{B}\) are defined as

\[
\overline{A} + \overline{B} = \left[\begin{array}{c}
\max(\mu_{ij}^{(K)}, \mu_{ij}^{(K)}) \\
\min(\nu_{ij}^{(K)}, \nu_{ij}^{(K)})
\end{array}\right] \\
\overline{A} - \overline{B} = \left[\begin{array}{c}
\min(\mu_{ij}^{(K)}, \mu_{ij}^{(K)}) \\
\max(\nu_{ij}^{(K)}, \nu_{ij}^{(K)})
\end{array}\right] \\
\overline{A} \times \overline{B} = \left[\begin{array}{c}
\min_{i,j} \mu_{ij}^{(K)} \\
\min_{i,j} \nu_{ij}^{(K)}
\end{array}\right]
\]

Example 3.7
Consider

\[
\overline{A}^{(2)}_{3 \times 2} = \left(\frac{1}{2} \begin{pmatrix}
(0.7,0.2) & (0.8,0.1) \\
(0.5,0.4) & (0.4,0.5) \\
(0.6,0.2) & (0.5,0.4)
\end{pmatrix}\right) \\
\overline{B}^{(2)}_{3 \times 2} = \left(\frac{1}{2} \begin{pmatrix}
(0.7,0.1) & (0.6,0.2) \\
(0.5,0.4) & (0.4,0.5) \\
(0.6,0.2) & (0.5,0.4)
\end{pmatrix}\right)
\]

are two Multi Intuitionistic Fuzzy Soft Matrices then

\[
\overline{A}^{(2)}_{3 \times 2} + \overline{B}^{(2)}_{3 \times 2} = \left(\frac{1}{2} \begin{pmatrix}
(0.7,0.2) & (0.8,0.1) \\
(0.5,0.4) & (0.4,0.5) \\
(0.6,0.2) & (0.5,0.4)
\end{pmatrix}\right) \\
\overline{A}^{(2)}_{3 \times 2} - \overline{B}^{(2)}_{3 \times 2} = \left(\frac{1}{2} \begin{pmatrix}
(0.7,0.1) & (0.6,0.2) \\
(0.5,0.4) & (0.4,0.5) \\
(0.6,0.2) & (0.5,0.4)
\end{pmatrix}\right)
\]

Definition 3.8
Let \(\overline{A} = [a_{ij}]_{m \times n} \in M^{K}\)IFSM then \(\overline{A}^{(K)}\) is the Multi Intuitionistic Fuzzy Soft Transpose Matrix of \(\overline{A}\) and is given by \(\overline{A}^{(K)} = [a_{ij}]_{m \times n} \in M^{K}\)IVFSM.

Definition 3.9
Let \(\overline{A} = [a_{ij}]_{m \times n} \in M^{K}\)IFSM where \(a_{ij} = (\mu_{ij}^{(K)}(u_i), \nu_{ij}^{(K)}(u_i))\). Then \(\overline{A}^{(K)}\), the Multi Intuitionistic Fuzzy Soft Complement Matrix \(\overline{A}^{(K)}\) is defined as \(\overline{A}^{(K)} = [b_{ij}]_{m \times n} = (\nu_{ij}^{(K)}(u_i), \mu_{ij}^{(K)}(u_i))\), for all \(i,j\) and K.
Definition 3.10
Let $\bar{A}^{(k)} = [a_{ij}^{(k)}]_{m \times n} \in M^{(k)}{I}{FSM}$ where $a_{ij}^{(k)} = (\mu^i_j(k), v^{k}j_i(k))$. Then

I. $\square \bar{A}^{(k)}$ is called a Multi Intuitionistic Fuzzy Soft Necessity Matrix of $\bar{A}^{(k)}$ and is defined as

$\square \bar{A}^{(k)} = [b_{ij}^{(k)}]_{m \times n}$ where $b_{ij}^{(k)} = (\mu^i_j(k), 1 - v^{k}j_i(k))$ for all i,j and K.

II. $\phi \bar{A}^{(k)}$ is called a Multi Intuitionistic Fuzzy Soft Possibility Matrix of $\bar{A}^{(k)}$ and is defined as

$\phi \bar{A}^{(k)} = [b_{ij}^{(k)}]_{m \times n}$, where $b_{ij}^{(k)} = (1 - \mu^i_j(k), v^{k}j_i(k))$ for all i,j and K.

Example 3.11
Let $\bar{A}_{2 \times 2}$ be a Multi Intuitionistic Fuzzy Soft Matrix given by

$\bar{A}_{2 \times 2} = \left(\begin{array}{cc}
[0.6,0.3], [0.7,0.3] & [0.6,0.2], [0.5,0.3] \\
[0.5,0.4], [0.6,0.2] & [0.7,0.2], [0.8,0.1]
\end{array}\right)_{2 \times 2}$

Then Multi Intuitionistic Fuzzy Soft Necessity Matrix of $\bar{A}^{(2)}$ is given by

$\square \bar{A}_{2 \times 2} = \left(\begin{array}{cc}
[0.6,0.4], [0.7,0.3] & [0.6,0.4], [0.5,0.5] \\
[0.5,0.5], [0.6,0.4] & [0.7,0.3], [0.8,0.2]
\end{array}\right)_{2 \times 2}$

Also Multi Intuitionistic Fuzzy Soft Possibility Matrix of $\bar{A}^{(2)}$ is given by

$\phi \bar{A}_{2 \times 2} = \left(\begin{array}{cc}
[0.7,0.3], [0.7,0.3] & [0.8,0.2], [0.7,0.3] \\
[0.6,0.4], [0.8,0.2] & [0.9,0.1]
\end{array}\right)_{2 \times 2}$

Proposition 3.12
Let $\bar{A}^{(k)} = [a_{ij}^{(k)}]_{m \times n} \in M^{(k)}{I}{FSM}$ where $a_{ij}^{(k)} = (\mu^i_j(k), v^{k}j_i(k))$. Then

I. $(\square \bar{A}^{(k)})^C = \phi \bar{A}^{(k)}$

II. $(\phi \bar{A}^{(k)})^C = \square \bar{A}^{(k)}$

III. $\square \bar{A}^{(k)} \subseteq \bar{A}^{(k)} \subseteq \phi \bar{A}^{(k)}$

IV. $\phi (\square \bar{A}^{(k)}) = \phi \bar{A}^{(k)}$

V. $\phi (\phi \bar{A}^{(k)}) = \phi \bar{A}^{(k)}$

VI. $\phi (\square \bar{A}^{(k)}) = \square \bar{A}^{(k)}$

VII. $\phi (\square \bar{A}^{(k)}) = \bar{A}^{(k)}$

VIII. $(\square \bar{A}^{(k)})^n = \square (\square (\ldots (\bar{A}^{(k)}) \ldots)) = \bar{A}^{(k)}$ for all integer $n > 0$.

IX. $\phi (\bar{A}^{(k)})^n = \phi (\phi (\phi (\ldots (\bar{A}^{(k)}) \ldots))) = \bar{A}^{(k)}$ for all integer $n > 0$.

Proof
(i) $\bar{A}^{(k)} = (v^{k}j_i(k), 1 - v^{k}j_i(k))$ for all i,j and K.

Now, $\square \bar{A}^{(k)} = (v^{k}j_i(k), 1 - v^{k}j_i(k))$ for all i,j and K.

$\phi \bar{A}^{(k)} = (1 - v^{k}j_i(k), v^{k}j_i(k))$ for all i,j and K.

Similarly (ii) can be proved.

Remark 3.13
Let $\bar{A}^{(k)}$ be a Multi Intuitionistic Fuzzy Soft Matrix. Then in general $\square \phi \bar{A}^{(k)} = \phi \square \bar{A}^{(k)}$.

Proposition 3.14
If $\bar{A}^{(k)} = [a_{ij}^{(k)}]_{m \times n} \in M^{(k)}{I}{FSM}$ and $\bar{B}^{(k)} = [b_{ij}^{(k)}]_{m \times n} \in M^{(k)}{I}{FSM}$ then

(i) $\square (\bar{A}^{(k)} + \bar{B}^{(k)}) = \bar{A}^{(k)} + \bar{B}^{(k)}$

(ii) $\phi (\bar{A}^{(k)} + \bar{B}^{(k)}) = \phi \bar{A}^{(k)} + \phi \bar{B}^{(k)}$

(iii) $\square (\bar{A}^{(k)} \cdot \bar{B}^{(k)}) = (\phi \bar{A}^{(k)})^C$

(iv) $\phi (\phi \bar{A}^{(k)}) = (\square \bar{A}^{(k)})^C$

Proof
(i). Let $\bar{A}^{(k)} = [a_{ij}^{(k)}]_{m \times n} = [\mu^i_j(k), v^{k}j_i(k)] \in M^{(k)}{I}{FSM}$ and $\bar{B}^{(k)} = [b_{ij}^{(k)}]_{m \times n} = [\mu^i_j(k), v^{k}j_i(k)] \in M^{(k)}{I}{FSM}$ then

$\bar{A}^{(k)} + \bar{B}^{(k)} = \left[\max(\mu^i_j(k), \mu^i_j(k)) \min(v^{k}j_i(k), v^{k}j_i(k))\right]$ for all i,j and K.

(ii). $\phi (\bar{A}^{(k)} + \bar{B}^{(k)}) = \left[\max(\mu^i_j(k), \mu^i_j(k)) \cdot 1 - \max(\mu^i_j(k), \mu^i_j(k))\right]$ for all i,j and K.

Similarly (ii) can be proved.
(iii). Consider \(\tilde{A} = (v_{ij}) \) for all \(ij \) and \(K \)

Now, \(\Box A = (v_{ij}) = (v_{ij} - 1) \) for all \(ij \) and \(K \) \(\rightarrow (3) \)

Similarly, (iv) can be proved.

Definition 3.15

If \(A = (a_{ij}) \) \(m \times n \) \(\in \mathbb{M}(\mathbb{IFSM}) \) and \(B = (b_{ij}) \) \(m \times n \) \(\in \mathbb{M}(\mathbb{IFSM}) \) then the operators \(\oplus \) and \(\otimes \) are defined on these matrices as follows.

(i) \(A \oplus B = (\mu_{ij} + \mu_{ij}) \) for all \(ij \) and \(K \)

(ii) \(A \otimes B = (\mu_{ij} \mu_{ij} + \mu_{ij} \mu_{ij}) \) for all \(ij \) and \(K \)

Proposition 3.16

Let \(A = (a_{ij}) \) \(m \times n \) \(\in \mathbb{M}(\mathbb{IFSM}) \) and \(B = (b_{ij}) \) \(m \times n \) \(\in \mathbb{M}(\mathbb{IFSM}) \) then

(i) \(A \oplus B \subseteq A \oplus B \)

(ii) \(A \oplus B \subseteq A \oplus B \)

(iii) \(A \oplus B \subseteq A \oplus B \)

Proof

Let \(\tilde{A}_{m \times n} = \left[\mu_{ij}, v_{ij} \right] \in \mathbb{M}(\mathbb{IFSM}) \) and \(\tilde{B}_{m \times n} = \left[\mu_{ij}, v_{ij} \right] \in \mathbb{M}(\mathbb{IFSM}) \)

Now, \(\tilde{A} + \tilde{B} = \left[\max(\mu_{ij}, \mu_{ij}), \min(\nu_{ij}, \nu_{ij}) \right] \) for all \(ij \) and \(K \)

Since \(\max(\mu_{ij}, \mu_{ij}) \leq \mu_{ij} + \mu_{ij} - \mu_{ij} \) and \(\min(\nu_{ij}, \nu_{ij}) \geq \nu_{ij} \)

Hence \(\tilde{A} + \tilde{B} \subseteq \tilde{A} \oplus \tilde{B} \)

Similarly (ii) can be proved.

Corollary 3.17

Let \(\tilde{A} = (\tilde{A}) \) \(\in \mathbb{M}(\mathbb{IFSM}) \) then

(i) \(A \subseteq A \oplus A \)

(ii) \(A \subseteq A \oplus A \)

(iii) \(A \subseteq A \oplus A \)

(iv) \(A \subseteq A \oplus A \)

Proof is Obvious.

Proposition 3.18

Let \(\tilde{A} \) and \(\tilde{B} \) \(\in \mathbb{M}(\mathbb{IFSM}) \) then

(i) \(A \oplus B = B \oplus A \) (Commutative Law)

(ii) \((A \oplus B) \oplus C = A \oplus (B \oplus C) \) (Associative Law)

(iii) \(A \oplus B = B \oplus A \) (Commutative Law)

(iv) \((A \oplus B) \oplus C = A \oplus (B \oplus C) \) (Associative Law)

Proof

Let \(A_{m \times n} = \left[a_{ij} \right] \) \(m \times n \) \(\in \mathbb{M}(\mathbb{IFSM}) \), \(B_{m \times n} = \left[b_{ij} \right] \) \(m \times n \) \(\in \mathbb{M}(\mathbb{IFSM}) \) and \(C_{m \times n} = \left[c_{ij} \right] \) \(m \times n \) \(\in \mathbb{M}(\mathbb{IFSM}) \) then

Now, \(\tilde{A} \otimes \tilde{B} = \left[\mu_{ij}, \nu_{ij} \right] \in \mathbb{M}(\mathbb{IFSM}) \)

Similarly (ii) can be proved.

Proposition 3.19

Let \(\tilde{A} \) and \(\tilde{B} \) are symmetric, then \(\tilde{A} \otimes \tilde{B} \) and \(\tilde{A} \otimes \tilde{B} \) are also symmetric.

Proof

Let \(A_{m \times n} = \left[a_{ij} \right] \) \(m \times n \) \(\in \mathbb{M}(\mathbb{IFSM}) \) and \(B_{m \times n} = \left[b_{ij} \right] \) \(m \times n \) \(\in \mathbb{M}(\mathbb{IFSM}) \).

Then we have \(\mu_{ij} \leq \mu_{ij} + \nu_{ij} \leq 1 \) and \(\mu_{ij} + \nu_{ij} \leq 1 \) for all \(ij \) and \(K \).

Given that \(\tilde{A} \) and \(\tilde{B} \) are symmetric. We have \(\tilde{A} = \tilde{A} \) and \(\tilde{B} = \tilde{B} \).
Therefore, $\mu_{\text{ij}}^{(k)} = \mu_{\text{ij}}^{(k)}$ and $\nu_{\text{ij}}^{(k)} = \nu_{\text{ij}}^{(k)}$.

Also $\mu_{\text{Bij}}^{(k)} = \mu_{\text{Bij}}^{(k)}$ and $\nu_{\text{Bij}}^{(k)} = \nu_{\text{Bij}}^{(k)}$.

For all i, j and K, $(A^{(k)} \oplus B^{(k)})^T = \left[(\mu_{\text{Aij}}^{(k)} + \mu_{\text{Bij}}^{(k)} - \mu_{\text{Aij}}^{(k)} - \mu_{\text{Bij}}^{(k)}), (\nu_{\text{Aij}}^{(k)} + \nu_{\text{Bij}}^{(k)} - \nu_{\text{Aij}}^{(k)} - \nu_{\text{Bij}}^{(k)}) \right]^T$.

(i) $M = \left[(\mu_{\text{Aij}}^{(k)}, \nu_{\text{Aij}}^{(k)}) \right]_{m \times n} \in M^{(k)}$ IFSM. Let $A^{(k)} = \left[(\mu_{\text{Aij}}^{(k)}, \nu_{\text{Aij}}^{(k)}) \right]_{m \times n}$ and $B^{(k)} = \left[(\mu_{\text{Bij}}^{(k)}, \nu_{\text{Bij}}^{(k)}) \right]_{m \times n}$. Then

(i) $A^{(k)} \oplus B^{(k)} = A^{(k)} \oplus B^{(k)}$

(ii) $(A^{(k)} \oplus B^{(k)})^T = A^{(k)} \oplus B^{(k)}$

Proposition 3.21

Let $A^{(k)} = \left[(\mu_{\text{Aij}}^{(k)}, \nu_{\text{Aij}}^{(k)}) \right]_{m \times n} \in M^{(k)}$ IFSM and $B^{(k)} = \left[(\mu_{\text{Bij}}^{(k)}, \nu_{\text{Bij}}^{(k)}) \right]_{m \times n} \in M^{(k)}$. Then

(i) $(A^{(k)} \oplus B^{(k)})^T = A^{(k)} \oplus B^{(k)}$

(ii) $(A^{(k)} \oplus B^{(k)})^T = A^{(k)} \oplus B^{(k)}$

Proposition 3.22

Let $\overline{A}^{(k)} = [a_{ij}^{(k)}]_{m \times n} \in M^{(k)}$ IFSM and $\overline{B}^{(k)} = [b_{ij}^{(k)}]_{m \times n} \in M^{(k)}$. Then

(i) $(\overline{A}^{(k)} \oplus \overline{B}^{(k)})^C = A^{(k)} \oplus B^{(k)}$

(ii) $(\overline{A}^{(k)} \oplus \overline{B}^{(k)})^C = A^{(k)} \oplus B^{(k)}$

(iii) If $\overline{A}^{(k)} \subseteq \overline{B}^{(k)}$, then $\overline{A}^{(k)} \subseteq \overline{B}^{(k)}$

Proof

$(\overline{A}^{(k)} \oplus \overline{B}^{(k)})^C = A^{(k)} \oplus B^{(k)}$

For all i, j and K, $(\overline{A}^{(k)} \oplus \overline{B}^{(k)})^C = \left[(\mu_{\text{Aij}}^{(k)} + \mu_{\text{Bij}}^{(k)} - \mu_{\text{Aij}}^{(k)} - \mu_{\text{Bij}}^{(k)}), (\nu_{\text{Aij}}^{(k)} + \nu_{\text{Bij}}^{(k)} - \nu_{\text{Aij}}^{(k)} - \nu_{\text{Bij}}^{(k)}) \right]^C$.

(i) $\overline{A}^{(k)} = \left[(\mu_{\text{Aij}}^{(k)}, \nu_{\text{Aij}}^{(k)}) \right]_{m \times n}$ and $\overline{B}^{(k)} = \left[(\mu_{\text{Bij}}^{(k)}, \nu_{\text{Bij}}^{(k)}) \right]_{m \times n}$. Then

From (i) and (ii) $(\overline{A}^{(k)} \oplus \overline{B}^{(k)})^C = A^{(k)} \oplus B^{(k)}$

Similarly we can prove (i).

From (i) and (ii) $(\overline{A}^{(k)} \oplus \overline{B}^{(k)})^C = A^{(k)} \oplus B^{(k)}$

Similarly we can prove (ii).

(iii). Let $\overline{A}^{(k)} \subseteq \overline{B}^{(k)}$. Therefore for all i, j and K we have

$\mu_{\text{Aij}}^{(k)} \leq \mu_{\text{Bij}}^{(k)}$ and $\nu_{\text{Aij}}^{(k)} \leq \nu_{\text{Bij}}^{(k)}$

Then $\mu_{\text{Aij}}^{(k)} + \mu_{\text{Bij}}^{(k)} - \mu_{\text{Aij}}^{(k)} - \mu_{\text{Bij}}^{(k)} \leq \mu_{\text{Bij}}^{(k)}$

and $\nu_{\text{Aij}}^{(k)} + \nu_{\text{Bij}}^{(k)} - \nu_{\text{Aij}}^{(k)} - \nu_{\text{Bij}}^{(k)} \leq \nu_{\text{Bij}}^{(k)}$

From (i) we have $\overline{A}^{(k)} \oplus \overline{B}^{(k)} \subseteq \overline{A}^{(k)} \oplus \overline{B}^{(k)}$.
Reference

