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ABSTRACT 
Radio labelling problem is a special type of assignment problem which 
maximizes the number of channels in a specified bandwidth. A radio 
labelling of a connected graph 𝐺 = (𝑉, 𝐸) is an injection ℎ: 𝑉(𝐺) → 𝑁 such 
that 𝑑(𝑥, 𝑦)  + |𝑓(𝑥) −  𝑓(𝑦)|  ≥ 1 +  𝑑(𝐺)∀ 𝑥, 𝑦 ∈ 𝑉(𝐺), where 𝑑(𝐺) is the 
diameter of the graph 𝐺. The radio number of 𝒉 denoted 𝑟𝑛(ℎ), is the 
maximum number assigned to any vertex of 𝐺. The radio number of 𝑮, 
denoted 𝑟𝑛(𝐺), is the minimum value of 𝑟𝑛(ℎ) taken over all labelling’s ℎ of 
𝐺. In this paper we have obtained the radio number certain classes of 

circulant graphs, namely 𝐺 (𝑛; {1,2 … ⌊
𝑛

2
⌋ −

1}) , 𝐺 (𝑛; {1,
𝑛

2
}) , 𝐺 (𝑛; {1,

𝑛

3
}) and 𝐺 (𝑛; {1,

𝑛

5
}). 
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1. INTRODUCTION 
In the modern world, all the communications are based on 
the wireless mode. In the end of the 20th century most of 
the communication were developed based on the wireless 
networks. These communications are working based on 
the specified allocation of the electromagnetic spectrum. 
One of the main applications is based on the low frequency 
long wavelength waves called radio waves. Among this, a 
fixed bandwidth ranges from 88.1 MHZ to 108 MHZ was 
allotted for the channel assignment of FM radio stations. 
88.1 MHz and finished at 108MHz This real-life minimax 
problem motivated Chartrand et al. [6] in the year 2001 to 
introduced a new labelling called the radio labelling. He 
defined the formal graph theoretical definition for radio 
labelling problem as follows: 
 
Let 𝑑𝑖𝑎𝑚(𝐺) be the diameter of a connected graph G. An 
injection h from the vertex set of G to N such that 𝑑(𝑢, 𝑣) +
|ℎ(𝑢) − ℎ(𝑣)|  ≥ 1 +  𝑑𝑖𝑎𝑚(𝐺)) for every pair of vertices 
in G. The radio number of h, denoted by 𝑟𝑛(ℎ), is the 
maximum number assigned to any vertex of G. The radio 
number of G, denoted by 𝑟𝑛(𝐺), is the minimum value of 
𝑟𝑛(ℎ) taken over all labelling’s ℎ of 𝐺. 
 
The radio number problem is NP-hard [9], even for graphs 
with diameter 2. In the past two decades plenty of 
research articles are published in this area and also 
developed new labelling problems based on the radio 
number. 
 
2. An Overview of the Paper 
For the past 20 years, several authors studied the radio 
labelling problem and its variations in various networks  

 
and graphs. Radio labelling problem is a particular case of 
radio K- Chromatic number [7]. In the recent years few 
new labelling’s were introduced by different authors 
based on the k value, namely, radio mean labelling, radio 
multiplicative labelling, radial radio labelling etc. The 
radio number of square cycles was determined by Liu et.al 
[12]. Bharati et.al [2,3] obtained the bounds for the 
hexagonal mesh as 3𝑛2 − 3𝑛 + 2 + 12 ∑ 𝑖(𝑖 − 𝑛 − 1) ≤𝑛−2

𝑖=0

𝑟𝑛(𝐺) ≤ 𝑛(3𝑛2 − 4𝑛 − 1) + 3 and completely determined 
the radio number of graphs with small diameters. 
Kchikech et.al [10] studied the radio k-labelling of graphs. 
Fernandez et al. [8] computed the radio number for gear 
graph. Kins et. al. [11] investigated the radio number for 
mesh derived architectures and wheel extended graphs.  
 
In this paper we have investigated the radio labelling of 
certain classes of circulant graphs.  
 
3. Circulant Graphs 
Circulant graphs have been used for several decades in the 
design of telecommunication networks because of their 
optimal fault-tolerance and routing capabilities [5]. For 
designing certain data alignment networks, the circulant 
graphs are being used. for complex memory systems [13]. 
Most of the earlier research concentrated on using the 
circulant graphs to build interconnection networks for 
distributed and parallel systems [2]. By using circulant 
graph we can adapt the performance of the network to 
user needs. It’s a regular graph which includes standard 
such as the complete graph and the cycle. 
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Definition 3.1: An undirected circulant graph denoted by 

𝐺(𝑛; ±{1,2 … 𝑗}), 1 ≤ 𝑗 ≤ ⌊
𝑛

2
⌋ , 𝑛 ≥ 3, is defined as a graph 

with vertex set 𝑉 = {0,1 … 𝑛 − 1} and the edge set 𝐸 =
{(𝑖, 𝑗): |𝑗 − 𝑖| ≡ 𝑘(𝑚𝑜𝑑 𝑛), 𝑘 ∈ {1,2 … 𝑗}. 
 
Remark 1: In this paper for our convenience we take the 
vertex set 𝑉 as {𝑣1, 𝑣2 … 𝑣𝑛}, which is named in clockwise 
order.  
 

Remark 2: It is clear that, when 𝑗 =
𝑛

2
, the circulant graph 

𝐺 (𝑛; ± {1,2 … ⌊
𝑛

2
⌋}), become a complete graph. 

 
Lemma 3.1: The diameter of the circulant graph 

𝐺 (𝑛; {1,2 … ⌊
𝑛

2
⌋ − 1}) is 2. 

 
Proof: As we know that, the circulant graph 

𝐺 (𝑛; {1,2 … ⌊
𝑛

2
⌋ − 1}) is obtained from the circulant graph 

𝐺 (𝑛; ± {1,2 … ⌊
𝑛

2
⌋}) by the removal of an unique one edge 

from each vertex with maximum distance on the outer 

cycle. Since the diameter of 𝐺 (𝑛; ± {1,2 … ⌊
𝑛

2
⌋}) is 1, it is 

obvious that the diameter of the circulant graph 

𝐺 (𝑛; {1,2 … ⌊
𝑛

2
⌋ − 1}) is 2. 

 
Theorem 3.1: The radio number of the circulant graph 

𝐺 (𝑛; {1,2 … ⌊
𝑛

2
⌋ − 1}) is given by 𝐺 (𝑛; {1,2 … ⌊

𝑛

2
⌋ − 1}) =

𝑛. 
 

Proof: Let 𝑉 (𝐺 (𝑛; {1,2 … ⌊
𝑛

2
⌋ − 1})) = {𝑣1, 𝑣2 … 𝑣𝑛}. Define 

an injection ℎ: {𝑣1, 𝑣2 … 𝑣𝑛} → 𝑁 as follows: ℎ(𝑣𝑖) = 2𝑖 −

1, 𝑖 = 1,2 … ⌈
𝑛

2
⌉, ℎ (𝑣

⌈
𝑛

2
⌉+𝑖

) = 2𝑖, 𝑖 = 1,2 … ⌊
𝑛

2
⌋. 

 
Next, we claim that the defined injection h is a valid radio 
labeling. Using Lemma 3.1, we must verify the radio 
labelling condition 𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)|  ≥ 3 ∀ 𝑥, 𝑦 ∈

𝑉 (𝐺 (𝑛; {1,2 … ⌊
𝑛

2
⌋ − 1})). 

 

Case 1: If 𝑥 = 𝑣𝑘 and 𝑦 = 𝑣𝑚, 1 ≤ 𝑘 ≠ 𝑚 ≤ ⌈
𝑛

2
⌉, then 

𝑑(𝑥, 𝑦) ≥ 1, ℎ(𝑥) = 2𝑘 − 1 and ℎ(𝑦) = 2𝑚 − 1. Hence 
𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)|  ≥ 1 + 2(𝑘 − 𝑚) ≥ 3, since 𝑘 ≠ 𝑚. 
 

Case 2: If 𝑥 = 𝑣
⌈
𝑛

2
⌉+𝑘

 and 𝑦 = 𝑣
⌈
𝑛

2
⌉+𝑚

, 1 ≤ 𝑘 ≠ 𝑚 ≤ ⌊
𝑛

2
⌋, 

then 𝑑(𝑥, 𝑦) ≥ 1, ℎ(𝑥) = 2𝑘 and ℎ(𝑦) = 2𝑚. Hence 
𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)|  ≥ 1 + 2(𝑘 − 𝑚) ≥ 3, since 𝑘 ≠ 𝑚. 
 

Case 3: If 𝑥 = 𝑣𝑘  and 𝑦 = 𝑣
⌈
𝑛

2
⌉+𝑚

, 1 ≤ 𝑘 ≤ ⌈
𝑛

2
⌉, 1 ≤ 𝑚 ≤ ⌊

𝑛

2
⌋, 

then either 𝑑(𝑥, 𝑦) ≥ 1 and |ℎ(𝑥) − ℎ(𝑦)| ≥ 2 or 𝑑(𝑥, 𝑦) =
2 |ℎ(𝑥) − ℎ(𝑦)| ≥ 1. In both the cases we have 𝑑(𝑥, 𝑦) +
|ℎ(𝑥) − ℎ(𝑦)| ≥ 3.  
 
Thus, 𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)|  ≥ 3 for all 𝑥, 𝑦 ∈

𝑉 (𝐺 (𝑛; {1,2 … ⌊
𝑛

2
⌋ − 1})). 

 
Therefore, ℎ is a radio labelling and 𝑟𝑛(𝐺) ≤ 𝑛. Since the 
mapping is an injection, all the 𝑛 vertices of 

𝐺 (𝑛; {1,2 … ⌊
𝑛

2
⌋ − 1}) received different radio labelling. 

Hence, we conclude that the radio number of 

𝐺 (𝑛; {1,2 … ⌊
𝑛

2
⌋ − 1}) is exactly 𝑛. 

 

Lemma 3.2: The diameter of 𝐺 (𝑛; {1,
𝑛

3
}) is ⌊

𝑛

6
⌋ +1, 

whenever 𝑛 ≡ 0(𝑚𝑜𝑑 3). 
 
Proof: As in the proof of Lemma 3.2, with a common 

difference of length 
𝑛

3
− 1 in the outer cycle, we construct 

the graph 𝐺 (𝑛; {1,
𝑛

3
}) by joining the vertices 𝑣1 to 𝑣𝑛

3
, 𝑣2 to 

𝑣𝑛

2
+1 …. Therefore, the diameter of 𝐺 (𝑛; {1,

𝑛

3
}) is ⌊

𝑛

6
⌋ +1. 

 

Theorem 3.2: The radio number of 𝐺 (𝑛; {1,
𝑛

3
}) , 𝑛 ≡

0(𝑚𝑜𝑑3), satisfies 𝑟𝑛 (𝐺 (𝑛; {1,
𝑛

2
})) ≤

{
(

𝑛

6
+ 1) (

𝑛

2
+ 1) + ⌈

𝑛

12
⌉ + 1, if 𝑛 is even

⌈
𝑛

6
⌉ (

𝑛−1

2
) +, if 𝑛 is odd.

 

 
Proof: We partition the vertex set 𝑉 = {𝑣1, 𝑣2 … 𝑣𝑛} into 

four disjoint set 𝑉1, and 𝑉2, where 𝑉1 = {𝑣1, 𝑣2 … 𝑣
⌈
𝑛

2
⌉
} , 𝑉2 =

{𝑣
⌈

𝑛

2
⌉+1

, 𝑣𝑣
⌈
𝑛
2⌉+2

… 𝑣𝑛}. We discuss the proof for n even and 

odd case separately.  
 

 
Figure 1: Radio labelling of circulant graphs 𝑮(𝒏; {𝟏,

𝒏

𝟑
}) 

with 𝒏 = 𝟏𝟖 𝒂𝒏𝒅 𝟐𝟏. 
Case 1: n is even  
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Define a mapping ℎ: 𝑉 (𝐺 (𝑛; {1,
𝑛

3
})) → 𝑁 as follows:  

ℎ(𝑣𝑖) = (
𝑛

6
+ 1) (𝑖 − 1) + 1, 𝑖 = 1,2 …

𝑛

2
. 

 

ℎ (𝑣𝑛

2
+𝑖

) = (
𝑛

6
+ 1) (𝑖 − 1) + ⌈

𝑛

12
⌉ + 1, 𝑖 = 1,2 …

𝑛

2
. See 

Figure 1. 
 

Case 1.1: Suppose 𝑥 = 𝑣𝑘 and 𝑦 = 𝑣𝑚, 1 ≤ 𝑘 ≠ 𝑚 ≤
𝑛

2
, 

then 𝑑(𝑥, 𝑦) ≥ 1. Also, ℎ(𝑥) = (
𝑛

6
+ 1) (𝑘 − 1) + 1, and 

ℎ(𝑦) = (
𝑛

6
+ 1) (𝑚 − 1) + 1,. Hence 𝑑(𝑥, 𝑦) + |ℎ(𝑥) −

ℎ(𝑦)|  ≥ (
𝑛

6
+ 1) (𝑘 − 𝑚) ≥ 2 + ⌊

𝑛

6
⌋, since 𝑘 ≠ 𝑚. 

 

Case 1.2: If 𝑥 = 𝑣𝑛

2
+𝑘 and 𝑦 = 𝑣𝑛

2
+𝑚, 1 ≤ 𝑘 ≠ 𝑚 ≤

𝑛

2
, then 

|ℎ(𝑥) − ℎ(𝑦)| = |(
𝑛

6
+ 1) (𝑘 − 1) + ⌈

𝑛

12
⌉ + 1 −

((
𝑛

6
+ 1) (𝑚 − 1) + ⌈

𝑛

12
⌉ + 1)| ≥ (

𝑛

6
+ 1) (𝑘 − 𝑚) and 

𝑑(𝑥, 𝑦) ≥ 1. Hence 𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)|  ≥ ⌊
𝑛

6
⌋ +

2, since 𝑘 ≠ 𝑚. 
 

Case 1.3: If 𝑥 = 𝑥 = 𝑣𝑘  and 𝑦 = 𝑦 = 𝑣𝑛

2
+𝑚 , 1 ≤ 𝑘, 𝑚 ≤

𝑛

2
 

then 𝑑(𝑥, 𝑦) ≥ 1 and |ℎ(𝑥) − ℎ(𝑦)| ≥ |((
𝑛

6
+ 1) (𝑘 − 1) +

1) − ((𝑚 − 1) (
𝑛

4
− 1) + 2)| ≥ ⌊

𝑛

6
⌋ + 1. 

 

Therefore 𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)| ≥ ⌊
𝑛

6
⌋ + 2 . 

 
Thus, the radio labelling condition is true for the case 
when n is even. 
 
Case 2: n is odd 

Define an injection ℎ: 𝑉 (𝐺 (𝑛; {1,
𝑛

3
})) → 𝑁 as follows: 

ℎ(𝑣𝑖) = ⌈
𝑛

6
⌉ (𝑖 − 1) + 1, 𝑖 = 1,2 …

𝑛+1

2
. 

ℎ (𝑣𝑛

2
+𝑖

) = ⌈
𝑛

6
⌉ (𝑖 − 1) + ⌈

𝑛

12
⌉ + 1, 𝑖 = 1,2 …

𝑛−1

2
. 

 
Proceeding as in previous case, we can show h is a radio 

labelling and that 𝑟𝑛 (𝐺 (𝑛; {1,
𝑛

2
})) ≤

{
(

𝑛

6
+ 1) (

𝑛

2
+ 1) + ⌈

𝑛

12
⌉ + 1, if 𝑛 is even

⌈
𝑛

6
⌉ (

𝑛−1

2
) +, if 𝑛 is odd.

. 

 
Lemma 3.3: For 𝑛 ≡ 0(𝑚𝑜𝑑 4), the diameter of 

𝐺 (𝑛; {1,
𝑛

2
}) is ⌊

𝑛

4
⌋. 

 
Proof: Let {𝑣1, 𝑣2 … 𝑣𝑛} be the vertices in the outer circle. 

We construct the graph 𝐺 (𝑛; {1,
𝑛

2
}) by joining the vertices 

𝑣1 to 𝑣𝑛

2
, 𝑣2 to 𝑣𝑛

2
+1 … with a common difference of length 

𝑛

2
− 1 till the process of joining gets over. Therefore, the 

maximum distance from a vertex to another vertex is at 

least half of 
𝑛

2
− 1, which is equal to ⌊

𝑛

4
⌋, since 𝑛 ≡

0(𝑚𝑜𝑑 4).  
 

Theorem 3.3: The radio number of 𝐺 (𝑛; {1,
𝑛

2
}) , 𝑛 ≡

0(𝑚𝑜𝑑 4), 𝑛 > 16, satisfies 𝑟𝑛 (𝐺 (𝑛; {1,
𝑛

2
})) ≤

(
𝑛

2
− 1) (

𝑛

4
− 1) + 4. 

 
Proof: We partition the vertex set 𝑉 = {𝑣1, 𝑣2 … 𝑣𝑛} into 
four disjoint set 𝑉1, 𝑉2 , 𝑉3 and 𝑉4. Let 𝑉1 =

{𝑣1, 𝑣2 … 𝑣𝑛

4
} , 𝑉2 = {𝑣𝑛

4
+1, 𝑣𝑛

4
+2 … 𝑣𝑛

2
}, 𝑉3 =

{𝑣𝑛

2
+1, 𝑣𝑛

2
+2 … 𝑣3𝑛

2

} and 𝑉3 = {𝑣3
𝑛

2
+1, 𝑣3

𝑛

2
+2 … 𝑣𝑛}. 

 

Define a mapping ℎ: 𝑉 (𝐺 (𝑛; {1,
𝑛

2
})) → 𝑁 as follows:  

ℎ(𝑣2𝑖−1) = (𝑖 − 1) (
𝑛

4
− 1) , 𝑖 = 1,2 … ⌈

𝑛

8
⌉. 

 

ℎ(𝑣2𝑖) = (⌈
𝑛

8
⌉ + (𝑖 − 1)) (

𝑛

4
− 1) + 1, 𝑖 = 1,2 … ⌊

𝑛

8
⌋. 

 

ℎ (𝑣𝑛

4
+2𝑖−1

) = (𝑖 − 1) (
𝑛

4
− 1) + 2, 𝑖 = 1,2 … ⌈

𝑛

8
⌉. 

 

ℎ (𝑣𝑛
4

+2𝑖
) = (⌈

𝑛

8
⌉ + (𝑖 − 1)) (

𝑛

4
− 1) + 2, 𝑖 = 1,2 … ⌊

𝑛

8
⌋. 

 

ℎ (𝑣
𝑛−(2⌈

𝑛
8

⌉+2𝑖−3
) = (

𝑛

4
+ 𝑖 − 1)(

𝑛

4
− 1)) + 4, 𝑖 = 1,2 … ⌈

𝑛

8
⌉ 

ℎ (𝑣
𝑛−(2⌈

𝑛
8

⌉+2𝑖−2)
) = (⌈

𝑛

8
⌉ + 𝑖 +

𝑛

4
− 1)(

𝑛

4
− 1)) + 4, 𝑖

= 1,2 … ⌊
𝑛

8
⌋. 

 

ℎ(𝑣𝑛−2(𝑖−1)) = (
𝑛

4
+ (𝑖 − 1)) (

𝑛

4
− 1) + 3, 𝑖 = 1,2 … ⌈

𝑛

8
⌉. 

 

ℎ(𝑣𝑛−(2𝑖−1)) = (⌈
𝑛

8
⌉ +

𝑛

4
+ (𝑖 − 1)) (

𝑛

4
− 1) + 3, 𝑖 =

1,2 … ⌊
𝑛

8
⌋. See Figure 2. 

 

Next, we verify that 𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)|  ≥ 1 + ⌊
𝑛

4
⌋ for 

all 𝑥, 𝑦 ∈ 𝑉 (𝐺 (𝑛; {1,
𝑛

2
})) 

 

 
Figure 2: A circulant graph graph 𝐆(𝟐𝟎, {𝟏, 𝟏𝟎}) and its 

radio labelling 
 
Case 1: Suppose 𝑥 = 𝑣2𝑘−1 and 𝑦 = 𝑣2𝑚−1𝑚 , 1 ≤ 𝑘 ≠ 𝑚 ≤

⌈
𝑛

8
⌉, then the distance between them is at least 1. 

Also, ℎ(𝑥) = (𝑘 − 1) (
𝑛

4
− 1) and ℎ(𝑦) = (𝑚 − 1) (

𝑛

4
− 1).  

 

Hence 𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)|  ≥ 1 +
𝑛

4
(𝑘 − 𝑚) ≥ 1 +

⌊
𝑛

4
⌋ , since 𝑘 ≠ 𝑚. 

http://www.ijtsrd.com/
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Case 2: If 𝑥 = 𝑣2𝑘 and 𝑦 = 𝑣2𝑚, 1 ≤ 𝑘 ≠ 𝑚 ≤ ⌊
𝑛

8
⌋, then 

ℎ(𝑥) = (⌈
𝑛

8
⌉ + (𝑘 − 1)) (

𝑛

4
− 1) and ℎ(𝑦) = (⌈

𝑛

8
⌉ +

(𝑚 − 1)) (
𝑛

4
− 1) and 𝑑(𝑥, 𝑦) ≥ 1. Hence 𝑑(𝑥, 𝑦) +

|ℎ(𝑥) − ℎ(𝑦)|  ≥
𝑛

4
(𝑘 − 𝑚) ≥ 1 + ⌊

𝑛

4
⌋ , since 𝑘 ≠ 𝑚. 

 

Case 3: If 𝑥 = 𝑣𝑛

4
+2𝑘−1 and 𝑦 = 𝑣𝑛

4
+2𝑚−1, 1 ≤ 𝑘 ≠ 𝑚 ≤ ⌈

𝑛

8
⌉, 

then 𝑑(𝑥, 𝑦) ≥ 1 and |ℎ(𝑥) − ℎ(𝑦)| ≥ |(𝑘 − 1) (
𝑛

4
− 1) +

2 − ((𝑚 − 1) (
𝑛

4
− 1) + 2)| ≥ ⌊

𝑛

4
⌋ , since 𝑘 ≠ 𝑚.  

 

Therefore 𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)| ≥ 1 + ⌊
𝑛

4
⌋ . 

 

Case 4: If 𝑥 = 𝑣𝑛

4
+2𝑚  and 𝑦 = 𝑣𝑛

4
+2𝑘, 1 ≤ 𝑘 ≠ 𝑚 ≤ ⌊

𝑛

8
⌋, then 

𝑑(𝑥, 𝑦) ≥ 1 and the modulus difference of 

ℎ(𝑥)and ℎ(𝑦) is altleast ⌊
𝑛

4
⌋. 

 

Therefore 𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)| ≥ 1 + ⌊
𝑛

4
⌋. 

 

|ℎ(𝑥) − ℎ(𝑦)| ≥ |(𝑘 − 1) (
𝑛

4
− 1) + 2

− ((𝑚 − 1) (
𝑛

4
− 1) + 2)| ≥ ⌊

𝑛

4
⌋ , since 𝑘

≠ 𝑚. 
 

Therefore 𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)| ≥ 1 + ⌊
𝑛

4
⌋ . 

 
Case 5: Suppose x and y are of the form 𝑣

𝑛−(2⌈
𝑛

8
⌉+2𝑘−3

 and 

𝑣
𝑛−(2⌈

𝑛

8
⌉+2𝑚−3

, 1 ≤ 𝑘 ≠ 𝑚 ≤ ⌈
𝑛

8
⌉, then the distance between 

them is at least 1 and |ℎ(𝑥) − ℎ(𝑦)| ≥ |((
𝑛

4
+ 𝑘 − 1)(

𝑛

4
−

1)) + 4) − (
𝑛

4
+ 𝑚 − 1)(

𝑛

4
− 1)) + 4| ≥ |(

𝑛

16

2
+ 𝑘

𝑛

4
) −

(
𝑛

16

2
+ 𝑚

𝑛

4
)|. 

 

Hence 𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)| ≥ 1 + ⌊
𝑛

4
⌋, since 𝑘 ≠ 𝑚. 

 

Case 6: If 𝑥 = 𝑣2𝑘−1 and 𝑦 = 𝑣𝑛

4
+2𝑘, 1 ≤ 𝑘 ≤ ⌈

𝑛

8
⌉, 1 ≤ 𝑚 ≤

⌊
𝑛

8
⌋, then 𝑑(𝑥, 𝑦) ≥ 3 and ℎ(𝑥) = (𝑘 − 1) (

𝑛

4
− 1) , ℎ(𝑦) =

(⌈
𝑛

8
⌉ + (𝑘 − 1)) (

𝑛

4
− 1) + 2.  

 

Therefore 𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)| ≥ 3 + |(⌈
𝑛

8
⌉ +

(𝑚 − 1)) (
𝑛

4
− 1) + 2 − ((𝑘 − 1) (

𝑛

4
− 1))| ≥ 3 +

⌈
𝑛

8
⌉ (

𝑛

4
− 1) > ⌊

𝑛

4
⌋ + 1. 

 
Case 7: Suppose 𝑥 = 𝑣

𝑛−(2⌈
𝑛

8
⌉+2𝑘−2)

 and 𝑣𝑛−(2𝑚−1), 1 ≤

𝑘, 𝑚 ≤ ⌊
𝑛

8
⌋, then ℎ(𝑥) = (⌈

𝑛

8
⌉ + 𝑚 +

𝑛

4
− 1)(

𝑛

4
− 1)) + 4 and 

ℎ(𝑦) = (⌈
𝑛

8
⌉ +

𝑛

4
+ (𝑚 − 1)) (

𝑛

4
− 1) + 3. 

 
Also 𝑑(𝑥, 𝑦) ≥ 2. Hence, we get(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)| ≥

2 +
𝑛

4
+ 1 > ⌊

𝑛

4
⌋ + 1. 

Similarly, we can prove the rest of the cases. Thus, h is a 

valid radio labelling and satisfies 𝑟𝑛 (𝐺 (𝑛; {1,
𝑛

2
})) ≤

(
𝑛

2
− 1) (

𝑛

4
− 1) + 4. 

 
Lemma 3.4: If 𝑛 ≡ 0(𝑚𝑜𝑑 10), then the diameter of 

𝐺 (𝑛; {1,
𝑛

5
}) is 

𝑛

10
+ 2. 

 

 
Figure 3: Radio labelling of a circulant graph 

𝐆(𝐧; {𝟏,
𝐧

𝟓
}) with 𝐧 = 𝟐𝟎. 

 
Proof: As the proof is similar to Lemma 3.2, we omit the 
proof. 
 

Theorem 3.4: The radio number of 𝐺 (𝑛; {1,
𝑛

5
}) , 𝑛 ≡

0(𝑚𝑜𝑑 10), satisfies 𝑟𝑛 (𝐺 (𝑛; {1,
𝑛

2
})) ≤ {

𝑛

20
(𝑛 + 18) +

⌈
𝑛

20
⌉. 

 
Proof: We omit the proof. Figure 3, illustrates the proof of 
the theorem 
 
4. Conclusion 
In this article we have obtained the radio number of 
certain classes of circulant graphs. Further the work is 
extended to other extensions of channel assignment 
problems such as radial radio number, antipodal radio 
mean labelling etc.  
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