
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 4 Issue 4, June 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD30835 | Volume – 4 | Issue – 4 | May-June 2020 Page 16

Building and Deploying a Static Application using

Jenkins and Docker in AWS

Malathi. S1, Ganeshan. M2

1PG Scholar, 2Assistant Professor,
1,2Department of MCA, School of CS and IT, Jain (Deemed to be University), Bengaluru, Karnataka, India

ABSTRACT

Although there are many ways to deploy the Jenkins open-source automation
server on Amazon Web Services (AWS), this whitepaper focuses on two
specific approaches. First, the traditional deployment on top of Amazon Elastic
Compute Cloud (Amazon EC2). Second, the containerized deployment that
leverages Amazon EC2 Container Service (Amazon EBS). These approaches
enable customers to take advantage of the continuous integration/ continuous
delivery (CI/CD) capabilities of Jenkins. Using an extensive plugin system,
Jenkins offers options for integrating with many AWS services and can morph
to fit most use cases. Suppose you’ve built a new application for your client, or
maybe yourself, and have managed to get a good user base that likes your
application. You’ve gathered feedback from your users, and you go to your
developers and ask them to build new features and make the application ready
for deployment. With that ready, you can either stop the entire application and
deploy the new version or build a zero downtime CI/CD deployment pipeline
which would do all the tedious work of pushing a new release to users without
manual intervention. we will talk exactly about the latter, how we can have a
continuous deployment pipeline of a three-tier web application built in
Node.js on AWS Cloud using Terraform as an infrastructure orchestrator. We’ll
be using Jenkins for the continuous deployment part and Bitbucket to host our
codebase. we will look into setting up a Jenkins server which will be used for
our CI/CD pipeline. We will be using Terraform and AWS for setting this up as
well. The Terraform code for setting Jenkins is inside the folder Jenkins/setup.
we have the AMIs for the API and web modules, we will trigger a build to run
Terraform code for setting up the entire application and later go through the
components in Terraform code which makes this pipeline deploy the changes
with zero downtime of service. The first thing is that Terraform provides these
lifecycle configuration blocks for resources within which you have an option
create_before_destroy as a flag which literally means that Terraform should
create a new resource of the same type before destroying the current
resource.

KEYWORDS: Jenkins, AWS Cloud, web application built, configuration, CI/CD

deployment pipeline, plugin system, Amazon EC2, Amazon EBS

How to cite this paper: Malathi. S |
Ganeshan. M "Building and Deploying a
Static Application using Jenkins and
Docker in AWS" Published in
International Journal
of Trend in Scientific
Research and
Development
(ijtsrd), ISSN: 2456-
6470, Volume-4 |
Issue-4, June 2020,
pp.16-18, URL:
www.ijtsrd.com/papers/ijtsrd30835.pdf

Copyright © 2020 by author(s) and
International Journal of Trend in Scientific
Research and Development Journal. This
is an Open Access article distributed
under the terms of
the Creative
Commons Attribution
License (CC BY 4.0)
(http://creativecommons.org/licenses/by
/4.0)

INTRODUCTION

Jenkins: is an open source automation tool written in Java
with plugins built for Continuous Integration purpose.[1]
Jenkins is used to build and test your software projects
continuously making it easier for developers to integrate
changes to the project, and making it easier for users to
obtain a fresh build. It also allows you to continuously
deliver your software by integrating with a large number
of testing and deployment technologies. [3]Jenkins has
over 2000 plugins integrated with other tools like docker,
git, selenium etc. [2]By integrating with other tools it
makes sure the software development is fully automated.

1. Developer, 2.Source Code Repository, 3.Builds,

4.Run Test, 5.Develops to a live server.

Fig: 1 JENKINS WORKING IMAGE

Now the Jenkins will pull the source code and builds, tests it
and deploy it by using plugins and other tools. It can’t only
used for Continuous Integration also continuous Delivery,
Continuous Deployment with the help of plugins.[1]By
integrating with other tools the applications can be deployed
to a testing environment. The user acceptance test and load

IJTSRD30835

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD30835 | Volume – 4 | Issue – 4 | May-June 2020 Page 17

testing is performed to check the application is production
ready this process is basically Continuous Delivery.[6] Now
it can make use of plugins to continuous Deploy the
application to a live server.

Continuous Delivery: [8]It is a process where you build
software in such a way that it can be released to production
at any time. Consider the diagram below:

FIG: 1.2 CONTINUOUS DELIVERY

Automated build scripts will detect changes in Source Code
Management (SCM) like Git. Once the change is detected,
source code would be deployed to a dedicated build server
to make sure build is not failing and all test classes and
integration tests are running fine. [5]Then, the build
application is deployed on the test servers (pre-production
servers) for User Acceptance Test (UAT). Finally, the
application is manually deployed on the production servers
for release.

Docker: Running docker on aws provides developers and
admins a highly reliable, low-cost way to build, ship, and run
distributed applications at any scale. AWS supports both
Docker licensing models: open source Docker community
Edition (CE) and subscription-based Docker Enterprise
Edition(EE).

FIG: 1.2 DOCKER WORKING

Amazon Elastic Compute Cloud (Amazon EC2): Provides
scalable computing capacity in the Amazon Web Services
(AWS) cloud. Using Amazon EC2 eliminates your need to
invest in hardware up front, so you can develop and deploy
applications faster. You can use Amazon EC2 to launch as
many or as few virtual servers as you need, configure
security and networking, and manage storage. Amazon EC2
enables you to scale up or down to handle changes in
requirements or spikes in popularity, reducing your need to
forecast traffic.

In this we are using general purpose T2 medium instances.
We are pleased to announce the immediate availability of
Amazon EC2 T2 instances. T2 instances are a new low-cost,

General Purpose instance type that are designed to provide a
baseline level of CPU performance with the ability to burst
above the baseline. [8]With On-Demand Instance prices
starting at $0.013 per hour ($9.50 per month), T2 instances
are the lowest-cost Amazon EC2 instance option and are
ideal for web servers, developer environments, and small
databases.

T2 instances are for workloads that don’t use the full CPU
often or consistently, but occasionally need to burst to
higher CPU performance.[3]Many applications such as web
servers, developer environments and small databases don’t
need consistently high levels of CPU, but benefit significantly
from having full access to very fast CPUs when they need
them. T2 instances are engineered specifically for these use
cases.

T2 instances are available in three sizes: t2.micro, t2.small,
and t2.medium and work well in combination with Amazon
EBS General Purpose (SSD) volumes for instance block
storage.

Instance Type

vCPU

Memory (GiB)

t2.micro t2.small t2.medium

1 1 2

1 2 4

T2 instances are backed by the latest Intel Xeon processors
with clock speeds up to 3.3 GHz during burst periods.

ECR: Amazon Elastic Container Registry (Amazon ECR) is a
managed AWS Docker registry service that is secure,
scalable, and reliable. Amazon ECR supports private Docker
repositories with resource-based permissions using AWS
IAM so that specific users or Amazon EC2 instances can
access repositories and images. Developers can use the
Docker CLI to push, pull, and manage images.

Cloud 9: AWS Cloud9 is a cloud-based integrated
development environment (IDE) that lets you write, run, and
debug your code with just a browser. It includes a code
editor, debugger, and terminal. Cloud9 comes prepackaged
with essential tools for popular programming languages,
including JavaScript, Python, PHP, and more, so you don’t
need to install files or configure your development machine
to start new projects. Since your Cloud9 IDE is cloud-based,
you can work on your projects from your office, home, or
anywhere using an internet-connected machine. [10]Cloud9
also provides a seamless experience for developing
serverless applications enabling you to easily define
resources, debug, and switch between local and remote
execution of serverless applications. With Cloud9, you can
quickly share your development environment with your
team, enabling you to pair program and track each other's
inputs in real time.

Ansible: Ansible is an infrastructure automation platform
that makes it easy to manage and configure your servers.
Vagrant allows us to create reproducible environments,
making it really easy to work with virtual machines. We’ll

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD30835 | Volume – 4 | Issue – 4 | May-June 2020 Page 18

use Ansible to automate the installation of Jenkins CI in a
fresh CentOS image, created by Vagrant.

Requirements

Before we start, make sure you have vagrant and ansible
installed. Installing it through homebrew should be really
straightforward:

brew install ansible && ansible –version

brew cask install vagrant && vagrant -v

Gitlab: GitLab is a complete DevOps platform, delivered as a
single application that provides everything you need to
Manage, Plan, Create, Verify, Package, Release, Configure,
Monitor, and Secure your applications. In this 18 minute
recorded video demo, you will see GitLab’s built-in issue
tracking, issue boards, version control, code review, Auto
DevOps, CI/CD, SAST/DAST and more.

Using all there tools we are building and deploying a static
application in AWS.

PROPOSED ENHANCEMENT: Here I am using CI/CD
pipelinest is latest one used in Jenkins. Continuous
deployment smaller code changes are simpler more atomic.
Fault isolation is simpler and quicker. Mean time to
resolution is shorter because of the smaller code changes
and quicker fault isolation.

EXISTING SYSTEM:
It is there in manually. Manual testing is a type where testers
manually execute test cases without using any automation
tools.

ARCHITECTURAL DIAGRAM OF THE PROJECT

FIG: 2.1 ARCHITETURE DIAGRAM

DATA FLOW DIAGRAM

FIG: 2.2 DATAFLOW DIGRAM

CONCLUTION:

Here we are the conclution of our article. Integrating Jenkins
is almost seamless with any existing project-life cycle due to
the abundant library of plugins and free documentation all
over the internet. What we’ve seen here is just a small
portion of what Jenkins has to offer as a CI tool. In this
article, we focused mostly on Jenkins as a CI tool, we haven’t
change our application code much except the docker file
update to accommodate the test results. The continuous
integration with a docker article covers the addition of
integration tests in grater detail. The entire projects
available under docker series GITHUB repository under the
docker-series-continuous integration-Jenkins-end branch.

REFERENCES:

[1] https://tutcris.tut.fi/portal/files/17171909/2018_CN
AX_Workshop_Aleksi_8.pdf

[2] https://d0.awsstatic.com/whitepapers/aws-building-
fault-tolerant-applications.pdf

[3] https://hostadvice.com/how-to/how-to-use-docker-
containers-with-aws-ec2/

[4] https://docs.aws.amazon.com/AmazonECR/latest/use
rguide/images.html

[5] https://aws.amazon.com/blogs/devops/set-up-a-
build-pipeline-with-jenkins-and-amazon-ecs/

[6] End to End Automation on Cloud with Build Pipeline:
The Case for DevOps in Insurance Industry, Continuous
Integration, Continuous Testing, and Continuous
Delivery

[7] Continuous Integration, Continuous Testing, and
Continuous Delivery Mitesh Soni IGATE Gandhinagar,
Indiamitesh.soni@igate.com

[8] Building a virtually air-gapped secure environment in
AWS: with principles of devops security program and
secure software delivery

[9] https://link.springer.com/chapter/10.1007/978-3-
030-03673-7_4

[10] Implementation of a Dev Ops Pipeline for Server less
Applications

