
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 4 Issue 4, June 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD31580 | Volume – 4 | Issue – 4 | May-June 2020 Page 1474

How Quality Assurance is Important in Development Life Cycle

Aayush Tiwari

Department of Computer Science Engineering and Information Technology,

Dronacharya College of Engineering, Gurgaon, Haryana, India

ABSTRACT

In recent days the requirement of quality has grown up universally. Away

back, quality culture was practiced only by software industries, today it has

also been embraced by companies using technology in their internal projects.

The project should not be risked due to contingency and advancement that

may come along the way. This is one of the precepts of software quality.

Capacity development are imminent, but must be planned for another sprint,

unless there is an urgent need on the part of the customer. The software

architecture must adhere to the specified requirements. It can be innovative,

lasting and still try to solve, not only the predicted problems, but also the

unforeseen ones. It is at this point that the development team must glimpse

what is really desired and not just what was asked for. One of the biggest

causes of failure in software projects is lack of scope. In the eagerness to start

work soon, the scope definition phase is reduced to the extreme. The result of

this is a large number of corrections made during a sprint for a feature that

was not properly planned.

KEYWORDS: Quality assurance, Quality principle, Software Engineering, Setting

environment etc

How to cite this paper: Aayush Tiwari

"How Quality Assurance is Important in

Development Life

Cycle" Published in

International Journal

of Trend in Scientific

Research and

Development

(ijtsrd), ISSN: 2456-

6470, Volume-4 |

Issue-4, June 2020, pp.1474-1478, URL:

www.ijtsrd.com/papers/ijtsrd31580.pdf

Copyright © 2020 by author(s) and

International Journal of Trend in Scientific

Research and Development Journal. This

is an Open Access article distributed

under the terms of

the Creative

Commons Attribution

License (CC BY 4.0)

(http://creativecommons.org/licenses/by

/4.0)

1. INTRODUCTION:

Quality Assurance is the prepared and precise firm of

exercise that assure that software processes and products

conform to needs, specifications and activities. Processes

include all of the activities involved in designing, developing,

enhancing, and maintaining software. Products include the

software, associated data, its documentation, and all

supporting and reporting paperwork. QA includes the

process of assuring that standards and procedures are

established and are followed throughout the software

development lifecycle. Standards are the established criteria

to which the software products are compared. Procedures

are the established criteria to which the development and

control processes are compared.

Compliance with established requirements, standards, and

procedures is evaluated through process monitoring,

product evaluation, audits, and testing. The three mutually

supportive activities involved in the software development

lifecycle are management, engineering, and quality

assurance. Software management is the set of activities

involved in planning, controlling, and directing the software

project. Software engineering is the set of activities that

analyzes requirements, develops designs, writes code, and

structures databases.

Quality Assurance ensures that the management and

engineering efforts result in a product that meets all of its

requirements. Each of the five phases of Project Delivery

Lifecycle will incorporate QA activities and deliverables that

off-set the risks of common project problems. This summary

of the Project Delivery Lifecycle incorporates a high-level list

of the QA activities and deliverables associated with each

phase.

SQA always holds an important position because in

developing software, IT companies use plenty of time,

human resource and machines so even a minor mistake can

have quite bad repercussions. If the company is not using

standardize procedures even a small fault in the final

product can cost a company heavily in the form of lost

reputation and the broken trust of client who can try some

other company to get the services he/she needs.

Software assurance is a crucial to check the errors and bugs

in software. Software quality assurance (SQA) is a properly

planned and well executed approach so that the developed

software is of excellent quality. SQA starts from the initial

starting phase of development process and involves the

following proper standardize procedures till the end of

development process. True purpose of SQA is to be sure that

the final developed software is as per requirement of the

client.

IJTSRD31580

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD31580 | Volume – 4 | Issue – 4 | May-June 2020 Page 1475

Quality assurance is performed to locate the errors or glitch

in the application and to make sure that makes the customer

journey as minimal as possible to eliminate the complex and

unnecessary steps. Quality assurance is performed after

almost every step of the development process with a certain

outcome in mind-

1. During the assessment phase, QA editor submits revised

and approved deliverable documents.

2. During the planning phase, the QA team establishes

Standards and Procedures along with QA records for

requirements. QA test matrix is also designed.

3. During the designing phase, the QA team confirms that

all designs effectively meet all the requirements and

identify if there are any conflicts or discrepancies.

4. During the development phase, the QA team develops a

set of test cases for all the deliverable functionality for

the current phase.

5. During the implementation phase, the team focuses on

testing and reviewing each aspect of the system.

An efficiently carried out QA can ensure the quality of the

project by fulfilling the different functionality aspect of the

project.

A company creates and then develops an application.

Developers are asked to implement the design.

In a traditional pattern, the designer would work for a while

(hopefully there's a team that collectively refines the design,)

then the developer writes all the code, and then finally hands

the code to QA for testing.

Another unit of the team should be documentation of course.

A better way to do this would be to include QA at every step.

Have QA sit in on the design of the next feature. They can add

input that others wouldn't think about - this helps polish the

feature as well as clarify testability.

The developer should be writing unit tests as the code is

developed - QA should understand well what the feature is,

and can be sitting with the developer to see these unit tests,

which will help QA develop a test plan.

Once the developer feels the code works, QA should be right

there to test the code. QA's attitude is very different from the

developer. The developer tries to make the code work, and

to polish it so it's user friendly. QA's role is to try to break

the code, and find every rough edge and inconsistency. (And

documentation should be part of this flow as well.)

Ideally development is done as a team - I favor the idea of a

Scrum team. The team is the product owner, the developers,

QA, and then sales and marketing, demo jocks, everyone.

Ideally the entire team is part of the process - and QA and

developers work together.

During the requirements phase, QA should be involved in

requirements reviews: not to try to determine the nature of

the product (that's up to product management), but to

demand clear specifications that can be used to plan testing

and, ideally, write test cases, even before any further work is

done.

During the design phase, QA should continue to be involved

in reviews. This is, again, not necessarily with a view

towards changing the design - though if QA has domain

expertise that can happen - but so that testing can be done in

an intelligent and appropriately focused way. During coding,

QA can be involved in code reviews (Fagan style), though in

my opinion this is not usually a good use of time. More

typically this is when QA will finish writing their test cases,

and get developers or product management to review the

test cases in turn. QA activities during testing I assume you

are already familiar with.

Finally, during maintenance (following release), QA still has

a role in reproducing problems reported by customers, and

of course testing hotfixes and patches.

Example: When your browser crashes, it reopens all the

tabs. It probably does this every time you open a tab. Does it

store this info in a file? What if that file becomes corrupt?

(Ignore the fact that this is a simple example and it may not

matter). These are the kinds of insights you want to get by

being involved with development.

You can also ask for testability by being involved. That is an

outcome of understanding what you are looking for. How is

data stored in the app, how do components exchange

data/info., etc.

2. Importance

A. It saves your money and time

If bugs and defects are found in the early stages of

development, then you are lucky to spend less money and

time to fix them. The investment in time and resources pays

off many times. Let’s look at this graphic, which shows that

rectifying bugs, not in time can lead to a dramatically

increase of its cost over time.

B. Stable and Competitive Product

Surely everyone wants a successful product which runs

consistently without crashing and works reliably, has no

bugs and defects. QA processes and testing verify that the

system meets the different requirements including,

functional, performance, reliability, security, usability and so

on. There are a lot of devices, browsers, and environments

and the product should work properly in any of them.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD31580 | Volume – 4 | Issue – 4 | May-June 2020 Page 1476

C. Safety

When we create or develop something, we ask ourselves a

simple question: is our product (it can be software,

application, site, etc.) is secure, efficient and even

trustworthy? Don’t forget, that for companies and for

companies’ renown having a safety product is a must. You

need to be certain that your software is not the source of the

personal data breach and more importantly of the loss of

your customers’ and users’ business data. QA guarantees you

that.

D. Reputation

Quality Analyst work throughout the software development

life cycle and apply different testing methodologies to make

sure that your product will not receive bad reviews.

E. It helps meet clients’ demands and expectations

most fully

QA makes sure that the end result meets the business and

user requirements. It ensures the reliability of the

application and satisfaction of the user and is a secret key to

draw development of the business.

F. New suggestions and views on your project

Who can know the entire product better than one who

examines thoroughly all its pitfalls? QA Experts always can

add something useful and breathe life to your project.

G. Scrap Reduction

Quality assurance systems identify areas that result in scrap,

or products that don't meet company specifications. When

the company reduces its number of defective products, it

experiences scrap reduction. Scrap reduction results in

savings; identification of defects early in the production

process decreases the cost to the company, because fewer

man-hours and materials have been used.

H. Time Efficiency

A quality assurance team can reduce the amount of

inspections required in a manufacturing organization. The

quality assurance team is separate from the production

group, and can therefore be objective in identifying time-

wasting areas during production. They also ensure that

production workers don't use valuable production time to

inspect or evaluate the production system.

I. Increased Customer Satisfaction

The quality assurance system improves the quality of

products and services, which increases customer

satisfaction. Customer satisfaction leads to repeat business,

customer referrals, increased sales and profits. A quality

assurance system eliminates defective products and

continuously evaluates the process to improve products and

services. Quality assurance can result in a consistently

reliable product or service. Increased reliability in the end

product results in customer satisfaction and brand loyalty.

Companies with reliable quality gain a favorable reputation

in the industry.

J. Improved Employee Morale

Employee morale is higher in a company using a quality

assurance system, since the organization is more likely to

run well, and actively seeks methods for improvement,

according to the National Institute of Accountants. For

example, a system of quality assurance, such as Total Quality

Management, involves employees in the process of quality

improvement. Employees become stakeholders in the

organization and its success. Improved employee morale

results in less absenteeism and turnover among workers.

3. Setting up environment

QA environment is also known as a Staging environment. It

is a dedicated environment meant for testers and quality

analysts to test any CR (change request) or bug fix before it

gets successfully deployed in Production.

You can call it a mirror environment to a Production

environment.

Workflow of making any update into any web app:

Dev → QA → UAT → Prod

Dev environment is the area for developers to fix the bug and

QA or Staging is where the bug fix is tested thoroughly as

well as regression testing takes place. After everything is

tested and found okay! Testing team will provide a sign-off.

During this process, there are often discussions about how

many environments a particular project really needs. One

project may only have one QA environment while another

may have four or five. Environment managers are frequently

put in a position of having to ask teams to justify why they

need so many environments.

This post is our contribution to this discussion. We’ll offer

arguments that show that there are scenarios that require a

larger number of testing environments. We’ll start by briefly

covering the most common types of testing environments.

After that, we’ll give you 3 important reasons to use multiple

QA environments.

Then, we summarize the arguments into a piece of general

advice, while also granting that they may not be a one-size-

fits-all solution. To wrap-up, we cover the brave new world

of new hybrid cloud solutions, and how that can affect the

QA strategy of your organization.

� Development environment. Used by the developers. In

practice, this environment consists of the developers’

machines themselves. They use this environment to Unit

test their code before it gets to the next stage.

� QA/Testing Environment. This environment is used by

testers, QA analysts or other testing professionals to

perform many forms of functional and non-functional

testing, such as end-to-end testing, load testing,

integration testing, and more.

� Staging environment. This is essentially a copy of the

production environment. It’s meant to be as close as

possible to production, so the team can verify if the

application will behave correctly after its deployment.

4. Reasons to use more than one QA environment

A. Teams Are Working on Parallel Development Efforts

If a project has regular releases there’s a good chance that

when a development team is finished with a feature, a QA

team takes over to validate that feature. During that QA

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD31580 | Volume – 4 | Issue – 4 | May-June 2020 Page 1477

process, development teams often want to move on to the

next feature. In these scenarios having two QA environments

make sense as features can be delayed and releases will have

to be serialized if a QA environment is “tied up.”

B. Long-Term Feature Releases Need to Be Developed

While Short-Term Bug Fixes Are Qualified and

Staged

If you have a team working on a series of larger, multi-month

development stories to launch a new product these efforts

almost always require a dedicated environment. These are

QA efforts that take months, and require customizations to

databases that cannot ship to production. If you don’t have

an isolated system for these longer-term initiatives you will

be unable to fix bugs as they are identified in a production

system.

C. Systems That Rely on Services

If you develop code that relies on back-end services that are

also being modified by independent development teams

these teams may require multiple environments that are

configured to connect to the appropriate testing service.

Service-oriented architectures and micro services because a

combinatorial increase in the number of environments

required to perform end-to-end testing.

5. Principles

It is important that you achieve optimum test results while

conducting software testing without deviating from the goal.

But how you determine that you are following the right

strategy for testing? For that, you need to stick to some basic

testing principles. Here are the common seven testing

principles that are widely practiced in the software industry.

To understand this, consider a scenario where you are

moving a file from folder A to Folder B.

Think of all the possible ways you can test this.

Apart from the usual scenarios, you can also test the

following conditions

� Trying to move the file when it is Open

� You do not have the security rights to paste the file in

Folder B

� Folder B is on a shared drive and storage capacity is full.

� Folder B already has a file with the same name, in fact,

the list is endless

� Or suppose you have 15 input fields to test, each having

5 possible values, the number of combinations to be

tested would be 5^15

If you were to test the entire possible combinations project

EXECUTION TIME & COSTS would rise exponentially. We

need certain principles and strategies to optimize the testing

effort

Here are the 7 Principles:

A. Exhaustive testing is not possible

Yes! Exhaustive testing is not possible. Instead, we need the

optimal amount of testing based on the risk assessment of

the application.

B. Defect Clustering

Defect clustering which states that a small number of

modules contain most of the defects detected. This is the

application of the Pareto Principle to software testing:

approximately 80% of the problems are found in 20% of the

modules.

By experience, you can identify such risky modules. But this

approach has its own problems

If the same tests are repeated over and over again,

eventually the same test cases will no longer find new bugs.

C. Pesticide Paradox

Repetitive use of the same pesticide mix to eradicate insects

during farming will over time lead to the insects developing

resistance to the pesticide Thereby ineffective of pesticides

on insects. The same applies to software testing. If the same

set of repetitive tests are conducted, the method will be

useless for discovering new defects.

To overcome this, the test cases need to be regularly

reviewed & revised, adding new & different test cases to help

find more defects.

Testers cannot simply depend on existing test techniques. He

must look out continually to improve the existing methods to

make testing more effective. But even after all this sweat &

hard work in testing, you can never claim your product is

bug-free. To drive home this point, let's see this video of the

public launch of Windows 98

Let think a company like MICROSOFT would not have tested

their OS thoroughly & would risk their reputation just to see

their OS crashing during its public launch!

D. Testing shows a presence of defects

Hence, testing principle states that - Testing talks about the

presence of defects and don’t talk about the absence of

defects. I.e. Software Testing reduces the probability of

undiscovered defects remaining in the software but even if

no defects are found, it is not a proof of correctness.

But what if, you work extra hard, taking all precautions &

make your software product 99% bug-free. And the software

does not meet the needs & requirements of the clients.

This leads us to our next principle, which states that-

Absence of Error

E. Absence of Error - fallacy

It is possible that software which is 99% bug-free is still

unusable. This can be the case if the system is tested

thoroughly for the wrong requirement. Software testing is

not mere finding defects, but also to check that software

addresses the business needs. The absence of Error is a

Fallacy i.e. finding and fixing defects does not help if the

system build is unusable and does not fulfill the user's needs

& requirements.

To solve this problem, the next principle of testing states that

early Testing

F. Early Testing

Early Testing - Testing should start as early as possible in the

Software Development Life Cycle. So that any defects in the

requirements or design phase are captured in early stages. It

is much cheaper to fix a Defect in the early stages of testing.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD31580 | Volume – 4 | Issue – 4 | May-June 2020 Page 1478

But how early one should start testing? It is recommended

that you start finding the bug the moment the requirements

are defined. More on this principle in a later training tutorial.

G. Testing is context dependent

Testing is context dependent which basically means that the

way you test an e-commerce site will be different from the

way you test a commercial off the shelf application. All the

developed software’s are not identical. You might use a

different approach, methodologies, techniques, and types of

testing depending upon the application type. For instance

testing, any POS system at a retail store will be different than

testing an ATM machine.

Principle 1 Testing shows presence of defects

Principle 2 Exhaustive testing is impossible

Principle 3 Early Testing

Principle 4 Defect Clustering

Principle 5 Pesticide Paradox

Principle 6 Testing is context dependent

Principle 7 Absence of errors - fallacy

6. How to do Quality Assurance: Complete Process

These above steps are repeated to ensure that processes

followed in the organization are evaluated and improved on

a periodic basis. Let's look into the above steps in detail -

� Planning Organization should plan and establish the

process related objectives and determine the processes

that are required to deliver a high-Quality end product.

� Do - Development and testing of Processes and also "do"

changes in the processes

� Check - Monitoring of processes, modify the processes,

and check whether it meets the predetermined

objectives

� Act - Implement actions that are necessary to achieve

improvements in the processes

7. ISO Standards

ISO 9000

This standard was first established in 1987, and it is related

to Quality Management Systems. This helps the organization

ensure quality to their customers and other stakeholders. An

organization who wishes to be certified as ISO 9000 is

audited based on their functions, products, services and their

processes. The main objective is to review and verify

whether the organization is following the process as

expected and check whether existing processes need

improvement.

This certification helps -

� Increase the profit of the organization

� Improves Domestic and International trade

� Reduces waste and increase the productivity of the

employees

� Provide Excellent customer satisfaction

8. Conclusion:

Software Quality Assurance is about engineering process

that ensures quality It. Involves activities related to the

implementation of processes, procedures, and standards.

Example – Audits Training

Quality Assurance is to check whether the product

developed is fit for use. For that, Organization should have

processes and standards to be followed which need to be

improved on a periodic basis. It concentrates mainly on the

quality of product/service that we are providing to the

customers during or after implementation of software.

References:

[1] http://www.onestopsoftwaretesting.com/introduction

-and-importance-of-software-testing-in-sdlc/

[2] https://ocw.mit.edu/courses/electrical-engineering-

and-computer-science/6-01sc-introduction-to-

electrical-engineering-and-computer-science-i-spring-

2011/unit-1-software-engineering/

[3] https://www.google.com/search?q=software+enginee

ring+geeksforgeeks&oq=Software+engineering+gee&a

qs=chrome.0.0j69i57j0l6.8927j0j7&sourceid=chrome&

ie=U TF-8

[4] https://www.guru99.com/software-testing.html

[5] https://devblogs.microsoft.com/premier-

developer/the-importance-of-quality-assurance-in-

the-development-life-cycle/

