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ABSTRACT 
In this paper, the effects of viscous and Ohmic heating on magneto 
hydrodynamic forced convection flow due to a permea
in the presence of internal heat generation and radiation is investigated. 
The shrinking surface subjected to suction is prescribed with 
temperature which varies with the quadratic power of x.
boundary layer equation takes into account of transverse magnetic field 
effect. Thermal boundary layer equation considered the effects of viscous 
and Ohmic heating due to transverse magnetic field, radiation and internal 
heat generation. Numerical results are obtained for various values of 
governing physical parameters. To access the accuracy of the numerical 
solution, the present results are checked against previously published work 
and the analytical solution of the problem obtained using Kummer’
function. Table values show that the analytical and numerical solutions are 
found to be in excellent agreement. 
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1. INTRODUCTION 
The combined effects of viscous and Ohmic heating in 
various flow configurations was considered due to 
enormous applications in engineering problems.
heating is an emerging technology with large number of 
actual and future applications. The possibilities of Ohmic 
heating include blanching, evaporation, dehydration, 
fermentation, extraction, sterilization, pasteurization and 
heating of foods to serving temperature, including in the 
military field or in long-duration space missions. Javeri 
and Berlin [1] studied the effect of viscous and Ohmic 
dissipation on the fully developed MHD flow with heat 
transfer in a channel. Hossain [2] considered the MHD 
convection flow past a semi infinite plate with viscous, 
Ohmic heating effects and variable plate temperature. 
Chaim [3] obtained the solution of energy equation for the 
boundary layer flow of an electrically conducting fluid 
under the influence of transverse magnetic field over a 
linear stretching sheet with dissipation and internal heat 
generation effects. MHD forced convection flow in the 
presence of viscous and magnetic dissipation along a 
nonisothermal wedge was carried out by Yih [4]. Amin [5] 
analyzed the effect of viscous dissipation and Joule heating 
on forced convection flow from a horizontal circular 
cylinder under the action of transverse magnetic field.
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pipe ends with Trio coating. Proper application of the 
shrinking sheet provides excellent tightening of the sheet 
around the entire circumference of the field welded pipe 
end good adhesion to the steel pipe and to the industrial 
coating, as well as a uniform thickness. In the past few 
years much attention has been focused for the study of 
different types of flow and heat transfer over a shrinking 
sheet for various fluids due to its numerous applications. 
In contrast to stretching sheet, for the shrinking case, the 
velocity on the boundary is towards a fixed point. It is also 
shown that the mass suction is required generally to 
maintain the flow over the shrinking sheet.  
 
Unlike the linear/nonlinear stretching sheet problem, only 
little work has been done on boundary layer flow and heat 
transfer induced by a shrinking sheet. This peculiar work 
started from Micklavcic and Wang [12] to investigate the 
flow over a shrinking sheet. Hayat et al. [13] reported the 
analytical solution of magneto hydrodynamic flow of 
second grade fluid over a shrinking sheet. Sajid et al. [14] 
analyzed rotating flow of a viscous fluid over a shrinking 
sheet under the influence of transverse magnetic field. Yao 
and Chen [15] examined analytical solution branch for the 
Blasius equation with a shrinking sheet. Thermal 
boundary layer over a shrinking sheet was investigated by 
Fang and Zhang [16] for prescribed power law wall 
temperature and power law wall heat flux case. Later, the 
effects of suction/blowing on steady boundary layer 
stagnation point flow and heat transfer towards a 
shrinking sheet with thermal radiation was carried out by 
Bhattacharyya and Layek [17]. Effects of heat source/sink 
on MHD flow and heat transfer over a shrinking sheet with 
mass suction was analyzed by Bhattacharyya [18].          
Javed et al. [19] analyzed the viscous dissipation effect on 
steady hydromagnetic viscous fluid for nonlinear 
shrinking sheet. Rohini et al. [20] reported on boundary 
layer flow and heat transfer over an exponentially 
shrinking vertical sheet with suction. Nonlinear radiation 
effects on hydromagnetic boundary layer flow and heat 
transfer over a shrinking surface was analyzed by Anjali 
Devi and Wilfred Samuel Raj [21]. MHD flow over a 
permeable stretching/shrinking sheet was studied by 
Sandeep and Sulochana [22]. Soid et al. [23] presented 
unsteady MHD flow over a shrinking sheet with Ohmic 
heating. Ismail et al. [24] made stability analysis of 
unsteady MHD stagnation point flow and heat transfer 
over a shrinking sheet in the presence of viscous 
dissipation. 
 
To the best of author’s knowledge, no studies have been 
made so far to analyze the effects of viscous and Ohmic 
heating on MHD boundary layer flow with heat transfer 
over a linearly shrinking surface in the presence of 
radiation and internal heat generation. . Highly nonlinear 
momentum and thermal boundary layer partial 
differential equations are converted into nonlinear 
ordinary differential equations using similarity 
transformations. Later the resultant boundary value 
problem is converted into initial value problem using the 
efficient Nachtsheim Swigert shooting iteration scheme 
which works very well in the case of asymptotic boundary 
conditions and the numerical solutions are obtained using 
Runge Kutta Fourth Order method. A parametric study 
illustrating the influence of various physical parameters 

on the velocity, temperature, skin friction coefficient and 
dimensionless rate of heat transfer is conducted. 
 
2. Mathematical Formulation 
The problem under investigation comprises a nonlinear, 
steady, two- dimensional boundary layer forced 
convection flow of a viscous, incompressible, electrically 
conducting and radiating fluid over a linear shrinking 
surface under the influence of uniform transverse 
magnetic field of strength B0. The sheet coincides with the 
plane y = 0 and the flow is confined in the region y > 0. The 
x and y axes are taken along and perpendicular to the 
sheet respectively. A schematic diagram of the problem is 
given in Figure 1. In the present analysis, x axis is chosen 
along the shrinking surface in the direction opposite to the 
motion of the sheet and y axis is taken normal to the 
surface.  
 
 The properties of the fluid are kept constant.  
 Magnetic Reynolds number is assumed to be small so 

that the induced magnetic field produced by the 
motion of electrically conducting fluid is negligible. 

 Since the flow is steady, curl E = 0. Also div E = 0 in the 
absence of surface charge density. Hence E = 0 is 
assumed. 

 The heat transfer takes place in the presence of 
viscous and Ohmic heating, internal heat generation 
and thermal radiation.  

 The fluid is considered to be viscous, incompressible, 
electrically conducting, gray, absorbing and emitting 
radiation but non-scattering medium. 

 The radiative heat flux in the energy equation is 
described using Rosseland approximation and it is 
assumed to be negligible in x direction when 
compared to that in the y direction.  

  

 
Figure1. Schematic diagram of the problem 

 
From the above assumptions and the boundary layer 
approximations, the equations based on law of 
conservation of mass, momentum and energy can be 
written as follows: 
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where u and v are the flow velocities along the x and y 
axes, respectively, ν is the kinematic viscosity, σ is 
electrical conductivity of the fluid, B0 is the magnetic field, 
ρ is the fluid density, Cp is the specific heat at constant 
pressure, T is the fluid temperature, k is the thermal 
conductivity of the fluid, T∞ is temperature of the fluid far 
away from the sheet, μ is the coefficient of viscosity, qr is 
the radiative heat flux and Q is the volumetric rate of heat 
generation. 
 

By using the Rosseland approximation, [Brewster [25]], 
the radiative heat flux is given by 
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where σ* is the Stefan Boltzmann constant and k* denotes 
the mean absorption coefficient. It should be noted that by 
using the Rosseland approximation, the present analysis is 
limited to optically thick fluids.  
 

If temperature differences within the flow are sufficiently 
small, then equation (4) can be linearized by expanding T 4 
in Taylor series about T∞ [Raptis et al. [26]], which after 
neglecting higher order terms take the form  
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Using equations (4) and (5), equation (3) reduces to  
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The boundary condition subjected to the velocity and 
temperature are given by 
 

u = uw(x) = - ax , v =- v0 , T=Tw(x) = T∞ + A x2  at  y = 0          (7)
    
 

u →  0, T → T∞  as  y → ∞                                           (8)
    

where uw is the shrinking sheet velocity, a > 0 is a 
dimensional constant called as shrinking rate, v0 is the 
constant suction velocity, Tw is the variable wall 
temperature, T∞ is the temperature outside the dynamic 
region. The constant A depends on thermal property of the 
fluid. 
 
2.1. Flow and heat transfer analysis 
To facilitate the analysis, the following similarity 
transformations are introduced  
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The horizontal and vertical velocity components are given 
by,  
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Equation (10) automatically satisfies the continuity 
equation (1). Substituting equation (10), the momentum 
equation (2) reduces to the following nonlinear ordinary 
differential equation   
 

022  FMFFFF )()(                                           (11) 

 

with the corresponding boundary conditions 
 

F(η) = S, 1 )(F  at  η =0  and 

 0)(  F   as  η → ∞          (12) 

 

In terms of the dimensionless temperature,  
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the energy equation (6) reduces to the ordinary 
differential equation  
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The corresponding thermal boundary conditions become 
 
θ (η) = 1 at η = 0    and    θ (η) → 0 as  η → ∞                      (15)  
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2.1.1. Skin friction coefficient and Non-dimensional 
rate of heat transfer 
 

The important physical quantity of interest is skin friction 

coefficient Cf , which is defined as 
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After using the dimensionless quantities given by equation 
(10), the skin friction coefficient is obtained as follows: 
 

 0
2

FfC
x Re                                                                           (16) 

 

Non-dimensional rate of heat transfer in terms of local 
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3. Numerical solution 
Numerical solution of MHD boundary layer forced 
convection flow over a shrinking surface in the presence of 
uniform magnetic field, radiation, internal heat generation, 
viscous and Ohmic heating effects is obtained. The third 
order momentum equation and second order energy 
equation is reduced into a system of five first order 
ordinary differential equations. To solve this system of 
equations, five initial conditions are needed of which 

)0(F   and )0(  are not known. These unknown values are 
obtained using Nachtsheim Swigert shooting iteration 
scheme. The essence of the shooting method to solve a 
boundary value problem is to convert it into a system of 
initial value problems. Once all the initial values are 
known, the system of first order differential equations is 
then solved using Fourth Order Runge Kutta method. In 
order to access the accuracy of the numerical results 
obtained, the validity of the numerical code developed has 
been checked for a limiting case and are shown in graphs. 
Numerical results are obtained for the range of values of 
Suction parameter, Magnetic parameter, Prandtl number, 
Radiation parameter, Heat generation parameter and 
Eckert number. 
 

4. Analytical Solution 
The analytical solution of the problem is obtained in order 
to inspect the accuracy of numerical results. 
 

4.1. Momentum and Energy equation  
The analytical solution of equation (11) is of the form  
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Subsequently, the corresponding boundary conditions 
take the form 
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Utilizing Kummer’s function, the solution of equation (19) 
is attained in terms of ξ in the presence of viscous 
dissipation, Joules dissipation, radiation and internal 
generation as 
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In terms of similarity variable η, the analytical solution of 
energy equation is specified as  
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where );,( xba is the confluent hypergeometric function 

of first kind. The constants involved in the solution can be 
represented as shown below  
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In the absence of magnetic field, radiation, internal heat 
generation, viscous and Ohmic heating effects, the 
analytical solutions obtained above are identical to the 
closed form solution of Fang and Zhang [16]. 
 

5. Results and discussion 
In order to gain the physical insight of the problem, 
velocity and temperature distribution have been discussed 
by assigning various numerical values to the physical 
parameters encountered in the problem. The numerical 
results are tabulated and displayed with the graphical 
illustrations. Fourth Order Runge Kutta based Nachtsheim 
Swigert shooting iteration scheme is used to find the 
numerical solution. Comparison of the numerical results 
obtained has been made with the existing literature and 
are found to be in good agreement.  
 

Figure 2 illustrates the comparison graph for 
dimensionless temperature for different values of Prandtl 
number. It is observed from the figure that the present 
results for dimensionless temperature when the shrinking 
surface has constant temperature are identical to that of 
Bhattacharyya [18] in the absence of Radiation parameter 
and Eckert number.  
 

 
 

Figure 2. Comparison graph showing dimensionless 
temperature for various Pr 

 
5.1. Effect of physical parameters over Velocity 

distribution and skin friction coefficient 
 
Figure 3 discloses the effect of Suction parameter over the 
velocity distribution. It is noted that the longitudinal 

0 4 8 12 16


0.0

0.2

0.4

0.6

0.8

1.0





S = 2.0

M2 = 4.0 

Hs- 0.5

Rd = 109 
Ec = 0.0

Pr = 0.1, 0.2, 0.5, 1.5

Present result
Bhattacharyya (18)



International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD     |     Unique Paper ID – IJTSRD30524      |     Volume – 4 | Issue – 3     |     March-April 2020 Page 492 

velocity is accelerated by the influence of Suction 
parameter and consequently, the momentum boundary 
layer thickness decreases.  
 

 
Figure 3. Effect of Suction parameter over the 

dimensionless velocity 
 

 
Figure 4. Effect of Magnetic parameter over the 

dimensionless velocity 
 

 
Figure 5. Effect of Magnetic parameter over            

skin friction coefficient 
 
Variation in dimensionless longitudinal velocity for 
various values of Magnetic parameter is portrayed in 
Figure 4. The effect of Magnetic parameter is to accelerate 
the dimensionless longitudinal velocity. This happens due 
to Lorentz force arising from the interaction of magnetic 
and electric fields during the motion of electrically 
conducting fluid. The momentum boundary layer 
thickness is reduced consequently.  
 
Figure 5 portrays the effect of Magnetic parameter over 
the skin friction coefficient against Suction parameter. The 
skin friction at the shrinking sheet is felt more for higher 

values of Magnetic parameter. It is noted from the figure 
that the skin friction coefficient ascends as the Suction 
parameter along the horizontal axis increases. 

 
5.2. Effect of physical parameters on Temperature 

distribution 
 
The increase in magnitude of Suction parameter is to 
decrease the temperature of the fluid is depicted in Figure 
6. Further, the thermal boundary layer thickness declines 
as the Suction parameter increases. The temperature at 
the wall is found to be higher than temperature away from 
the wall. 
 
Figure 7 implies that the temperature is suppressed owing 
to the increase in value of Magnetic parameter. It is further 
noted that the thickness of thermal boundary layer 
diminishes with an enhancement of Magnetic parameter.  
 
 

 
Figure 6. Dimensionless temperature profiles 

 for various values of S 
 

 
Figure 7. Dimensionless temperature profiles 

 for various values of M2 
 
The dimensionless temperature distribution for various 
values of Prandtl number is highlighted in Figure 8. As 
Prandtl number increases, the thermal diffusivity 
decreases which reduces the energy transfer ability. Hence 
an increase in Prandtl number values leads to the decrease 
in temperature and the thickness of the thermal boundary 
layer becomes thin.  Figure 9 represents the dimensionless 
temperature for various values of Heat generation 
parameter. In the presence of Heat generation parameter, 
it can be seen that heat energy is generated in thermal 
boundary layer which cause the temperature to increase 
with an enhancement in the value of Heat generation 
parameter.  
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Figure 8. Dimensionless temperature profiles 
 for various values of Pr 

 
 

 

Figure 9. Dimensionless temperature profiles  
for various values of Hs 

 

 
 

Figure 10. Dimensionless temperature profiles 
 for various values of Rd 

 

Figure 11. Dimensionless temperature profiles 
 For various values of Ec 

Table1. Skin friction coefficient )0(F  for               
different values of S 

 

S M2 Present result Bhattacharyya [18] 

2.0 
3.0 
4.0 

2.0 
2.414214 
3.302775 
4.236068 

2.414300 
3.302750 
4.236099 

 

 
Table2. Comparison of numerical and                   

analytical values of )0(F   
 

S M2 Numerical 
Method 

Analytical 
Method 

2.0 
2.5 
3.0 
4.0 
4.5 

1.0 

2.000000 
2.500000 
3.000000 
4.000000 
4.500000 

2.00000 
2.50000 
3.00000 
4.00000 
4.50000 

2.5 

0.0 
1.0 
3.0 
5.0 

2.001000 
2.500000 
3.137459 
3.608849 

2.00000 
2.50000 
3.13750 
3.60850 

 
Table3. Comparison of numerical and analytical 

results of - )0( for various physical parameters with  
S = 2.5, M2 = 1.0, Pr = 0.71, Hs = 0.05, Rd = 2.0, Ec = 0.01 

 

Physical parameters 
Numerical  

Method 
Analytical 

Method 

S 

2.0 
2.5 
3.0 
3.5 
4.0 

0.281597 
0.638486 
0.932549 
1.198544 
1.449131 

0.281597 
0.638486 
0.932550 
1.198550 
1.449131 

M2  

0.0 
1.0 
3.0 
5.0 
7.0 

0.554714 
0.638486 
0.706830 
0.742207 
0.765438 

0.554715 
0.638486 
0.706830 
0.742208 
0.765438 

Pr 

0.71 
1.00 
1.50 
2.30 
7.00 

0.638486 
0.962278 
1.565711 
2.608395 
9.338060 

0.638486 
0.962279 
1.565710 
2.608390 
9.338060 

Hs 

0.00 
0.05 
0.08 
0.10 
0.30 

0.667866 
0.638486 
0.619929 
0.607121 
0.449650 

0.667866 
0.638486 
0.619930 
0.607121 
0.449650 

Rd 

1.0 
2.0 
3.0 
5.0 
109  

0.427164 
0.638486 
0.757715 
0.886851 
1.177781 

0.427165 
0.638486 
0.757716 
0.886852 
1.177780 

Ec 

0.01 
0.20 
0.40 
0.60 
0.80 

0.638486 
0.514117 
0.383203 
0.252288 
0.121374 

0.638486 
0.514117 
0.383203 
0.252289 
0.121375 
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Figure 10 elucidates the effect of Radiation parameter on 
temperature distribution. It is evident that the effect of 
Radiation parameter is to lower the temperature for its 
ascending values with higher temperature at the wall. It is 
clearly seen that the Radiation parameter decreases the 
thermal boundary layer thickness. The radiation should be 
at its minimum in order to facilitate the cooling process. 
 

Figure 11 portrays the temperature distribution for 
various values of Eckert number. It is evident that the 
thermal boundary layer is broadened as a result of step up 
in the values of Eckert number, which conveys the fact that 
the dissipative energy becomes more important with an 
enhancement in temperature. 
 
To validate the solution obtained numerically, the 
numerical values of Skin friction coefficient for different 
values of S are compared with the results obtained by 
Bhattacharyya [18] and are shown in Table 1. Good 
agreement is observed between these two results. 
 

Table4. Non-dimensional rate of heat transfer for 
various physical parameters 

S M2 Pr Hs Rd Ec 
𝑵𝒖𝒙

ඥ𝑹𝒆𝒙
 

2.0 
2.5 
3.0 
3.5 
4.0 

1.0 
 
 
 
 

0.71 
 
 
 
 

0.1 
 
 
 
 

2.0 
 
 
 
 

0.01 
 
 
 
 

0.375393 
1.011869 
1.517016 
1.968265 
2.390873 

2.5 
 
 
 
 

0.0 
1.0 
3.0 
5.0 
7.0 

0.71 
 
 
 
 

0.1 
 
 
 
 

2.0 
 
 
 
 

0.01 
 
 
 
 

0.864323 
1.011869 
1.130880 
1.192080 
1.232134 

2.5 1.0 0.71 
1.00 
1.50 
2.30 
7.00 

0.1 2.0 0.01 1.011869 
1.551747 
2.558023 
4.297410 

15.521040 
2.5 

 
 
 
 

1.0 
 
 
 
 

0.71 
 
 
 
 

0.0 
0.1 
0.2 
0.3 
0.4 

2.0 
 
 
 
 

0.01 
 
 
 
 

1.113110 
1.011869 
0.894230 
0.749416 
0.544803 

2.5 
 
 
 
 

1.0 
 
 
 
 

0.71 
 
 
 
 

0.1 
 
 
 
 

1.0 
2.0 
3.0 
5.0 
109 

0.01 
 
 
 
 

0.922676 
1.011869 
1.049265 
1.083753 
1.146642 

2.5 1.0 0.71 0.1 2.0 0.01 
0.05 
0.10 
0.20 
0.40 

1.011869 
0.967961 
0.913078 
0.803313 
0.583780 

 
In order to ensure the accuracy of numerical scheme, the 
numerical and analytical values of )(0F  and - )(0  for 
various physical parameters are compared and elucidated 
in Tables 2 and 3 respectively. The table values show that 
the numerical results are in excellent agreement with the 
analytical results obtained.  
 
The numerical values of non-dimensional rate of heat 
transfer for various physical parameters are displayed in 

Table 4. From Table 4, it is inferred that the increasing 
values of the Suction parameter, Magnetic parameter and 
Prandtl number increases the non-dimensional rate of 
heat transfer. It is further noted that the dimensionless 
rate of heat transfer increases due to increasing effect of 
Radiation parameter whereas it gets reduced due to 
increasing Heat generation parameter and Eckert number. 
 
6. Conclusion 
A numerical study has been conducted on MHD flow and 
thermal transport characteristics over a shrinking surface 
in the presence of energy dissipation due to Joule heating 
and viscous dissipation, heat generation and thermal 
radiation. The Rosseland diffusion flux model has been 
used to simulate the radiative heat flux. A parametric 
study is performed to illustrate the influence of physical 
parameters on velocity and temperature distributions. 
Numerical results are obtained for skin friction coefficient 
as well as local Nusselt number for some values of 
governing parameters. The numerical scheme applied is 
validated by comparing the numerical results obtained 
with the results found using analytical method. In the 
absence of radiation and dissipation effects (Rd = 109,               
Ec = 0.0) , the author’s results for constant temperature 
are identical to that of Bhattacharyya [18]. All the profiles 
tend to zero asymptotically which satisfies the far field 
boundary conditions. Some of the important findings 
drawn from the present analysis are listed as follows: 

 The longitudinal velocity accelerates due to the 
increasing values of Suction parameter. When the 
shrinking surface is prescribed with no uniform 
temperature the Suction parameter diminishes the 
temperature and hence its boundary layer thickness 
also decreases. Moreover, the increasing effect of 
Suction parameter is to enhance the dimensionless 
rate of heat transfer.  

 The increasing effect of Magnetic parameter is to 
accelerate the dimensionless longitudinal velocity and 
skin friction coefficient. The temperature of the fluid is 
suppressed when the strength of the Magnetic 
parameter is high whereas it enhances the non-
dimensional rate of heat transfer. 

 The increasing effect of Prandtl number is to reduce 
the temperature of the fluid and hence the thermal 
boundary layer thickness becomes thinner. More 
amount of heat is transferred from the surface due to 
increase in Prandtl number. 

 Increase in magnitude of Heat generation parameter is 
to generate temperature and decrease the thermal 
boundary layer thickness. The dimensionless rate of 
heat transferred to the fluid is observed to be less 
when the influence of Heat generation parameter is 
high.  

 The rise in the value of Radiation parameter 
diminishes the temperature of the fluid and hence 
reduction in the thermal boundary layer thickness is 
observed. The dimensionless rate of heat transfer is 
more due to the significant effect of Radiation 
parameter. 

 The energy dissipation (being indicated by Eckert 
number) due to Joule heating and viscous dissipation 
has the tendency to thicken the thermal boundary 
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layer, so as to raise the temperature and reduce the 
dimensionless heat transfer rate from the surface. 
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