
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 4 Issue 4, June 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD31179 | Volume – 4 | Issue – 4 | May-June 2020 Page 1325

Java (A Language which is Vast in Itself)

Yash Arora, Raghav Arya

Student, Dronacharya College of Engineering, Gurugaon, Harayana, India

ABSTRACT

In this paper, I have done the audit of the Java programming language for the
students. I will show four models and completely help to students in study.
This paper surveys recent research on programming languages and
development various models. Enhancements in wherever handling over late
conditions has engaged architects to make structures that assistance message
in the classroom. Learning includes two methods which are understanding
data and changing that learning. We likewise exhibit a different layered
Student Model which underpins versatile coaching by gathering the issue
particular information state from understudy arrangements. This Research
Work is tied in with getting the hang of programming instead of the capable
practice. The circumstances are expected for master programming engineers.
This paper is an attempt to contemplate how students take in the Java
programming Language and make secure use of using it. An understudy in
what way can find the weakness of Java application.

How to cite this paper: Yash Arora |
Raghav Arya "Java (A Language which is
Vast in Itself)"
Published in
International Journal
of Trend in Scientific
Research and
Development
(ijtsrd), ISSN: 2456-
6470, Volume-4 |
Issue-4, June 2020, pp.1325-1332, URL:
www.ijtsrd.com/papers/ijtsrd31179.pdf

Copyright © 2020 by author(s) and
International Journal of Trend in Scientific
Research and Development Journal. This
is an Open Access article distributed
under the terms of
the Creative
Commons Attribution
License (CC BY 4.0)
(http://creativecommons.org/licenses/by
/4.0)

1. INTRODUCTION TO JAVA

THE BEGINNING OF JAVA
Java is an object-oriented programming language developed
by Sun Microsystems in 1991 and released in 1995 as a core
component of Sun’s Java platform. The language derives
much of its syntax from C and C++, but has a simpler object
model and fewer low-level facilities. The Java language was
designed to be small, simple, and portable across platforms
and operating systems. The Java language was developed as
part of a research project to develop software for consumer
electronics devices—television sets, VCRs, toasters, and the
other sorts of machines we can buy at any department store.
Java’s goals at that time were to be small, fast, efficient, and
easily portable to a wide range of hardware devices.

THE FAMILY HISTORY OF JAVA
Before going on to study Java, let’s take a brief look, through
quotes, at the language on which Java was based, travelling
back over 30years to do so.

WHERE IT STARTS: C
The earliest precursor of Java is C: a language developed by
Ken Thompson at Bell Labs in the early 1970s. C was used as
a system programming language. C began achieving its
widespread popularity when Bell’s UNIX operating system
was rewritten in C. Unix was the first operating system
written in high level language; it was distributed to
universities for free, where it become popular. Linux is
currently a popular variant of UNIX. “C is a general-purpose
programming language which feature economy of
expression, modern control flow and data structure, and a
rich set of operators. C is not a “very high level” language,

nor a “big” one, and is not specialized to any particular area
of application.

FROM C TO C++
“A programming language serves two related purpose: it
provides a vehicle for the programmers to specify action to
be executed, and it provides a set of concepts for the
programmers to use when thinking about what can be done.
The first aspect ideally requires a language that is “close to
the machine,” so that all important aspect of the machine
handled simply and efficiently in a way that is reasonably
obvious to the programmer. C language was primarily
designed with this in mind. The second aspect ideally
requires a language that is “close to the problem to be
solved,” so that the concept of a solution can be expressed
directly and concisely. The facilities added to C to create C++
were primarily designed with this in mind.”

JAVA AS A SUCCESSOR TO C++
“The Java programming language is a class-based, general
purpose, concurrent, object-oriented language. It is designed
to be simple enough that many programmers can achieve
fluency in the language. The Java programming language is
related to C and C++ but it is organized rather differently,
with a number of aspects of C and C++ omitted and a few
ideas from other languages included. It is intended to be
production language, not a research language, and so, as
C.A.R. Hoare suggested in his classic paper on language
design, the design has avoided including new and untested
features. The Java programming language is a relatively high-

IJTSRD31179

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD31179 | Volume – 4 | Issue – 4 | May-June 2020 Page 1326

level language, in that detail of the machine representation
are not available through the language. It includes automatic
storage management, typically using a garbage collector, to
avoid the safety problems. High performance garbage
collected implementation can have bounded pauses to
support system programming and real time application. The
language does not include any unsafe construct, such as
array accesses without checking, since such unsafe
constructs would cause a program to behave in an
unspecified way.”

What is the Java Technology?

� A programming language: - We can use java as a
programming language. By using this programming
language, we can develop different type of application
for e.g.: Console Application (CUI), Window Application
(GUI) and Web Applications

� A development environment: - It provides a
development environment in which we can develop,
check, debug and execute the applications.

� An application environment: - It provides an
environment in which application can run or execute.

� A deployment environment: - It provides a deployment
environment in which we can check application after
deployment how application will react

� It is similar in syntax to C++.

Features of Java are as follows:

1. Compiled and Interpreted
2. Platform Independent and portable
3. Object- oriented
4. Robust and secure
5. Distributed
6. Familiar, simple and small
7. Multithreaded and Interactive

1. Compiled and Interpreted

Basically, a computer language is either compiled or
interpreted. Java comes together both these approaches thus
making Java a two-stage system. Java compiler translates
Java code to Byte-code instructions and Java Interpreter
generate machine code that can be directly executed by
machine that is running the Java program.

2. Platform Independent and portable

Java supports the feature portability. Java programs can be
easily moved from one computer system to another and
anywhere. Changes and upgrades in operating systems,
processors and system resources will not force any
alteration in Java programs. This is reason why Java has
become a trendy language for programming on Internet
which interconnects different kind of systems worldwide.
Java certifies portability in two ways. First way is, Java
compiler generates the bytecode and that can be executed on
any machine. Second way is, size of primitive data types is
machine independent.

3. Object- oriented

Java is truly object-oriented language. In Java, almost
everything is an Object. All program code and data exist in
objects and classes. Java comes with an extensive set of
classes; organize in packages that can be used in program by
Inheritance. The object model in Java is trouble-free and easy
to enlarge.

4. Robust and secure

Java is a most strong language which provides many
securities to make certain reliable code. It is design as
garbage – collected language, which helps the programmers
virtually from all memory management problems. Java also
includes the concept of exception handling, which detain
serious errors and reduces all kind of threat of crashing the
system. Security is an important feature of Java and this is
the strong reason that programmer use this language for
programming on Internet. The absence of pointers in Java
ensures that programs cannot get right of entry to memory
location without proper approval.

5. Distributed

Java is called as Distributed language for construct
applications on networks which can contribute both data
and programs. Java applications can open and access remote
objects on Internet easily. That means multiple
programmers at multiple remote locations to work together
on single task.

6. Multithreaded and Interactive

Multithreaded means managing multiple tasks
simultaneously. Java maintains multithreaded programs.
That means we need not wait for the application to complete
one task before starting next task. This feature is helpful for
graphic applications.

JAVA LANGUAGE FUNDAMENTAL

1. Data Type

Data type specifies the size and type of values that can be
stored in an identifier. The Java language is rich in its data
types. Different data types allow we to select the type
appropriate to the needs of the application. Data types in
Java are classified into two types:

A. Primitive—which include Integer, Character, Boolean,

and Floating Point.
B. Non-primitive—which include Classes, Interfaces, and

Arrays.

A. Primitive Data Types Integer

Integer types can hold whole numbers such as 123 and −96.
The size of the values that can be stored depends on the
integer type that we choose.

9,223,372,036,854,775,808to9,223,372,036,854,755,807

The range of values is calculated as - (2n−1) to (2n−1) −1;
where n is the number of bits required. For example, the
byte data type requires 1 byte = 8 bits. Therefore, the range
of values that can be stored in the byte data type is −(28−1) to
(28−1)−1
= −27 to (27) -1
= −128 to 127

B. Character

It stores character constants in the memory. It assumes a
size of 2 bytes, but basically it can hold only a single
character because char stores Unicode character sets. It has
a minimum value of ‘u0000′ (or 0) and a maximum value of
‘uffff’ (or 65,535, inclusive).

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD31179 | Volume – 4 | Issue – 4 | May-June 2020 Page 1327

Boolean

Boolean data types are used to store values with two states:
true or false.

C. Java Tokens

A token is the smallest element in a program that is
meaningful to the compiler. These tokens define the
structure of the language. The Java token set can be divided
into five categories: Identifiers, Keywords, Literals,
Operators, and Separators.

D. Identifiers

Identifiers are names provided by we. These can be assigned
to variables, methods, functions, classes etc. to uniquely
identify them to the compiler.

E. Keywords

Keywords are reserved words that have a specific meaning
for the compiler. They cannot be used as identifiers. Java has
a rich set of keywords. Some examples are: Boolean, char, if,
protected, new, this, try, catch, null, thread safe etc.

F. Literals

Literals are variables whose values remain constant
throughout the program. They are also called Constants.
Literals can be of four types. They are:

I. String Literals: - String Literals are always enclosed in

double quotes and are implemented using the
java.lang.String class. Enclosing a character string within
double quotes will automatically create a new String
object. For example, String s = "this is a string”; String
objects are immutable, which means that once created,
their values cannot be changed.

II. Character Literals: - These are enclosed in single quotes
and contain only one character.

III. Boolean Literals: - They can only have the values true or
false. These values do not correspond to 1 or 0 as in C or
C++.

IV. Numeric Literals: - Numeric Literals can contain integer
or floating-point values.

G. Operators

An operator is a symbol that operates on one or more
operands to produce a result.

H. Separators

Separators are symbols that indicate the division and
arrangement of groups of code. The structure and function of
code is generally defined by the separators. The separators
used in Java are as follows:

Parentheses (): - Used to define

precedence in expressions, to

enclose parameters in method

definitions, and enclosing cast
types. Braces { }: - Used to define a block of code and to hold
the values of arrays. Brackets []: - Used to declare array
types.

Semicolon ; :- Used to separate statements.

Comma,:- Used to separate identifiers in a variable
declaration and in the for statement.

Period.: - Used to separate package names from classes and
subclasses and to separate a variable or a method from a
reference variable.

Variables

There are different types of variables in Java. They are as
follows:
I. Instance Variables (Non-Static Fields)

Objects store their individual states in “non-static fields”,
that is, fields declared without the static keyword. Non-static
fields are also known as instance variables because their
values are unique to each instance of a class. For example,
the current Speed of one bicycle is independent from the
current Speed of another.

J. Class Variables (Static Fields)

A class variable is any field declared with the static modifier;
this tells the compiler that there is exactly one copy of this
variable in existence, regardless of how many times the class
has been instantiated. A field defining the number of gears
for a particular kind of bicycle could be marked as static
since, conceptually, the same number of gears will apply to
all instances. The code static int num Gears = 6; would create
such a static field.

K. Local Variables

A method stores its temporary state in local variables. The
syntax for declaring a local variable is similar to declaring a
field (for example, int count = 0;). There is no special
keyword designating a variable as local; that determination
comes entirely from the location in which the variable is
declared—between the opening and closing braces of a
method. As such, local variables are only visible to the
methods in which they are declared; they are not accessible
from the rest of the class.

Parameters

They are the variables that are passed to the methods of a
class.

L. Variable Declaration

Identifiers are the names of variables. They must be
composed of only letters, numbers, the underscore, and the
dollar sign ($). They cannot contain white spaces. Identifiers
may only begin with a letter, the underscore, or the dollar
sign. A variable cannot begin with a number. All variable
names are case sensitive.

OOP’S CONCEPTS

1. INHERITANCE

The process of obtaining the data members and methods
from one class to another class is known as inheritance. It is
one of the fundamental features of object-oriented
programming. A class that is declared with abstract
keyword, is known as abstract class. An abstract class is one
which is containing some defined method and some
undefined method. In java programming undefined methods
are known as unImplemented or abstract method. The
process of obtaining the data members and methods from
one class to another class is known as inheritance. It is one
of the fundamental features of object-oriented programming.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD31179 | Volume – 4 | Issue – 4 | May-June 2020 Page 1328

TYPES OF INHERITANCE
� Single inheritance
� Multiple inheritance
� Hierarchical inheritance
� Multilevel inheritance
� Hybrid inheritance

Why use Inheritance?

� For Method Overriding (used for Runtime
Polymorphism).

� Its main uses are to enable polymorphism and to be able
to reuse code for different classes by putting it in a
common super class

� For code Re-usability

2. Method Overloading

Whenever same method name is exiting multiple times in
the same class with different number of parameter or
different order of parameters or different types of
parameters is known as method overloading.

Why method Overloading?

Suppose we have to perform addition of given number but
there can be any number of arguments, if we write method
such as a(int, int)for two arguments, b(int, int, int) for three
arguments then it is very difficult for you and other
programmer to understand purpose or behaviors of method
they cannot identify purpose of method. So, we use method
overloading to easily figure out the program. For example,
above two methods we can write sum (int, int) and sum (int,
int, int) using method overloading concept.

DIFFERENT WAYS TO OVERLOAD THE METHOD

� By changing number of arguments or parameters
� By changing the data type
� By changing the order of arguments.

METHOD OVERRIDING

Whenever same method name is existing in both base class
and derived class with same types of parameters or same
order of parameters is known as method Overriding.

ADVANTAGE OF JAVA METHOD OVERRIDING

� Method Overriding is used to provide specific
implementation of a method that is already provided by
its super class.

� Method Overriding is used for Runtime Polymorphism

Interface

Interface is similar to class which is collection of public
static final variables (constants) and abstract methods. The
interface is a mechanism to achieve fully abstraction in java.
There can be only abstract methods in the interface. It is
used to achieve fully abstraction and multiple inheritance in
Java.

Why we use Interface?

� It is used to achieve fully abstraction.
� By using Interface, you can achieve multiple inheritance

in java.

WHEN WE USE ABSTRACT AND WHEN INTERFACE

If we do not know about any things about implementation
just, we have requirement specification then we should be
going for Interface

If we are talking about implementation but not completely
(partially implemented) then we should be going for
abstract

ABSTRACTION

Abstraction is the concept of exposing only the required
essential characteristics and behavior with respect to a
context.

Hiding of data is known as data abstraction. In object-
oriented programming language this is implemented
automatically while writing the code in the form of class and
object.

REAL LIFE EXAMPLE OF ABSTRACTION

Abstraction shows only important things to the user and
hides the internal details for example when we ride a bike,
we only know about how to ride bike but cannot know about
how it works? and also, we do not know internal
functionality of bike.

ENCAPSULATION

Encapsulation is a process of wrapping of data and methods
in a single unit is called encapsulation. Encapsulation is
achieved in java language by class concept. Combining of
state and behavior in a single container is known as
encapsulation. In java language encapsulation can be achieve
using class keyword, state represents declaration of
variables on attributes and behavior represents operations
in terms of method.

BENEFITS OF ENCAPSULATION

� Provides abstraction between an object and its clients.
� Protects an object from unwanted access by clients.
� Example: A bank application forbids (restrict) a client to

change an Account's balance

POLYMORPHISM

The process of representing one form in multiple forms is
known as Polymorphism. Here original form or original
method always resides in base class and multiple forms
represents overridden method which resides in derived
classes.

Polymorphism is not a programming concept but it is one of
the principals of OOPs. For many objects-oriented
programming language polymorphism principles is common

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD31179 | Volume – 4 | Issue – 4 | May-June 2020 Page 1329

but whose implementations are varying from one objects-
oriented programming language to another object-oriented
programming language.

Polymorphism principal is divided into two sub principal
they are:
� Static or Compile time polymorphism
� Dynamic or Runtime polymorphism

EXCEPTION HANDLING

An exception is an event, which occurs during the execution
of the program, that an interrupt the normal flow of the
program ‘s instruction. In other words, Exceptions are
generated when a recognized condition, usually an error
condition, arises during the execution of a method. Java
includes a system for running exceptions, by tracking the
potential for each method to throw specific exceptions. For
each method that could throw an exception, our code must
report to the Java compiler that it could throw that exact
exception. The compiler marks that method as potentially
throwing that exception, and then need any code calling the
method to handle the possible exception. Exception handling
is basically use five keywords as follows:
� Try
� Catch
� Throw

Overview

Exceptions are generated when an error condition occur
during the execution of a method. It is possible that a
statement might throw more than one kind of exception.
Exception can be generated by Java-runtime system or they
can be manually generated by code. Error Handling becomes
a necessary while developing an application to account for
exceptional situations that may occur during the program
execution.

Exceptions are generated when a recognized an error
condition during the execution of a program. Java includes a
system for running exceptions, by tracking the potential for
each method to throw specific exceptions

� for each method that could throw an exception, our code

must report to the Java compiler that it could throw that
exact exception.

� the compiler marks that method as potentially throwing
that exception, and then need any code calling the
method to handle the possible exception.

There are two ways to handle an exception:
� we can try the "risky" code, catch the exception, and do

something about it, after which the transmission of the
exception come to an end.

� we can mark that this method throws that exception; in
which case the Java runtime engine will throw the
exception back to the method.

So, if we use a method in our code that is marked as
throwing a particular exception, the compiler will not allow
that code unless we handle the exception. If the exception
occurs in a try block, the JVM looks to the catch block(s) that
follow to see if any of them equivalent the exception type.
The first one that matches will be executed. If none match,
then this method ends, and execution jumps to the method
that called this one, at the point the call was made.

Fig: a partial view of the Throw able family

Try…catch

If a method is going to resolve potential exception internally,
the line of code that could generate the exception is placed
inside a try block. There may be other code inside the try
block, before and/or after the risky line(s) - any code that
depends upon the risky code's success should be in the try
block, since it will automatically be skipped if the exception
occurs.

code risky/unsafe code code that depends on the risky code
succeeding

There is usually at least one catch block immediately after
the try block. A catch block must specify what type of
exception it will catch.

Syntax: catch (ExceptionClassNameexceptionObjectName)
{code using methods fromexceptionObjectName}

There can be more than one catch block, each one marked
for a correct exception class. The exception class that is
caught can be any class in the exception hierarchy, either a
general (base) class, or a very correct (derived) class. The
catch block(s) must handle all checked exceptions that the
try block is known to throw unless we want to throw that
exception back to the method. It is possible to have a try
block without any catch blocks if we have a finally block but
any checked exceptions still need to be caught, or the
method needs to declare that it throws them. If an exception
occurs within a try block, execution jumps to the first catch
block whose exception class matches the exception that
occurred. Any steps remaining in the try block are skipped. If
no exception occurs, then the catch blocks are skipped If
declare a variable within a try block, it will not exist outside
the try block, since the curly braces define the scope of the
variable. We will often need that variable later, if nowhere
else other than the catch or finally blocks, so we would need
to declare the variable before the try. If we declare but don't
initialize a variable before a try block, and the only place we
set a value for that variable is in the try block, then it is
possible when execution leaves the try. catch structure that
the variable never received a value. So, we would get a
"possibly uninitialized value" error message from the
compiler, since it actually keeps track of that sort of thing.

THROW

We can throw an exception explicitly using the throw
statement. For example, we need to throw an exception
when a user enters a wrong student ID or password. The
throws clause is used to list the types of exception that can
be thrown in the execution of a method in a program. The
throw statement causes termination of the normal flow of
control of the java code and prevents the execution of the
subsequent statements. The throw clause conveys the

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD31179 | Volume – 4 | Issue – 4 | May-June 2020 Page 1330

control to the nearest catch block handling the type of
exception object throws. If no such catch block exists, the
program terminates. The throw statement accepts a single
argument, which is an object of the Exception class.

THROWS

The throws statement is used by a method to specify the
types of exceptions the method throws. If a method is
capable of raising an exception that it does not handle, the
method must specify that the exception have to be handled
by the calling method. This is done using the throws
statement. The throws clause lists the types of exceptions
that a method might throw.

FINALLY

To guarantee that a line of code runs, whether an exception
occurs or not, use a finally block after the try and catch
blocks. The code in the finally block will almost always
execute, even if an unhandled exception occurs; in fact, even
if a return statement is encountered. If an exception causes a
catch block to execute, the finally block will be executed after
the catch block or if an uncaught exception occurs, the finally
block executes, and then execution exits this method and the
exception is thrown to the method that called this method.

MULTI-THREADING

THE JAVA THREAD MODEL
Thread is a sequential path of execution of a program. In java
we can create multiple threads for the full utilization of the
processor time. Java environment has been built around the
multithreading model. In fact, all java class libraries have
been designed keeping multithreading in mind. If a thread
goes off to sleep for some time, the rest program does not get
affected by this. Similarly, an animation loop can be fired that
will not stop the working of rest of the system. At a point of
time a thread can be in any one of the following states: new,
ready, running, inactive and finished. A thread enters the
new state as soon as it is created. When it is started, it is
ready to run. The start () method in turn calls the run ()
method which makes the thread enter the running state.
While running, a thread might get blocked because some
resource that it requires is not available, or it could be
suspended on purpose for some reason. In such a case the
thread enters the state of being inactive. A thread can also be
stopped purposely because its time has been expired, then it
enters the state of ready to run once again. A thread that is in
running state can be stopped once its job has finished. A
thread that is in inactive state can either be resumed, in
which case it enters the ready state again, or it can be
stopped in which case it enters the finished state.

MULTITHREADING
Multithreading is a process of executing multiple threads
simultaneously. So, at this point we will ask ourselves what a
thread is. A thread is a lightweight subprocess, a smallest
unit of processing. It is a separate path of execution. It shares
the memory area of process. So, in short, Multithreading is a
technique that allows a program or a process to execute
many tasks concurrently (at the same time and parallel). It
allows a process to run its tasks in parallel mode on a single
processor system. Java provides built-in support for
multithreaded programming. A multithreaded program
contains two or more parts that can run concurrently. Each
part of such a program is called a thread, and each thread
defines a separate path of execution. A multithreading is a

specialized form of multitasking. Multitasking threads
require less overhead than multitasking processes. I need to
define another term related to threads: process: A process
consists of the memory space allocated by the operating
system that can contain one or more threads. A thread
cannot exist on its own; it must be a part of a process. A
process remains running until all of the non-daemon threads
are done executing. Multithreading enables you to write very
efficient programs that make maximum use of the CPU,
because idle time can be kept to a minimum. In Java, the Java
Virtual Machine (JVM) allows an application to have multiple
threads of execution running concurrently. It allows a
program to be more responsible to the user.

THREAD PRIORITIES
Every Java thread has a priority that helps the operating
system determine the order in which threads are scheduled.
Java priorities are in the range between MIN_PRIORITY (a
constant of 1) and MAX_PRIORITY (a constant of 10). By
default, every thread is given priority NORM_PRIORITY (a
constant of 5). Threads with higher priority are more
important to a program and should be allocated processor
time before lower - priority threads. However, thread
priorities cannot guarantee the order in which threads
execute and very much platform dependent.

STREAMS

A stream is a path of communication between the source of
some information and its destination. That information, an
un-interpreted byte stream, can come from any “pipe
source,” the computer’s memory, or even from the Internet.
In fact, the source and destination of a stream are completely
arbitrary producers and consumers of bytes, respectively.
Therein lies the power of the abstraction. You don’t need to
know about the source of the information when reading
from a stream, and you don’t need to know about the final
destination when writing to one. General-purpose methods
that can read from any source accept a stream argument to
specify that source; general methods for writing accept a
stream to specify the destination. Arbitrary processors (or
filters) of data have two stream arguments. They read from
the first, process the data, and write the results to the
second. These processors have no idea of either the source
or the destination of the data they are processing. Sources
and destinations can vary widely: from two memory buffers
on the same local computer, to the ELF transmissions to and
from a submarine at sea, to the Realtime data streams of a
NASA probe in deep space. By decoupling the consuming,
processing, or producing of data from the sources and
destinations of that data, you can mix and match any
combination of them at will as you write your program. In
the future, when new, previously nonexistent forms of
source or destination (or consumer, processor, or producer)
appear, they can be used within the same framework, with
no changes to your classes. New stream abstractions,
supporting higher levels of interpretation “on top of” the
bytes, can be written completely independently of the
underlying transport mechanisms for the bytes themselves.
At the pinnacle of this stream framework are the two
abstract classes, Input Stream and Output Stream. If you turn
briefly to the diagram for java.io in Appendix B, these classes
are a virtual cornucopia of categorized classes,
demonstrating the wide range of streams in the system, but
also demonstrating an extremely well-designed hierarchy of
relationships between these streams, one well worth

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD31179 | Volume – 4 | Issue – 4 | May-June 2020 Page 1331

learning from. Let’s begin with the parents and then work
our way down this bushy tree. There are two types of
Streams in java, Input Stream and Output Stream.

INPUT STREAMS

All the methods you will explore today are declared to throw
IOExceptions. This new subclass of Exception conceptually
embodies all the possible I/O errors that might occur while
using streams. Several subclasses of it define a few, more
specific exceptions that can be thrown as well. For now, it is
enough to know that you must either catch an IOException,
or be in a method that can “pass it along,” to be a well-
behaved user of streams.

READ ()

The most important method to the consumer of an input
stream is the one that reads bytes from the source. This
method, read (), comes in many flavors, and each is
demonstrated in an example in today’s lesson. Each of these
read () methods is defined to “block” (wait) until all the input
requested becomes available.

Don’t worry about this limitation; because of multithreading,
you can do as many other things as you like while this one
thread is waiting for input. In fact, it is a common idiom to
assign a thread to each stream of input (and for each stream
of output) that is solely responsible for reading from it (or
writing to it). These input threads might then “hand off” the
information to other threads for processing. This naturally
overlaps the I/O time of your program with its compute
time.

This form of read()attempts to fill the entire buffer given. If it
cannot (usually due to reaching the end of the input stream),
it returns the actual number of bytes that were read into the
buffer. After that, any further calls to read()return -1,
indicating that you are at the end of the stream. Note that the
if statement still works even in this case, because -1! =
1024(this corresponds to an input stream with no bytes in it
all).

SKIP()

What if you want to skip over some of the bytes in a stream,
or start reading a stream from other than its beginning?

MARK() AND RESET()
Some streams support the notion of marking a position in
the stream, and then later resetting the stream to that
position to reread the bytes there. Clearly, the stream would
have to “remember” all those bytes, so there is a limitation
on how far apart in a stream the mark and its subsequent
reset can occur. There’s also a method that asks whether or
not the stream supports the notion of marking at all.

When marking a stream, you specify the maximum number
of bytes you intend to allow to pass before resetting it. This
allows the stream to limit the size of its byte “memory.” If
this number of bytes goes by and you have not yet reset(),
the mark becomes invalid, and attempting to reset()will
throw an exception. Marking and resetting a stream is most
valuable when you are attempting to identify the type of the
stream (or the next part of the stream), but to do so, you
must consume a significant piece of it in the process.

Often, this is because you have several blackbox parsers that
you can hand the stream to, but they will consume some
(unknown to you) number of bytes before making up their
mind about whether the stream is of their type. Set a large
size for the read limit above, and let each parser run until it
either throws an error or completes a successful parse. If an
error is thrown, reset()and try the next parser.

close()

Because you don’t know what 531sources an open stream
rep531sents, nor how to deal with them properly when
you’re finished reading the stream, you must usually
explicitly close down a stream so that it can release these
531sources. Of course, garbage collection and a finalization
method can do this for you, but what if you need to reopen
that stream or those resources before they have been freed
by this asynchronous p5ocess? At best, this is annoying or
confusing; at worst, it introduces an unexpected, obscure,
and difficult-totrack-down bug. Because you’re interacting
with the outside world of external 531sources, it’s safer to be
explicit about when you’re finished using them:

OUTPUT STREAMS

Output streams are, in almost every case, paired with a
“brother” Input Stream that you’ve already learned. If an
Input Stream performs a certain operation, the “brother”
Output Stream performs the inverse operation.

write()

The most important method to the producer of an output
stream is the one that writes bytes to the destination. This
method, write(), comes in many flavors.

FLUSH()

Because you don’t know what an output stream is connected
to, you might be required to “flush” your output through
some buffered cache to get it to be written (in a timely
manner, or at all). OutputStream’s version of this method
does nothing, but it is expected that subclasses that require
flushing (for example, BufferedOutputStream and
PrintStream) will override this version to
do something nontrivial.

CLOSE()

Just like for an Input Stream, you should (usually) explicitly
close down an Output Stream so that it can release any
resources it may have reserved on your behalf.

(All the same notes and examples from InputStream’s close()
method apply here, with the prefix In replaced everywhere
by Out.) All output streams descend from the abstract class
Output Stream. All share the previous few methods in
common
� mean something that alternates).

� Do not use the word “essentially” to mean
“approximately” or “effectively”.

� In your paper title, if the words “that uses” can
accurately replace the word “using”, capitalize the “u”; if
not, keep using lower-cased.

� Be aware of the different meanings of the homophones
“affect” and “effect”, “complement” and “compliment”,
“discreet” and “discrete”, “principal” and “principle”.

� Do not confuse “imply” and “infer”.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD31179 | Volume – 4 | Issue – 4 | May-June 2020 Page 1332

� The prefix “non” is not a word; it should be joined to the
word it modifies, usually without a hyphen.

� There is no period after the “et” in the Latin
abbreviation “et al.”

� The abbreviation “i.e.” means “that is”, and the
abbreviation “e.g.” means “for example”.

CONCLUSION

Nothing is perfect in the world. So I am also no exception. I
have tried my best to build this project with efficient
information. I do not permit the project to be 100% accurate.
This project help the all customer which have multiple bank
account in different banks. Due to this the time customer
save own time and they easly login on this and make
transaction easily. The main focus of this project is to save
the customer time which have multiple bank account in
different banks.

The maintenance of the records is made efficient, as all the
records are stored in it, through which data can be retrieved
easily.

We finally conclude that using this research we provided is
of a great interface between the user and the programming
environment, thus satisfying the requirements of multiple
users. And finally the users will be satisfied with our service.

REFERENCES

[1] Javapoint.com.

[2] Wc3.com.

[3] Google.com.

[4] Training.com.

[5] Study material from NIIT.

