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ABSTRACT 

The objective of this paper is to introduce a new fuzzy number with twenty 

five points called as Icosikaipentagonal fuzzy number. In which Fuzzy 

numbers develop a membership function where there are no limitations 

any specified form. The aim of this paper is to define Icosikaipentagonal 

fuzzy number and its some arithmetic operations. Fuzzy Linear 

Programming problem is one of the active research areas in optimization. 

Many real world problems are modelled as Fuz

Problems. Icosikaipentagonal fuzzy number proposed a ranking function to 

solve fuzzy linear programming problems.
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1. INTRODUCTION 

Fuzzy sets provide machinery for carrying out 

approximate reasoning processes when its available 

information is uncertain, in complete, imprecise or vague.

The concept of fuzzy set theory was first introduced by 

Zadeh [25] and also introduces membership fu

a range covering the interval (0,1). Didier

Henri Prade [8,9] have proposed a algebraic operations on 

real numbers , which are extended to fuzzy number by 

using the principle of fuzzification and also defined fuzzy 

number as fuzzy subset of real line. Zadeh [26] proposed 

an interval arithmetic operations on real numbers can be 

extended with fuzzy numbers. Akther and Ahamd [3] 

discussed with computational methods for fuzzy 

arithmetic operations. Deshrijver [8] has proposed an 

arithmetic operations in interval valued fuzzy set theory. 

Abbari et al [1] has proposed elementary fuzzy arithmetic 

operation on Pseudo-geometric fuzzy numbers. Garg and 

Ansha have discussed arithmetic operations on parabolic 

fuzzy numbers. Barnabs and Jnos [5] ha

product type operations between fuzzy numbers. 

Chakraborty and Guha [6] have proposed the addition 

with generalized with fuzzy numbers. Many researchers 

defined several types of fuzzy numbers like Triangular, 

Trapezoidal, pentagonal, Hexagonal,

Octagonal, Nanogonal, up to icosikaitetragonal and 

Icosikaioctogonal fuzzy number and also defined 

membership functions. These types of membership 
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Fuzzy sets provide machinery for carrying out 

approximate reasoning processes when its available 

information is uncertain, in complete, imprecise or vague. 

The concept of fuzzy set theory was first introduced by 

Zadeh [25] and also introduces membership function with 

Didier Dubois and 

Henri Prade [8,9] have proposed a algebraic operations on 

real numbers , which are extended to fuzzy number by 

using the principle of fuzzification and also defined fuzzy 

Zadeh [26] proposed 

an interval arithmetic operations on real numbers can be 

extended with fuzzy numbers. Akther and Ahamd [3] 

discussed with computational methods for fuzzy 

arithmetic operations. Deshrijver [8] has proposed an 

c operations in interval valued fuzzy set theory. 

Abbari et al [1] has proposed elementary fuzzy arithmetic 

geometric fuzzy numbers. Garg and 

Ansha have discussed arithmetic operations on parabolic 

fuzzy numbers. Barnabs and Jnos [5] have proposed 

product type operations between fuzzy numbers. 

Chakraborty and Guha [6] have proposed the addition 

with generalized with fuzzy numbers. Many researchers 

defined several types of fuzzy numbers like Triangular, 

Trapezoidal, pentagonal, Hexagonal, Heptagonal, 

Octagonal, Nanogonal, up to icosikaitetragonal and 

Icosikaioctogonal fuzzy number and also defined 

membership functions. These types of membership  

 

functions and arithmetic operations applied by the many 

researchers to solve optimization prob

and K. Ponnovalavan [17] have defined a diamond fuzzy 

number concepts which helps to solve three types of 

categorization triangular fuzzy number. Many researchers 

proposed different methods to found the ranking of fuzzy 

numbers. The ranking of fuzzy number was first 

introduced by Jain [14]. In 1980, Yager [24] introduced the 

concept of centroid fuzzy numbers. Cheng [7] proposed a 

method for ranking fuzzy number by using distance 

method. Rahim and Rasoul [18] proposed a method for 

defuzzified based on the centroid points. M.Adabitabar et 

al [2] have presented a vague ranking fuzzy numbers 

which utilize the notion of max and min fuzzy 

simultaneously in order to determining ambiguity in 

ranking of two fuzzy numbers. Several ranking function 

methods are used to solve Fuzzy Linear Programming 

Problem. Tanaka et al [23] has proposed a concept of 

Fuzzy Linear Programming Problems. Zimmerman [27] 

has developed a method for solving Fuzzy Linear 

Programming Problems using multi objective LP 

technique. Fang et al introduced Linear Programming 

Problem with fuzzy constraints. Lotfi et al [15] proposed a 

new method for find the optimal solution of fully Fuzzy 

Linear Programming Problems. Allahviranlooet et al [4] 

have proposed a new method to solve Fully 

Programming Problems using ranking function. Sudip and 
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functions and arithmetic operations applied by the many 

researchers to solve optimization problems. Panthinathan 

and K. Ponnovalavan [17] have defined a diamond fuzzy 

number concepts which helps to solve three types of 

categorization triangular fuzzy number. Many researchers 

proposed different methods to found the ranking of fuzzy 

ing of fuzzy number was first 

introduced by Jain [14]. In 1980, Yager [24] introduced the 

concept of centroid fuzzy numbers. Cheng [7] proposed a 

method for ranking fuzzy number by using distance 

method. Rahim and Rasoul [18] proposed a method for 

ied based on the centroid points. M.Adabitabar et 

al [2] have presented a vague ranking fuzzy numbers 

which utilize the notion of max and min fuzzy 

simultaneously in order to determining ambiguity in 

ranking of two fuzzy numbers. Several ranking function 

ethods are used to solve Fuzzy Linear Programming 

Problem. Tanaka et al [23] has proposed a concept of 

Fuzzy Linear Programming Problems. Zimmerman [27] 

has developed a method for solving Fuzzy Linear 

Programming Problems using multi objective LP 

. Fang et al introduced Linear Programming 

Problem with fuzzy constraints. Lotfi et al [15] proposed a 

new method for find the optimal solution of fully Fuzzy 

Linear Programming Problems. Allahviranlooet et al [4] 

have proposed a new method to solve Fully Fuzzy Linear 

Programming Problems using ranking function. Sudip and 
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Pinaki [22] has proposed a new technique based on the 

centroid of triangle and trapezoidal fuzzy numbers to 

solve a fuzzy linear programming problems. Maleki et al 

[16] proposed new method to solve Fuzzy Linear 

Programming Problems using ranking function by the 

comparison of all decision parameters. 

 

In this paper, Icosikaipentagonal fuzzy number proposed a 

ranking function which helps to construct the fuzzy linear 

programming problem into crisp linear programming 

problem. 

 

2. Preliminaries 

In this section, we give some preliminaries are as follows: 

Definition 2.1. Let X be a non-empty set. A fuzzy set A of X 

is defined as � = {(�, ��(�	: � ∈ �} where ��(�	 is 

membership function which maps each elements of X to a 

value between 0 and 1. 

 

Definition 2.2. A fuzzy set A defined on the set of real 

numbers � is said to be a fuzzy number if its membership 

function �:� → [0,1] has the following characteristics: 

1. A is convex. 

2. A is normal. 

3. A is piecewise continuous. 

 

Definition 2.3. The �-cut of a fuzzy set A is the crisp set of 

all elements of � ∈ � that belong to the fuzzy set A at least 

to the degree	� ∈ [0,1]. 
(i.e.) �[�] = {� ∈ �|��(�	 ≥ �}. 
 

Definition 2.4. A fuzzy set A is a convex fuzzy set if and 

only if each �- cuts �� is a convex fuzzy set. 

 

Definition 2.5. A fuzzy number � = (��, ��, ��	 is said to 

be a triangular fuzzy number if its membership function is 

given by  

��(�	 =
��
�
� 
� − ���� − �� , "#$	�� ≤ � ≤ ��

1, "#$	� = ���� − ��� − �� , "#$	�� ≤ � ≤ ��
0, #&ℎ($)*+(

, 

Definition 2.6. A fuzzy number � = (��, ��, ��, �-	 is said 

to be a trapezoidal fuzzy number if its membership 

function is given by  

��(�	 =
��
�
� 
� − ���� − �� , "#$	�� ≤ � ≤ ��
1, "#$	�� ≤ � ≤ ���- − ��- − �� , "#$	�� ≤ � ≤ �-
0, #&ℎ($)*+(

, 

 

3. Icosikaipentagonal Fuzzy Number 

In this section a new form of fuzzy number named Icosikaipentagonal fuzzy number is introduced. 

 

Definition 3.1. A fuzzy number � = (��, ��, … , ��/	 is said to be Icosikaipentagonal fuzzy number where ��, ��, … , ��/	are 

the real numbers which membership function is given by  

 (0 ≤ 0� ≤ 0� ≤ 0� ≤ 0- ≤ 0/ ≤ 01 ≤ 1	 
 

 
Figure 1: Icosikaipentagonal Fuzzy Number 
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��(�	 =

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
 0, � < ��

0� 3 � − ���� − ��4 , �� ≤ � ≤ ��
0�, �� ≤ � ≤ ��

(0� − 0�	 3 � − ���- − ��4 + 0�, �� ≤ � ≤ �-
0�, �- ≤ � ≤ �/

(0� − 0�	 3 � − �/�1 − �/4 + 0�, �/ ≤ � ≤ �1
0�, �1 ≤ � ≤ �6

(0- − 0�	 3 � − �6�7 − �64 + 0�, �7 ≤ � ≤ �8
0-, �7 ≤ � ≤ �8

(0/ − 0-	 3 � − �8��9 − �84 + 0-, �8 ≤ � ≤ ��9
0/, ��9 ≤ � ≤ ���

(01 − 0/	 3 � − ������ − ���4 + 0/, ��� ≤ � ≤ ���
(1 − 01	 3 � − ������ − ���4 + 01, ��� ≤ � ≤ ���
(1 − 01	 3 ��- − ���- − ���4 + 01, ��� ≤ � ≤ ��-
(01 − 0/	 3 ��/ − ���/ − ��-4 + 0/, ��- ≤ � ≤ ��/

0/, ��/ ≤ � ≤ ��1
(0/ − 0-	 3 ��6 − ���6 − ��14 + 0-, ��1 ≤ � ≤ ��6

0-, ��6 ≤ � ≤ ��7
(0- − 0�	 3 ��8 − ���8 − ��74 + 0�, ��7 ≤ � ≤ ��8

0�, ��8 ≤ � ≤ ��9
(0� − 0�	 3 ��� − ���� − ��94 + 0�, ��9 ≤ � ≤ ���

0�, ��� ≤ � ≤ ���
(0� − 0�	 3 ��� − ���� − ���4 + 0�, ��� ≤ � ≤ ���

0�, ��� ≤ � ≤ ��-
0� 3 ��/ − ���/ − ��-4 , ��- ≤ � ≤ ��/

, 

 

4. Arithmetic operations on Icosikaipentagonal fuzzy number 

4.1. Arithmetic operations on Alpha cut 

Definition 4.1. For ∈ [0,1] , the � cut of an Icosikaipentagonal fuzzy number  � = (��, ��, … , ��/	 is defined as  

�: =

��
��
��
 [;�(�	, ;�(�	], "#$	� ∈ [0, 0�	[<�(�	, <�(�	], "#$	� ∈ [0�, 0�	[��(�	, ��(�	], "#$	� ∈ [0�, 0�	[=�(�	, =�(�	], "#$	� ∈ [0�, 0-	[>�(�	, >�(�	], "#$	� ∈ [0-, 0/	[?�(�	, ?�(�	], "#$	� ∈ [0/, 01	[@�(�	, @�(�	], "#$	� ∈ [01, 1]

, 

 

Definition 4.2. The � cut of Icosikaipentagonal fuzzy number operations interval �: is defined as  

�: =

��
��
��
 [�� + 7�(�� − ��	, ��/ − 7�(��/ − ��-	], "#$	� ∈ [0,0.14	[�� + (7� − 1	(�- − ��	, ��� − (7� − 1	(��� − ���], "#$	� ∈ [0.14,0.28	[�/ + (7� − 2		(�1 − �/	, ��� − (7� − 2	(��� − ��9	], "#$	� ∈ [0.28,0.42	[�6 + (7� − 3		(�7 − �6	, ��8 − (7� − 3	(��8 − ��7	], "#$	� ∈ [0.42,0.56	[�8 + (7� − 4	(��9 − �8	, ��6 − (7� − 4		(��6 − ��1	], "#$	� ∈ [0.56,0.7	[��� + (7� − 5	(��� − ���	, ��/ − (7� − 5	(��/ − ��-	, "#$	� ∈ [0.7,0.84	[��� + (7� − 6	(��� − ���	, ��- − (7� − 6	(��- − ���	], "#$	� ∈ [0.84,1]

, 

 

Theorem 4.3. If � = (��, ��, … , ��/	 and H = (I�, I�, … , I�/	 are Icosikaipentagonal fuzzy numbers, then J = � + H is also 

a Icosikaipentagonal fuzzy numbers � + H = (�� + I�, �� + I�, … , ��/ + I�/	 
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Proof: Let us add the � – cut of A and B Icosikaipentagonal fuzzy number is defined as J = �: + H:  

J =

��
��
��
��
��
��
��
 [�� + 7�(�� − ��	, ��/ − 7�(��/ − ��-	] +[I� + 7�(I� − I�	, I�/ − 7�(I�/ − I�-	], "#$	� ∈ [0,0.14		[�� + (7� − 1	(�- − ��	, ��� − (7� − 1	(��� − ���] +[I� + (7� − 1	(I- − I�	, I�� − (7� − 1	(I�� − I��	], "#$	� ∈ [0.14,0.28	[�/ + (7� − 2		(�1 − �/	, ��� − (7� − 2	(��� − ��9	] +I/ + (7� − 2		(I1 − I/	, I�� − (7� − 2	(I�� − I�9	, "#$	� ∈ [0.28,0.42	[�6 + (7� − 3		(�7 − �6	, ��8 − (7� − 3	(��8 − ��7	] +[I6 + (7� − 3		(I7 − I6	, I�8 − (7� − 3	(I�8 − I�7	]	, "#$	� ∈ [0.42,0.56	[�8 + (7� − 4	(��9 − �8	, ��6 − (7� − 4		(��6 − ��1	] +[I8 + (7� − 4	(I�9 − I8	, I�6 − (7� − 4		(I�6 − I�1	], "#$	� ∈ [0.56,0.7	[��� + (7� − 5	(��� − ���	, ��/ − (7� − 5	(��/ − ��-	 +[I�� + (7� − 5	(I�� − I��	, I�/ − (7� − 5	(I�/ − I�-	, "#$	� ∈ [0.7,0.84	[��� + (7� − 6	(��� − ���	, ��- − (7� − 6	(��- − ���	][I�� + (7� − 6	(I�� − I��	, I�- − (7� − 6	(I�- − I��	], "#$	� ∈ [0.84,1]

, 

 

For 0 ≤ � ≤ 0.14	, � ∈ [�� + I�, �� + I�], 
 

Then � = �� + I� + 7�K�� + I� − (�� + I�	L 

 

 7� = MN(OPQRP	OSQRSN(OPQRP	 
 

 � = �
6 ( MN(OPQRP	OSQRSN(OPQRP		 

 

Similarly for the remaining intervals. Therefore addition of membership function is given by 

�(�QT	(�	 =

��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
� 

0, � < �� + I�
0� 3 � − (�� + I�	�� + I� − (�� + I�	4 , �� + I� ≤ � ≤ �� + I�

0�, �� + I� ≤ � ≤ �� + I�
(0� − 0�	 3 � − (�� + I�	�- + I- − (�� + I�	4 + 0�, �� + I� ≤ � ≤ �- + I-

0�, �- + I- ≤ � ≤ �/ + I/
(0� − 0�	 3 � − (�/ + I/	�1 + I1 − (�/ + I/	4 + 0�, �/ + I/ ≤ � ≤ �1 + I1

0�, �1 + I1 ≤ � ≤ �6 + I6	
(0- − 0�	 3 � − (�6 + I6	�7 + I7 − (�6 + I6	4 + 0�, �7 + I7 ≤ � ≤ �8 + I8

0-, �7 + I7 ≤ � ≤ �8 + I8
(0/ − 0-	 3 � − (�8 + I8	��9 + I�9 − (�8 + I8	4 + 0-, �8 + I8 ≤ � ≤ ��9 + I�9

0/, ��9 + I�9 ≤ � ≤ ��� + I��
(01 − 0/	 3 � − (��� + I��	��� + I�� − (��� + I��	4 + 0/, ��� + I�� ≤ � ≤ ��� + I��
(1 − 01	 3 � − (��� + I��	��� + I�� − (��� + I��	4 + 01, ��� + I�� ≤ � ≤ ��� + I��
(1 − 01	 3 ��- + I�- − ���- + I�- − (��� + I��	4 + 0�, ��� + I�� ≤ � ≤ ��- + I�-
(01 − 0/	 3 ��/ + I�/ − ���/ + I�/ − (��- + I�-	4 + 0/, ��- + I�- 	≤ � ≤ ��/ + I�/

0/, ��/ + I�/ ≤ � ≤ ��1 + I�1
(0/ − 0-	 3 ��6 + I�6 − ���6 + I�6 − (��1+I�1	4 + 0-, ��1 + I�1 ≤ � ≤ ��6 + I�6	

0-, ��6 + I�6 ≤ � ≤ ��7 + I�7
(0- − 0�	 3 ��8 + I�8 − ���8 + I�8 − (��7 + I�7	4 + 0�, ��7 + I�7 ≤ � ≤ ��8 + I�8

0�, ��8 + I�8 ≤ � ≤ ��9 + I�9
(0� − 0�	 3 ��� + I�� 	− ���� + I�� − (��9 + I�9	4 + 0�, ��9 + I�9 ≤ � ≤ ��� + I��	

0�, ��� + I�� ≤ � ≤ ��� + I��
(0� − 0�	 3 ��� + I�� − ���� + I�� − (��� + I��	4 + 0�, ��� + I�� ≤ � ≤ ��� + I��

0�, ��� + I�� ≤ � ≤ ��- + I�-
0� 3 ��/ + I�/ − ���/ + I�/ − (��- + I�-	4 , ��- + I�- ≤ � ≤ ��/ + I�/

, 
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Thus if � = (��, ��, … , ��/	 and H = (I�, I�, … , I�/	 are Icosikaipentagonal fuzzy number, thenJ = � + H = (�� + I�, �� +I�, … , ��/ + I�/	. 
 

Theorem 4.4. If � = (��, ��, … , ��/	 and H = (I�, I�, … , I�/	 are Icosikaipentagonal fuzzy numbers, then J = � + H is also 

a Icosikaipentagonal fuzzy numbers � − H = (�� − I�, �� − I�, … , ��/ − I�/	 
 

Proof: Let us add the � –cut of A and B Icosikaipentagonal fuzzy number is defined as J = �: − H:  
 

J =

��
��
��
��
��
��
��
 [�� + 7�(�� − ��	, ��/ − 7�(��/ − ��-	] −[I� + 7�(I� − I�	, I�/ − 7�(I�/ − I�-	], "#$	� ∈ [0,0.14		[�� + (7� − 1	(�- − ��	, ��� − (7� − 1	(��� − ���] −[I� + (7� − 1	(I- − I�	, I�� − (7� − 1	(I�� − I��	], "#$	� ∈ [0.14,0.28	[�/ + (7� − 2		(�1 − �/	, ��� − (7� − 2	(��� − ��9	] −I/ + (7� − 2		(I1 − I/	, I�� − (7� − 2	(I�� − I�9	, "#$	� ∈ [0.28,0.42	[�6 + (7� − 3		(�7 − �6	, ��8 − (7� − 3	(��8 − ��7	] −[I6 + (7� − 3		(I7 − I6	, I�8 − (7� − 3	(I�8 − I�7	]	, "#$	� ∈ [0.42,0.56	[�8 + (7� − 4	(��9 − �8	, ��6 − (7� − 4		(��6 − ��1	] −[I8 + (7� − 4	(I�9 − I8	, I�6 − (7� − 4		(I�6 − I�1	], "#$	� ∈ [0.56,0.7	[��� + (7� − 5	(��� − ���	, ��/ − (7� − 5	(��/ − ��-	] −[I�� + (7� − 5	(I�� − I��	, I�/ − (7� − 5	(I�/ − I�-	, "#$	� ∈ [0.7,0.84	[��� + (7� − 6	(��� − ���	, ��- − (7� − 6	(��- − ���	] −[I�� + (7� − 6	(I�� − I��	, I�- − (7� − 6	(I�- − I��	], "#$	� ∈ [0.84,1]

, 

 

For 0 ≤ � ≤ 0.14	, � ∈ [�� + I�, �� + I�], 
 

Then � = �� − I� + 7�K�� − I� − (�� − I�	L 

 7� = MN(OPNRP	OSNRSN(OPNRP	 
 � = �

6 ( MN(OPNRP	OSNRSN(OPNRP		 
 

Similarly for the remaining intervals. Therefore addition of membership function is given by 

�(�QT	(�	 =

��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
� 

0, � < �� − I�
0� 3 � − (�� − I�	�� − I� − (�� − I�	4 , �� − I� ≤ � ≤ �� − I�

0�, �� − I� ≤ � ≤ �� − I�
(0� − 0�	 3 � − (�� − I�	�- − I- − (�� − I�	4 + 0�, �� − I� ≤ � ≤ �- − I-

0�, �- − I- ≤ � ≤ �/ − I/
(0� − 0�	 3 � − (�/ − I/	�1 − I1 − (�/ − I/	4 + 0�, �/ − I/ ≤ � ≤ �1 − I1

0�, �1 − I1 ≤ � ≤ �6 − I6	
(0- − 0�	 3 � − (�6 − I6	�7 − I7 − (�6 − I6	4 + 0�, �7 − I7 ≤ � ≤ �8 − I8

0-, �7 − I7 ≤ � ≤ �8 − I8
(0/ − 0-	 3 � − (�8 − I8	��9 − I�9 − (�8 − I8	4 + 0-, �8 − I8 ≤ � ≤ ��9 − I�9

0/, ��9 − I�9 ≤ � ≤ ��� − I��
(01 − 0/	 3 � − (��� − I��	��� + I�� − (��� + I��	4 + 0/, ��� − I�� ≤ � ≤ ��� − I��
(1 − 01	 3 � − (��� − I��	��� − I�� − (��� − I��	4 + 01, ��� − I�� ≤ � ≤ ��� − I��
(1 − 01	 3 ��- − I�- − ���- − I�- − (��� − I��	4 + 0�, ��� − I�� ≤ � ≤ ��- − I�-
(01 − 0/	 3 ��/ − I�/ − ���/ − I�/ − (��- − I�-	4 + 0/, ��- − I�- 	 ≤ � ≤ ��/ − I�/

0/, ��/ − I�/ ≤ � ≤ ��1 − I�1
(0/ − 0-	 3 ��6 − I�6 − ���6 − I�6 − (��1−I�1	4 + 0-, ��1 − I�1 ≤ � ≤ ��6 − I�6	0-, ��6 − I�6 ≤ � ≤ ��7 − I�7
(0- − 0�	 3 ��8 − I�8 − ���8 − I�8 − (��7 − I�7	4 + 0�, ��7 − I�7 ≤ � ≤ ��8 − I�8

0�, ��8 − I�8 ≤ � ≤ ��9 − I�9
(0� − 0�	 3 ��� − I�� 	− ���� − I�� − (��9 − I�9	4 + 0�, ��9 − I�9 ≤ � ≤ ��� − I��	

0�, ��� − I�� ≤ � ≤ ��� − I��
(0� − 0�	 3 ��� − I�� − ���� − I�� − (��� − I��	4 + 0�, ��� − I�� ≤ � ≤ ��� − I��

0�, ��� − I�� ≤ � ≤ ��- − I�-
0� 3 ��/ − I�/ − ���/ − I�/ − (��- − I�-	4 , ��- − I�- ≤ � ≤ ��/ − I�/

, 
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Thus if � = (��, ��, … , ��/	 and H = (I�, I�, … , I�/	 are Icosikaipentagonal fuzzy number, thenJ = � − H = (�� − I�, �� −I�, … , ��/ − I�/	. 
 

Theorem 4.5. If � = (��, ��, … , ��/	 and H = (I�, I�, … , I�/	 are Icosikaipentagonal fuzzy numbers, then J = � ∗ H is also a 

Icosikaipentagonal fuzzy numbers � ∗ H = (�� ∗ I�, �� ∗ I�, … , ��/ ∗ I�/	 
 

Proof: Let us add the � – cut of A and B Icosikaipentagonal fuzzy number is defined as J = �: ∗ H: and V = � ∗ H 

J =

��
��
��
��
��
��
��
 [�� + 7�(�� − ��	, ��/ − 7�(��/ − ��-	] ∗[I� + 7�(I� − I�	, I�/ − 7�(I�/ − I�-	], "#$	� ∈ [0,0.14		[�� + (7� − 1	(�- − ��	, ��� − (7� − 1	(��� − ���] ∗[I� + (7� − 1	(I- − I�	, I�� − (7� − 1	(I�� − I��	], "#$	� ∈ [0.14,0.28	[�/ + (7� − 2		(�1 − �/	, ��� − (7� − 2	(��� − ��9	] ∗I/ + (7� − 2		(I1 − I/	, I�� − (7� − 2	(I�� − I�9	, "#$	� ∈ [0.28,0.42	[�6 + (7� − 3		(�7 − �6	, ��8 − (7� − 3	(��8 − ��7	] ∗[I6 + (7� − 3		(I7 − I6	, I�8 − (7� − 3	(I�8 − I�7	]	, "#$	� ∈ [0.42,0.56	[�8 + (7� − 4	(��9 − �8	, ��6 − (7� − 4		(��6 − ��1	] ∗[I8 + (7� − 4	(I�9 − I8	, I�6 − (7� − 4		(I�6 − I�1	], "#$	� ∈ [0.56,0.7	[��� + (7� − 5	(��� − ���	, ��/ − (7� − 5	(��/ − ��-	] ∗[I�� + (7� − 5	(I�� − I��	, I�/ − (7� − 5	(I�/ − I�-	, "#$	� ∈ [0.7,0.84	[��� + (7� − 6	(��� − ���	, ��- − (7� − 6	(��- − ���	] ∗[I�� + (7� − 6	(I�� − I��	, I�- − (7� − 6	(I�- − I��	], "#$	� ∈ [0.84,1]

, 

 

�(�∗T	(�	 =

��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
� 

0, "#$	� < �� ∗ I�−H� ± XH�� − 4��(��I� − V	2�� , "#$	�� ∗ I� ≤ � ≤ �� ∗ I�
0�, "#$	�� ∗ I� ≤ � ≤ �� ∗ I�−H� ±XH�� − 4��(4��I� − 2(��I- + �-I�	 + �-I- − V	2�� , "#$�� ∗ I� ≤ � ≤ �- ∗ I-	
0�, "#$	�- ∗ I- ≤ � ≤ �/ ∗ I/−H� ± XH�� − 4��(9�/I/ − 6(�/I1 + �1I/	 + 4�1I1 − V		2�� , "#$	�/ ∗ I/ ≤ 	� ≤ �1 ∗ I1
0�, "#$	�1 ∗ I1 ≤ � ≤ �6 ∗ I6−H- ±XH-� − 4�-(16�6I6 − 12(�6I7 + �7I6	 + 9�7I7 − V		2�- , "#$	�6 ∗ I6 ≤ � ≤ �7 ∗ I7
0-, "#$	�7 ∗ I7 ≤ � ≤ �8 ∗ I8

−H/ ±ZH/� − 4�/(25�8I8 − 20(�8I�9 + ��9I8	 + 16��9I�9 − V		
2�/ , "#$	�8 ∗ I8 ≤ � ≤ ��9 ∗ I�9
0/, "#$	��9 ∗ I�9 ≤ � ≤ ��� ∗ I��−H1 ± XH1� − 4�1(31���I�� − 30(���I�� + ���I��	 + 25���I�� − V	2�1 , "#$	��� ∗ I�� ≤ � ≤ ��� ∗ I��

−H6 ± XH6� − 4�6(49���I�� − 42(���I�� + ���I��	 + 36���I�� − V	2�6 , "#$	��� ∗ I�� ≤ � ≤ ��� ∗ I��
−H7 ±XH7� − 4�7(49���	I�� − 42(���I�- + ��-I��	 + 36��-I�- − V	2�7 , "#$	��� ∗ I�� ≤ � ≤ ��- ∗ I�-
−H8 ±XH8� − 4�8(31��-I�- − 30(��/I�-+��-I�/	 + 25��/I�/ − V	2�8 , "#$	��- ∗ I�- ≤ � ≤ ��/ ∗ I�/

0/, "#$	��/ ∗ I�/ ≤ � ≤ ��1 ∗	I�1−H�9 ± XH�9� − 4��9(25��1I�1 − 20(��6I�1 + ��1I�6	 + 16��6I�6 − V	2��9 , "#$	��1 ∗ I�1 ≤ � ≤ ��6 ∗ I�6
0-, "#$	��6 ∗ I�6 ≤ � ≤ ��7 ∗ I�7−H�� ± XH��� − 4���(16��7I�7 − 12(��7	I�8 + ��8I�7	 + 9��8	I�8 − V	2��� , "#$��7 ∗ I�7 ≤ � ≤ ��8 ∗ I�8
0�, "#$��8 ∗ I�8 ≤ � ≤ ��9 ∗ I�9−H�� ±XH��� − 4���	(9��9I�9 − 6(��9	I�� + ���I�9	 + 4(���I��	 − V	2��� , "#$	��9 ∗ I�9 ≤ � ≤ ��� ∗ I��
0�, "#$	��� ∗ I�� ≤ � ≤ ��� ∗ I��−H�� ± XH��� − 4���(4���I�� − 2(���I�� + ���I��	 + ���I�� − V	2��� , "#$	��� ∗ I�� ≤ � ≤ ��� ∗ I��
0�, "#$	��� ∗ I�� ≤ � ≤ ��- ∗ I�-−H�- ± XH�-� − 4��-(��/I�/ − V	2��- , "#$	��- ∗ I�- ≤ � ≤ ��/ ∗ I�/

, 
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Where �[ = 49(�[Q� − �[	(I[Q� − I[	 and H\ = 7(�[Q� − �[	K]I\ − I\Q�L + KI\ − 1L ^]�\ − (] − 1	_ for * = 1,2, … ,24	�`a	] =1,2, … ,24. Thus if � = (��, ��, … , ��/	 and H = (��, I�, … , H�/		 are Icosikaipentagonal fuzzy numbers, then J = � ∗ H =(�� ∗ I�, �� ∗ I�, … , ��/ ∗ I�/	. 
 

5. Ranking of Icosikaipentagonal Fuzzy Number 

In this section, we proposed a new ranking function with measure of Icosikaipentagonal fuzzy number. The measure of 

Icosikaipentagonal fuzzy number is defined as average of the two fuzzy side areas(left side area and right side area ), from 

membership function to � axis of the fuzzy interval. 

 

Definition 5.1. Let � = (��, ��, … , ��/	 be a normal Icosikaipentagonal fuzzy number. Then the measure of 

Icosikaipentagonal fuzzy number is calculated as follows: 

�(�	 = 12 [b K;�(�	 + ;�(�	La�	 + b K<�(�	 + <�(�	La� + b K��(�	 + ��(�	La� +b K=�(�	 + =�(�	La�]cd
ce

ce
cS

cS
cP

cP
9

+b K>�(�	 + >�(�	La� + b K?�(�	 + ?�(�	La� + b K@�(�	 + @�(�	La�]�
cf

cf
cg

cg
cd

 

�(�	 = 14 [0�(�� + �� + ��-+��/	 + (0� − 0�	(�� + �- + ��� + ���	 + (0� − 0�	(�/ + �1 + ��9 + ���	+ (0- − 0�	(�6 + �7 + ��7 + ��8	 + (0/ − 0-	(�8 + ��9 + ��1 + ��6	 + (01 − 0/	(��� + ��� + ��- + ��/	+ (1 − 01	(��� + ��� + ��- + ��/	] 
 

Where 0� = �
6 , 0� = �

6 , 0� = �
6 , 0- = -

6 , 0/ = /
6 , 01 = 1

6 	�`a	(0�, 0�, 0�, 0-, 0/, 01	 ∈ [0,1]	 
 

6. Fuzzy Linear Programming Problems with Icosikaipentagonal Fuzzy Number 

Consider the standard form of fuzzy linear programming problem as follows: 

Maximize (Minimize)h = ∑ j̃\�\l\m�  

Subject to ∑ �n[\�\ ≤ (≥,=	Io[l\m�  

 �\ ≥ 0, * = 1,2, … ,p, ] = 1,2, … , ` 

Where j̃\ , �n[\ , Io[  are Icosikaipentagonal fuzzy numbers. 

 

6.1. Proposed Method 

In this section to find an optimal solution for fuzzy linear programming problem with Icosikaipentagonal fuzzy number 

has been proposed. The method as follows: 

 

Step 1: The Fuzzy Linear programming problem is represented as follows: 

Maximize (Minimize)h = ∑ j̃\�\l\m�  

Subject to ∑ �n[\�\ ≤ (≥,=	Io[l\m�  

 �\ ≥ 0, * = 1,2, … ,p, ] = 1,2, … , ` 

Where j̃\ , �n[\ , Io[ ∈ q(�	, �\ ∈ �. 
 

Step 2: By applying ranking function with Icosikaipentagonal fuzzy number j̃\ , �n[\ , Io[  they can be defuzzified. 

 

Step 3: Using the Icosikaipentagonal fuzzy number ranking function, the fuzzy linear programming problem can be 

written as follows: 

Maximize (Minimize)h = ∑ �(j̃\	�\l\m�   

Subject to ∑ �(�n[\	�\ ≤ (≥,=	�(Io[l\m� 	 
 �\ ≥ 0, * = 1,2, … ,p, ] = 1,2, … , ` 

Where j̃\ , �n[\ , Io[  are Icosikaipentagonal fuzzy number and �Kj̃\L, �(�n[\	, �KIo[L, �\ ∈ �, 
 * = 1,2, … ,p	, ] = 1,2, … , `. 
 

Step 4: Then solve the Crisp Linear programming problem using the simplex method and obtain a fuzzy optimal solution. 

 

6.2. Illustrative Examples 

Consider the fuzzy linear programming problem with Icosikaipentagonal fuzzy number. 

 

6.2.1. Example 

Maximize h = j̃��� + j̃��� 

Subject to �n���� + �n���� ≤ Io� 

 �n���� + �n���� ≤ Io� 

 ��, �� ≥ 0	 
 

Where �n�� = (−8,−7,−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	 
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 �n�� = (1,2,3,4,5,8,9,12,13,15,17,18,20,21,24,25,26,37,28,29,30,31,33,34,35	 
 �n�� = (4,5,6,7,8,9,10,12,14,16,18,20,21,22,23,24,25,26,29,30,31,32,33,34,35	 
 �n�� = (−1,0,1,2,3,5,7,8,9,11,12,13,15,16,18,19,21,23,25,26,28,29,30,31,32	 
 Io� = (−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19	 
 	Io� = (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,33,34,35,36,37,38,39,40,41	 
 j̃� = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25	 
 j̃� = (−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,20) 
 

Solution: 

Using the measure of ranking function as FLPP as  

Maximize h = �(j̃�	�� + �(j̃�	�� 

Subject to �(�n��	�� + �(�n��	�� ≤ �(Io�	 
 �(�n��	�� + �(�n��	�� ≤ �(Io�	 
 ��, �� ≥ 0	 
 

The measure of ranking function with Icosikaipentagonal fuzzy number is  

�(�	 = 14 [0�(�� + �� + ��-+��/	 + (0� − 0�	(�� + �- + ��� + ���	 + (0� − 0�	(�/ + �1 + ��9 + ���	+ (0- − 0�	(�6 + �7 + ��7 + ��8	 + (0/ − 0-	(�8 + ��9 + ��1 + ��6	 + (01 − 0/	(��� + ��� + ��- + ��/	+ (1 − 01	(��� + ��� + ��- + ��/	] 
Where 0� = �

6 , 0� = �
6 , 0� = �

6 , 0- = -
6 , 0/ = /

6 , 01 = 1
6 	�`a	(0�, 0�, 0�, 0-, 0/, 01	 ∈ [0,1]	 

If �(−8,−7,−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	 = �
- [0.14	(−8 − 7 + 15 + 16	 + 0.14(−6 −4+13+14+0.14−4−3+11+12+0.14−2−1+9+10+0.140+1+7+8+0.142+3+5+6+0.143+4+5+6] 

 = �
- [0.14(16 + 16 + 16 + 16 + 16 + 16 + 18	] 

 = �
- (15.96	 = 3.99 

 

The crisp linear programming problem with Icosikaipentagonal fuzzy number is given by 

Maximize h = 12.81�� + 6.055�� 

Subject to 3.99�� + 18.66�� ≤ 6.93 

 19.57�� + 15.05�� ≤ 24.05 

 ��, �� ≥ 0 
 

Using Mathematical Linear Programming Problem, we obtain the optimal solution is �� = 1.229, �� = 0	and Max h = 15.743 
 

6.2.2. Example 

Maximize h = j̃��� + j̃��� 

Subject to �n���� + �n���� ≤ Io� 

 �n���� + �n���� ≤ Io� 

 ��, �� ≥ 0	 
 

Where �n�� = (−7,−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17		�n�� =(1,2,3,4,5,6,7,8,9,10,11,12,13, ,14,15,16,17,18,19,20,21,22,23,24,25	 
 	�r�� = (−20,−18,−16,−14,−12,−10,−8,−6,−4,−2,0,2,4,6,8,10,12,14,16,18,20,22,24,26,28	 
 �n�� = (−10,−9,−8,−7,−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9.10,11,12,13,14	 
 Io� = (−7,−5,−3,−1,0,2,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,22,23	 
 	Io� = (−2,0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46	 
 j̃� = (−1,0,1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45	 
 j̃� = (−7,−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1) 
 

Solution: 

Using the measure of ranking function as FLPP as  

Maximize h = �(j̃�	�� + �(j̃�	�� 

Subject to �(�n��	�� + �(�n��	�� ≤ �(Io�	 
 �(�n��	�� + �(�n��	�� ≤ �(Io�	 
 ��, �� ≥ 0	 
 

The measure of ranking function with Icosikaipentagonal fuzzy number is  

�(�	 = 14 [0�(�� + �� + ��-+��/	 + (0� − 0�	(�� + �- + ��� + ���	 + (0� − 0�	(�/ + �1 + ��9 + ���	+ (0- − 0�	(�6 + �7 + ��7 + ��8	 + (0/ − 0-	(�8 + ��9 + ��1 + ��6	 + (01 − 0/	(��� + ��� + ��- + ��/	+ (1 − 01	(��� + ��� + ��- + ��/	] 



International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD     |     Unique Paper ID – IJTSRD31357      |     Volume – 4 | Issue – 4     |     May-June 2020 Page 1055 

Where 0� = �
6 , 0� = �

6 , 0� = �
6 , 0- = -

6 , 0/ = /
6 , 01 = 1

6 	�`a	(0�, 0�, 0�, 0-, 0/, 01	 ∈ [0,1]	 
If �(−7,−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	 = �

- [0.14	(−7 − 6 + 16 + 17	 + 0.14(−5 − 4 +14+15+0.14−3−2+12+13+0.14−1+0+10+11+0.141+2+8+9+0.143+4+6+7+0.144+5+6+7] 
 = �

- [0.14(20 + 20 + 20 + 20 + 20 + 20 + 22	] 
 = �

- (19.88	 = 4.97 

 

The crisp linear programming problem with Icosikaipentagonal fuzzy number is given by 

Maximize h = 20.83�� + 4.97�� 

Subject to 4.97�� + 12.81�� ≤ 10.01 

 4.06�� + 2.03�� ≤ 21.7 

 ��, �� ≥ 0 

Using Mathematical Linear Programming Problem, we obtain the optimal solution is �� = 2.01, �� = 0	and Max h = 41.95 
 

7. Conclusion 

In this paper, we introduced a new form fuzzy with twenty 

five points called as Icosikaipentagonal fuzzy number and 

defining some arithmetic operations using with 

Icosikaipentagonal membership function. 

Icosikaipentagonal fuzzy number applied with fuzzy linear 

programming problem to finding an optimal solution 

using the measure of ranking function. 
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