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ABSTRACT 
Expression for the Bulk modulus and its Pressure derivatives have been 
derived and reduced to the limit of infinite pressure. The Pressure 
dependence of thermal expensively and the Grüneisen Parameter both are 
determined using the formulations which satisfy the thermodynamic 
constraints at infinite pressure. Values of Bulk modulus and its Pressure 
derivative are also obtained for the entire range of Temperatures and 
Pressures considered in the present study. We have also investigated the 
Thermo elastic Properties of MgO at high Temperature and High Pressures 
using the results based on the EOS. The method based on the calculus in 
determinates for demonstrating that on the physically acceptable EOS 
Satisfy the identities for the pressure derivatives of bulk modulus Materials.  
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INTRODUCTION: 
For investigating high pressure properties of materials, we 
need equations of state representing the relationships 
between pressure P and volume V at a given temperature 
T [1,2] in the range 300K to 3000K using the Stacey 
reciprocal K-Primed EOS[3]. Some important equations of 
state such as the Birch-Murnaghan finite strain equation 
[4], the Poirier-Tarantula logarithmic equation [5,] the 
Keane K-primed equation[6] Have been widely used for 
Various materials. MgO is an Important and ceramic and 
Geophysical mineral [1,7,8] with various applications in 
the field of condensed matter physics and geophysics. It 
has large bulk modulus, less compressibility and high 
melting temperature [9, 10]. MgO remains stable in the 
rock salt (NaCl) Structure starting from the room 
temperature up to the melting temperature and up to a 
pressure of nearly 225 GPa. The melting temperature 
more than 3000K for MgO is nearly three times larger than 
is Debay temperature nearly equal to 1000K. Also the 
phase transition pressure for MgO is much higher 
pressure then its bulk modules value of temperature and 
pressure for MgO to investigate its thermo elastic 
properties [11,12]. Values of K and its pressure derivatives 
𝐾, = dK/dP have also been calculated for the entire range 
of P and T. The result for P, K and K’ obtained from the 
Stacey equation are used to determine the thermal 
expansively and The Grüneisen parameter with help of the  

 
formulations which satisfy the boundary conditions at 
infinite pressure. The Grüneisen parameter γ is an 
important physical quantity directly related to thermal 
and elastic properties of materials [1, 2, 13] as follows. 

 𝛾 =
𝛼𝐾𝑇𝑉

𝐶𝑉
 = 

𝛼𝐾𝑆𝑉

𝐶𝑃
      (1) 

 
Where α is the thermal expansivity, KT and 𝐾𝑆 are 
isothermal and adiabatic bulk module, Cv and Cp are 
specific heats at constant volume and constant pressure, 
respectively. Its is worth mentioning here that various 
physical quantities appearing in Eq.(1) differ much from 
one materials to the other , but γ remains nearly about 1.5 
for a wide range of materials.  
 
Method of analysis: 
All of these equations reveal the pressure P and bulk 
models K both increase rapidly with the decreasing 
volume. P and K both become infinite in the limit of 

extreme compression (V 0), but their ratio remains finite 

such that : 

 (
𝑃

𝐾
)
∞

=
1

𝐾∞
,       (2) 

 

where 𝐾∞ 
, is the value of 𝐾 ,= 

𝑑𝐾

𝑑𝑃
 , the pressure derivative of 

bulk modulus at infinite pressure. It should be mentioned 
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that 𝐾, represents the role of increase of bulk modulus 
with the increase in pressure. The Brich –Murnaghan EOS , 
the Poirier-Tarantola logarithmic EOS , and the 
generalized Rydberg- Vinet EOS, all can be represented by 
the following common formula: 
 

  
𝐾

𝑃
= 𝐾∞

, + 𝑓(𝑥)       (3) 

 
Where f(x) is a function of x= V/V0 V0 is the value of 
volume V at P=0 of K’ and f(x) are different for different 
EOS. Thus for the Birch-Murnaghan fourth order EOS, K’= 
11/3, and 
 
The Stacey reciprocal K-primed equation of state is 
wriiten as follows [3] 
 
1

𝐾, = 
1

𝐾0
, + (1 +

𝐾∞
,

𝐾0
, )

𝑃

𝐾
     (4) 

 
Equation (4) represents a linear relationship between 1/K’ 
and P/K such that [14]. 
 
1

𝐾∞
, = (

𝑃

𝐾
)
∞

       (5) 

 

The subscripts 0 and  represent values at zero - pressure 

and at infinite pressure, respectively. Eq. (4) has been 
integrated analytically [10, 11] to find 
 

 
𝐾
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,  
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𝐾
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Eq. (6) has also been integrated to yield [8, 10] 
 

 In 
𝑉

𝑉0
=

𝐾′0

𝐾∞
,2

𝐼𝑛 (1 − 𝐾′∞
𝑃

𝐾
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𝐾0
,

𝐾′∞
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𝑃

𝐾
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For determining values of thermal expansivity α at 
different pressure along elected isotherm we use the 
formulation [12] which satisfies the thermodynamics 
constraints [10] according to which the thermal 
expansivity vanishes in the limit of infinite pressure. 

Values of Gr neisen parameter γ relationship recently 

formulated by shanker at al. [13]. This formulation yields 
satisfactory results for the Earth lower , mantel and core in 
good agreement with the seismic data [10].  
 
The formulation used for α (P) is written as follows [12] 
 
 𝛼 = 𝛼0 (1-𝐾 ,P/K) t     (8) 
 
where 𝛼0 is the thermal expansivity α at zero pressure. t is 
a material dependent constant. We have calculated values 

of α using Eq.(8) which is consistent with the 
thermodynamic constraints that α tends to zero in the 
limit pressure [2,13] Eq. (5) at infinite pressure when used 
in Eq. (8) gives α equal zero. 
 
The reciprocal gamma relationship can be written as 
follows  
 
1

𝛾
=

1

𝛾0
+ 𝐾′∞ (

1

𝛾∞
−

1

𝛾0
)

𝑃

𝐾
     (9) 

 
Where γ0 and 𝛾∞ are respectively the values of γ at zero 
pressure in the limit of infinite pressure.\ 
 
Result and Discussions  
It should be emphasized that the pressure derivatives of 
bulk modulus are of central importance for determining 
thermoplastic properties of materials lat high pressure 
and high temperatures. The formulation presented here is 
related to different equations of state which have been 
used recently for investigating properties of materials at 
high pressure. for investigating the pressure-volume 
relationship at high temperatures , the thermal pressure is 
of central importance [1, 15, 16]. We can determine 
thermal pressure by lowing the values of thermal 
expensivity and bulk modulus at high temperatures 
[7,8,14] An alternative method for determining pressure-
volume relationship at higher temperatures has been 
developed [7,8,15] using phenomenological equation of 
state with temperatures dependent values of input 
parameters K0 and 𝐾0

, . For MgO,  
 
Conclusions: 
We have used the Stacey reciprocal K-primed equation of 
state which satisfies important boundary conditions at 
infinite pressure .It is found from the P-V-T results 
obtained for MgO that for producing the same amount of 

compression (
𝑉

𝑉0
). Values of bulk modulus K increase with 

the increase with the increase in pressure, and decrease 
with the increase in temperature. Since the bulk modulus 
is inverse of compressibility, it becomes harder to 
compress the solid at higher pressures because of the 
increasing bulk modulus. One of the most important 
thermodynamic constraints due to Stacey [13] is the fact 
that thermal expansivity of a material vanishes in the limit 
infinite pressure the reciprocal gamma equation has been 
shown to be compatible with the Stacey reciprocal K-
primed equation both. 
 
The equation yield similar expression for the higher order 
derivatives at infinite pressure. We may thus conclude that 
status of an identity which can be used for determining the 
third order Grüneisen Parameter [17]. 
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P(GPa) 0.00 46.30 102 154 205 239 

𝛼 at T=2000K 5.48 2.48 1.65 1.23 1.11 0.941 
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