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Basic Maximal Total Strong Dominating Functions
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Let G = (V, E) be a simple graph. A subset D of V(QG) is called a total strong dominating set of G, if for every
u € V(Q), there exists a v € D such that u and v are adjacent and deg(v) > deg(u). The minimum cardinality
of a total strong dominating set of G is called total strong domination number of G and is denoted by ~; (G).
Corresponding to total strong dominating set of G, total strong dominating function can be defined. The minimum
weight of a total strong dominating function is called the fractional total strong domination number of G and is
denoted by ~! f(G). A study of total strong dominating functions is carried out in this paper.
Keywords: Total Strong Dominating Function, Maximal Total Strong Dominating Function, Basic Maximal Total
Strong Dominating Function
Introduction: Corresponding to total strong dominating sets in a graph, total strong dominating functions may be
defined. The minimality of a total strong dominating function can be characterised. Convex combination of minimal
total strong dominating function is defined and studied. A total strong dominating function is basic, if it cannot
be expressed as a covex combination of minimal total strong dominating functions. Basic total strong dominating

functions are characterised.

Definition 0.1:
Let G = (V, E) be a simple graph without strong isolates. A function
f:V(G) —[0,1] is called a Total Strong Dominating Function (TSDF), if f(N,(u)) = Z flv)y>1,Vue

V(QG), where
Ny(u) = {x € N(u) : deg (x) > deg (u)}.

Definition 0.2:

A TSDF is called a Minimal Total Strong Dominating Function (MTSDF), if whenever ¢ : V(G) — [0, 1] and
g < f, g is not a TSDF.

Definition 0.3: Let G be a graph without isolated vertex. A TSDF (MTSDF) is called a basic TSDF (basic
MTSDF) denoted by BTSDF (BMTSDF) if it cannot be expressed as a proper convex combination of two distinct
TSDF® (MTSDF?).

Remark 0.4: A BTSDF need not be a BMTSDF.
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Lemma 0.5: Let f and g be two distinct MTSDF® of a graph G with B} = By and Py = P;. Let §(v) = f(v)—g(v),

for every v € V. Then
() If f(v) =0or f(v) =1, then 6(v) = 0.
(ii) }: 5(v) =0, Vv e Bj.

ueN,(
(iii) Z 5 )=0, VveBy.

u€N, (v)
Proof:
(i) We have, f(v) =1 if and only if g(v) = 1 and

f(v) =0 if and only if g(v) = 0.

Therefore, (i) follows.
(ii) Let v € BS.

Then v € Bjy.
3 () = Z (f(u) —g(u))
vEN,(v) wEN,(
Z(f - > g
u€N;(v) uEN;(v)
=11 (since v € B} and v € By)

=0.
Therefore, (i1) follows.
(iii) is similar to (ii).
Lemma 0.6: Let f and g be convex linear combination of MTSDF® ¢, g¢s,...,g» such that f is minimal. Then
n n

By =B;=()B;.Pr=P,=|J P, and g is minimal.

i=1 i=1
Proof:
Letv € Pf.
Then f(v )
Let f = Z)\Zgz,0<)\ <1, Z)\ = 1.
=1

Suppose g;(v) =0, V i. Then f ( ) = 0, a contradiction.

n

Therefore, g;(v) > 0, for at least one 7. Therefore, v € U P,,.
i=1

Therefore, Py C U P,,. Suppose v € U Py,

=1
Then g(v;) > 0, for some 1. Therefore f( ) > 0.

Therefore, v € Py. Therefore, U P, C P.

i=1
n n
Therefore, Py = U P,,. Similarly, P, = U P,..
i=1 i=1
n
Therefore, Py = P, = U Py,. Let v € B.
i=1 .
Then f(Ns(v)) = 1. Therefore, Z)\igi(Ns(v)) =1.
i=1

Suppose v ¢ B; , for some i, 1 <4 < n. Then g;(Ns(v)) > 1.
Since ¢;(Ns(v)) > 1, for all j, 1 < j <n,
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Z )\Z-gi(Ns(v)) > Z )\i-
=1

i=1
=1, a contradiction.
n
Therefore, v € B;i, V 4. Therefore, v € ﬂ B;i.
i=1
n
S S
Therefore, B 7 C m B -
i=1

n
Let v € (1] B;,. Then g;(Na(v)) =1, for all i, 1 <i < n.

=1
n

Therefore, Z)\Zg, Ny(v)) = Z)\- =1

Therefore, f ( s(v)) =1 Therefore vE Bf

Therefore, ﬂ B;i C B;’Z. Therefore, BS m le
i=1

n
smmmw—ﬂWIMww— ﬂw
Since f is m1n1ma1 B} weakly domlnates Pf

That is, ﬂ B, weakly dominates U P,
i=1 i=1
That is, ZB‘; weakly dominates P. '

Hence ¢ is a MTSDF.
Theorem 0.7: Let f be a MTSDF. Then f is a BMTSDF if and only if there does not exist an MTSDF g such
that B} = Bj and Py = F,.
Proof:
Suppose f is a BMTSDF.
Suppose there exists a MTSDF g such that B} = Bj and Py = F,.
Let S={a€R : he=(1+a)g—af} beaTSDF and B; = B} and P, = Py.
Then S is a bounded open interval.
Let S = (k1, k2).
Then k1 < —1 <0 < ks.
Also hy, and hg, are MTSDF®.
hie, = (1 + k1)g — k1 f.
Therefore, f = m hky
k‘l kl
Let)\1:1+k1 nd \y = 1
Therefore, )xlland Ay are posmve and A\ + X\ = 1.

Therefore, f is a convex combination of g and hy,.
Therefore, f is not a BMTSDF, a contradiction.
Therefore, there does not exist a MTSDF g such that B} = By and Py = P
Conversely, suppose f is not a BMTSDFE.
n
Then there exists MTSDF? g1, go,...,g, such that f = Z Aibis
i=1

n
where 0 < \; < 1 and Z)‘i =1.
i=1
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n n
Letg:Zuigi, 0 <p; <1 and Z”i =1
i=1 i=1

n n
Then by lemma |0.6], B]sc =By = ﬂ By, and Py = P; = U P,, and since f is a MTSDF, g is a MTSDF.

=1 i=1
Thus there exists @ MTSDF ¢ such that B = BS and Py = P,
Hence the theorem.

Theorem 0.8: Let f be a MTSDF of a graph G = (V, E) with B} = {v1,v2, ..., v} and P} ={ueV :

f(u) < 1} = {u17u27 ,Un}
Let A = [a;;] be a m x n matrix defined by
1, if v; weakly dominates u;
P
Y 0, otherwise.
n

Consider the system of linear equations given by z aj;r; =0,1 <1< m.
j=1
Then f is a BMTSDF if and only if the above system does not have a non-trivial solution.

Proof:

Suppose f is not a BMTSDFE

Then there exists a MTSDF g such that B; = By and Py = F,.
Let z; = f(u;) — g(uj), 1 < j <n.

Suppose z; =0,V j,1 < j < n.

If f(v) =0, then v ¢ Py = P,.

Therefore, g(v) = 0.

Therefore, f(v) —g(v) =0,V v ¢ Py.

That is, f(v) = g(v), Vv & Py.

If f(v) =1, then by Theorem ??, g(v) = 1 and hence f(v) — g(v) = 0.
Therefore, f = g, a contradiction.

Therefore, there exists, some j, 1 < j < n such that x; # 0.

Let f(uj,) = g(u;,) # 0.
Z Qx5 = Z aii(f (uz) — g(u;))
j=1 j=1

= > (flw)—gw)

w€N;(v;)
(since a;; = 1 because v; weakly dominates u)

= 0, by lemmd0.5]
Since x; # 0, the left hand side has a non-trivial solution.
Conversely, let {x1, z2,...,x,} be a non-trivial solution for the system of
linear equations.
Define g : V(G) — [0, 1] as follows:
PR LGRS

flv)+ %, if v=uj, 1 <j<n, where M is to be suitably chosen.

Since {x1,x2,...,2,} is a non-trivial solution, g # f.
Since 0 < f(u;) < 1, choose M; > 0 such that 0 < (f(u;) + 1#) < 1, for each j, 1 < j < n.
Let M' = max{M;, My, ..., M, }. ]
Choose M to be equal to M’.
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Forany v € V, g(N;(v)) = Y g(u)
uEN; (v)

= > gw+ D> g

uEN, (v)NP; u€EN,(v)—P;

= Y Ut Y S

u; €Ns(V)NPy u€N; (v)—P;

) +szi

u€N, (u)

f + ]V[’ le

If v € B%, then sz Zawmz =0.

(since v weakly domlnates Pf and hence a;; = 1).
Therefore, g(Ns(v)) = f(Ns(v)) = 1.

Suppose v ¢ Bj.

Then f(Ns(v)) > 1.

Choose M" > 0 such that g(Ns(v)) > 1, V v ¢ Bj.
Let M = maz{M', M"}.

For this choice of M, we have

0<g(v)<1and Z ) > 1L, VveV

uEN,(v)
Therefore, g is a TSDF.

From what we have seen above,
B} = Bj and Py = F,.
Since f is a MTSDF, B} weakly dominates Pr.
Therefore, By weakly dominates Fy. Therefore, g is a MTSDF.
Hence f is not a BMTSDF.
Corollary 0.9: Let G = (V, E) be a graph without isolated vertices. Let S be a minimal total strong dominating
set of G. Then y, is a BMTSDF.
Proof:
Clearly, s is a MTSDFE.
Let f = xs.
PJL = ¢.
Therefore from the above theorem, y, is a BMTSDE.
Example 0.10:

Consider Hajo’s Graph Hj :
U1

V9 U3

Vs
Define f1 and f5 as follows:
fi(v1) = fi(va) = fi(v2) = fi(ve) = 0.
fi(vs) = fi(vs) = 1.
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01)1

f1 : vy 0 Uf'

f2(v1) = fa(vs) = fa(ve)
f2(v2) = fa(vs) = fa(vs)

N =D

f2

f1is a TSDE.
B} = {v1,v3,v4,v5}.
Pf1 = {U3,1}5}.

B%, weakly dominates P, .
Therefore, f; is a MTSDFE.
Therefore, fo is a TSDF.
B =V.

Bj, weakly dominates P, .
fo is a MTSDEF.

P}l = ¢.

Let A = [aij|lmxn be a m x n matrix defined by

1, if v; € Bj weakly dominates u; in PJ’c
aij =

0, otherwise.
Consider the system of linear equations given by

anxy + apr2 + ... + aipxy, =0

Am1%1 + amaxo + ... + a1z, = 0.

Since P}l = ¢, the system of equations does not occur and hence does not have a non-trivial solution.
Therefore, f; is a BMTSDF.

fo is a TSDFE.

B]Sc2 =V, Pt, = {v2,v3,v4}.

P}Q = {v2, v3, va}.

76



International Journal of Trend in Scientific Research and Development(II'TSRD Volume 4 Issue 4 June 2020
Available Online www.ijtsrd.com e-ISSN 2456 - 6470

1 10
010
0 0O
A = aij =
[2]]6><3 10 1
0 0 0
10 1 1_6X3
lerl‘Q:O
22 =0 ‘
mmply ©1 =0, 220 =0
35‘1:0
35‘2:0

Therefore, f, is a BMTSDF.
Example 0.11:

0 1 1 1 0
P ® ° ° ®
U1 V2 U3 V4 Us

f1 is a TSDE.

B} = {v1,v2,v4,v5}.

Py = {v2,v3,v4}.

B$, weakly dominates Py, .

Vg U3 4
vl 1 0 0 | .
1
A =[ajjlaxs = vz 010 .
val 0 1 O 2
X
vs| 0 0 1 s

:L'1:0, 1‘220, £U3:0.
Therefore, f1 is a BMTSDE.

Example 0.12: 1 1 0 0 1 1 1 0

Consider Py L e S . S e, S SEEEEY
v V2 V3 V4 Us pg U7 vg U9

Define f; on V(Ps) as follows:

fi(v1) = fi(va) = fi(vs) = fi(vg) = 0.
fi(v2) = fi(vs) = fi(ve) = fi(vr) = fi(vs) =
f1 is a TSDE.

B?‘I = {’Ula V2, V3, V4, U5, Vg, U8, v9}~

Pf1 = {1}2’ V3, Ve, U7, US}-

B}, weakly dominates Py, .

Therefore, f; is a MTSDFE.
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vo V3 V6 vy U
i1 0 0 0 0
2l 0 1.9 00 | _ _ L -
V3 1 0 0 0 0 1 Tl 8
T2
“lo 10 0 0 ||™ o | 8
_ " —
A= vs| 0 0 1 0 ¢ 5 o 0
T4
B0 00 10 ||, 74 0
Bl 0 0 1 0 |L v 0]
i o 0 0 0 1

=0,V 1<4<5.
Therefore, f1 is a BMTSDE.

Example 0.13: 1 1 0 0 11 1 0

Consider Py o—9o 0o o 0o o o 0o o
VU1 U2 U3 U4 Vs vg Ut Us Vg

Define f1 on V(Py) as follows:

fi(v1) = fi(va) = fi(vs) = fi(ve) = 0.
fi(v2) = fi(vs) = fi(ve) = fi(vr) = fi(vs) =
f1 is a TSDE.

ijl — {’Ul,’1)2,’03,’04,’1}5,’[16,117,7]8,1]9}-

Py, = {v2,v3,v6,v7,08}.

B}, weakly dominates Py, .

Therefore, f1 is a MTSDE.

z

— - ,’I]2 - -

10 00O 0
T

01 0 0 0] A 0
T T2

1 00 00 0
T2 T3

01000 0

0 01 00 0
T4 T5

00 0160 0
5 Te

0 0 0 1 0f*"- 0
o

0 0 0 01 0

L J Ts L~
Tg

z;=0,Vi, 1<e<5.
Therefore, f1 is a BMTSDE.

Example 0.14:
0 1 1 0 O 1 1 9 1 1 0

Let Pp : e —— 90— 90— —90 —0—0—0 0
v1 vz VU3 V4 U5 pyg Ut U8 V9 Vi Y11

Define f; on V(Pp1) as follows:
fi(v1) = fi(va) = fi(vs) = fi(vs) = fi(vi1) = 0.
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fi(v2) = fi(vs) = fi(ve) = fi(vr) = fi(vg) = fi(vio) = 1.
1 is a TSDF.

Bj = {v1, va, v3,v4, V5, Vg, V7, V9, V10, V11 }-

Py, = {v2,v3,v6,v7, 09,010}

Bj, weakly dominates Py, .

Therefore, f; is a MTSDF.

vy w3 V6 vy U8
U1 I 00 0 o
200 1. 0 00 | _ _ o o
V3 1 O 0 0 0 I T 8
T2
Y40 10 o 0 ||*2 R 8
_ " — —
4= Bl 0 0 1 00 ! g 0
) L4 0
o UL U S U 4 0
wl oo 0 0 1 0 |L | v 0 |
Yl o 0 0 0 1

z; =0,Vi, 1<i<6.
Therefore, f1 is a BMTSDE.

Again consider
0 1 1 1 0 0 1 1 1 1 0

P11 : o— O —0 — 0 — 0 —0—0 P ® °
v1 U2 U3 V4 U5 vg U7 Vg Vg V10 V11

Define f» on V(Py;) as follows:

fa(v1) = fa(vs) = fa(ve) = fa(v11) = 0.

fa(v2) = fa(vs) = fa(va) = fa(vr) = fa(vs) = fa(vg) = fa(vio) = 1.
fo is a TSDE.

Bj, = {v1,v2,v4, v5, v6, v7, V10, V11 }-

Py, = {v2,v3,v4,v7, 08,09, V10}

B, weakly dominates Pr,.
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V2 V3 w4 U7 Vg V9 vy

v L0 0 0 009
%) 0 1 o o 00 O o _
v4 0 1 0 0 0 0 0 T1 0
vl 0 o 1 0 o9 0 2 0
B — V6 0 x3 f— 0
0 0 1 0 0 0 T4 0
vy 0 0 0 0 1o o 5 0
T6 0
vol 0 0 o O o0 1o ¥zl o
v11 0 0 0 0 o 01
r;,=0,Vi, 1<i<T7.
Therefore, fo is a BMTSDFE.
Example 0.15:
Let G = an_H.
Let V(G) = {’Ul,vz, ...,U2n+1}.
Case (i)
Let n =0 (mod 2).
Let n = 2k.
Then 2n + 1 =4k + 1.
1, ifi=1,2 (mod 4
Let f(v;) = I ( )
0, if i=3,0 (mod 4).
Then f is a TSDE.
B]Sc = {2}2,2}3,1}4,05, ...,U4k+1}
Py = {v1,vs, ..., Vag11, V2, V6, ..., Vag—2}
Clearly, Bjc weakly dominates Py.
Therefore, f is a MTSDF.
V1 v2 U5  wg -+ Udk—1U4k—2 Vak+1
2/ 10 00 0o O 0 1 0
v3 01 0 0 0 0 0 ) 0
v 10 0 3 0
U0 01 0 4 0
A g _
Vak+l 1 0 00 ... 0 0 0 F2k+1 0
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Therefore, z; =0, Vi, 1 <17 <2k + 1.
Therefore, f is a BTMSDF.

Case (ii)
Let n =1 (mod 2).
Let n =2k + 1.

Then 2n + 1 = 4k + 3.

1, if i=1,2 (mod 4)
0, if i=3,0 (mod 4).
Then f is a TSDF.

B} = {v1,v2, 05,06, ..., Vag2}-

Py = {v1,v2,05,V6, ..., Vak41, Vak42}-
Clearly, B} weakly dominates Pry.
Therefore, f is a MTSDF.

Let f(v;) =

Ul v2 U5 g Vgq VAkt2
v [0 L oo ... 0 0 | 7ZE1 ] — 0 —
vy 10 g g 0 0 . .
vs | 0 0 g 1 0 0 . 0
Cloo 0 o 00 24 0
A =
V4k+2 O 0 0 0 --. 1 0 L2k+1 0

Therefore, z; =0, V i, 1 <13 <2k + 2.
Therefore, f is a BTMSDFE.

Case (iii)

Let G = Cy,.

Let V(G) = {v1,va, ..., v2, }.

1, if i=1,2 (mod 4)

Let f(v;) =
0, otherwise.
Clearly, f is a TSDE
By = V, if n=2 (mod 4)

V —{vi,v2,}, if n=1 (mod 4).

p {Ul,vg,, .oy V2n—3, V2, Vg, ...,’U2n72}, Zf n=2 (mod 4)
= .

{v1,05, ..y V2p—1, V2, Vg, ..., Von }, if n=1 (mod 4).
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Clearly, B} weakly dominates Pr.
Therefore, f is a MTSDFE
Let n =2 (mod 4).

UL V2 U5 wg - vgn_3 Van—9

V2 1 O 0 0~ 0 0
A =

V2n 10 0o0... 0 0
AX =0 implies X = 0.
Therefore, f is a BMTSDF.
Let n =1 (mod 4).

UL 02 U5 vt Uane1 gy,
A =
V2n—1 0O 0o 0o0... 0 1
AX =0 implies X = 0. B ]
Therefore, f is a BMTSDF.
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