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ABSTRACT 

The Laplace transformation is a mathematical

differential equations. Laplace transformation makes it easier to solve the 

problem in engineering application and make differential equations simple 

to solve. In this paper, we will solve differential equations including 

Leguerre Polynomial via Laplace Transform Method.
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INRODUCTION 

The Laplace transformation is applied in different areas of 

science, engineering and technology [1-

transformation is applicable in so many fields and 

effectively solving linear differential equations. Ordinary 

linear differential equation with constant coefficient and 

variable coefficient can be easily solved by the Laplace 

transform method without finding their general solutions 

[6, 7, 8, 9,]. This paper presents the application of Laplace 

transform in solving the differential equations including 

Leguerre Polynomial.  

 

DEFINITION 

Let F (t) is a well defined function of t for all t 

Laplace transformation [10, 11] of F (t), denoted by f (

or L {F (t)}, is defined L {F (t)} =� ����∞

�
provided that the integral exists, i.e. convergent. If the 

integral is convergent for some value of

Laplace transformation of F (t) exists otherwise not. 

Where �	the parameter which may be real or complex 

number and L is the Laplace transformation operator.

 

Laplace Transformation of Elementary Functions

13]  
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The Laplace transformation is a mathematical tool used in solving the 

differential equations. Laplace transformation makes it easier to solve the 

problem in engineering application and make differential equations simple 

to solve. In this paper, we will solve differential equations including 

Polynomial via Laplace Transform Method. 
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The Laplace transformation is applied in different areas of 

-5]. The Laplace 

transformation is applicable in so many fields and 

ctively solving linear differential equations. Ordinary 

linear differential equation with constant coefficient and 

variable coefficient can be easily solved by the Laplace 

transform method without finding their general solutions 

resents the application of Laplace 

transform in solving the differential equations including 

Let F (t) is a well defined function of t for all t ≥ 0. The 

Laplace transformation [10, 11] of F (t), denoted by f (�) 
�� � �!"� 
 # �!, 

provided that the integral exists, i.e. convergent. If the 

ral is convergent for some value of	�	, then the 

Laplace transformation of F (t) exists otherwise not. 

the parameter which may be real or complex 

number and L is the Laplace transformation operator. 

Laplace Transformation of Elementary Functions [12, 
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Proof: By the definition of Laplace transformation, we 

know that L {F (t)} =� ����∞

� �
L {	�%�} =�∞

�
= - 

�
��% 	 	��∞ - 	�
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� - & 


 

Laplace Transformation of derivatives 

Let F is an exponential order, and that F is a continuous 

and f is piecewise continuous on any interval [14, 15, 16,], 

then  

		.�′ �!/ 
 0
�

= 10 - � 0!2 - �
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By the definition of Laplace transformation, we 
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=	-� 0! + � � ����∞

� � �!"� 

= �	
� �!� − � 0! 

= �# �! − � 0! 

Now, since 		.�′ �!/ = �	
� �!� − � 0! 

Therefore, 		.�′′ �!/ = �	.�′ �!/ − �′ 0! 

		.�′′ �!/ = �	
�	
� �!� − � 0!� − �′ 0! 

		.�′′ �!/ = �5	
� �!� − � 0! − �′ 0! 

		.�′′ �!/ = �5# �! − � 0! − �′ 0! 

Similarly 		.�′′′ �!/ = �6# �! − �5� 0! − ��′ 0! − �′′ 0! 

And so on. 

 

FORMULATION 

Laguerre Polynomial. 

The Laguerre polynomial [1-3] is defined as 

		� 7! = 89
�!

:�	
:;�	(��;7�) 

 

We know that by the definition of Laplace Transform 

L {F (t)} =� ����∞

� � �!"� 

 

Therefore,  

			
	� �!�	=� ����∞

� <	8=
�!

:�	
:�� 	 �����!> "� 

= 1
�!0 �� ���!�∞

�
?	"�	
"�� 	 �����!@ "� 

=	 ��! [ � − 1! � �� ���!� :�A�
:��A�

∞

�  �����!"�] 
 

Integrating again,  

=  � − 1!5
�! 0 �� ���!� "��5

"���5
∞

�
 �����!"� 

 

Integrating again, 

=  � − 1!�
�! 0 �� ���!� "���

"����
∞

�
 �����!"�	

=  � − 1!�
�! 0 �� ���!�∞

�
 �����!"� 

=  � − 1!�
�! 0 ����∞

�
��"� 

 

But by the definition of Laplace Transformation 

L {F (t)} =� ����∞

� � �!"� 

 

Hence,  � − 1!�
�! 	 ��! =  � − 1!�

�! . �!
��*� 

 

Hence, 

			
	� �!� =  � − 1!�
��*�  

 

Solve the differential equations  BC − DB + C!E = FC G! HIGJ	IKIGILM	NOKPIGIOKQ	 
E R! = S	, E′ R! = R 

 

Solution: 

Given equation can be written as 

T′′ − 3T′ + 2T = 	5 �! 

 

Taking Laplace Transform on sides 

	
T′′� − 3	
T′� + 2	
T� = 	
	5 �!� 

 

Because Leguerre polynomial of order 2 is 

	5
�� = 1
2 
2 − 4� + �5� 

[�5TV �! − �TV �! − T ′ 0!] − 3[�TV �! − T 0!] + 2TV �!
=  � − 1!5

�6  

 

Applying initial conditions, we get 

[�5 − 3� + 2]TV �! −  � − 1!5
�6 + � − 3 

TV �! = � − 1
�6 � − 2! + � − 3

 � − 1! � − 2! 

 

Applying inverse Laplace Transform 

T = 	�� W � − 1
�6 � − 2!X + 	�� W � − 3

 � − 1! � − 2!X… .  1! 

  T = Y + Z	………… . .  2! 

 

Y = 	�� W � − 1
�6 � − 2!X 

 

Solving by partial fraction, we get 

Y = −1
8	�� W1�X−

1
4 	�� W 1�5X+ 1

2 	�� W 1
�6X 	+ 1

8 	�� W 1
� − 2X 

 

Y = −1
8 − 1

4 � + 1
4 �5 + 1

8 �5� 

 

And,  

Z = 	�� W � − 3
 � − 1! � − 2!X 

 

Solving by Heaviside’s expansion 

Let  � �! = � − 3 

\ �! = �5 − 3� + 2 

 

Therefore, \ ′ �! = 2� − 3 

Putting	\ �! = 0, then � = 1,2 

Here, \ �! have two distinct roots. 

Also the degree of � �! is less than the degree of\ �!. 

Therefore by Heaviside’s expansions 

 

Z = 	�� ]� �!
\ �!^ 

 

= � 1!
\ ′ 1! �� + � 2!

\ ′ 2! �5� 

 Z = 2��−�5� 

 

From (2), T = Y + Z 

 

E = −S
_ − S

` G + S
` GC + S

_aCG + CaG−aCG 
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Solve the differential equations 

 BC - B - C!E 
 FS G! 

HIGJ	IKIGILM	NOKPIGIOKQ	 
E R! 
 -S	, E′ R! = C 

 

Solution: 

Given equation can be written as 

T′′ − T′ − T = 	� �! 

 

Taking Laplace Transform on sides 

	
T′′� − 	.T′/ − 2	
T� = 	
	� �!� 

 

Because Leguerre polynomial of order 1 is 	5
�� = 
1 − �� 

 [�5TV �! − �TV �! − Tb 0!] − [�TV �! − T 0!] − 2TV �!
= � − 1

�5  

 

Applying initial conditions, we get 

[�5 − � − 2]TV �! − � − 1
�5 − � + 3 

 

TV �! = � − 1
�5 � − 2! � + 1! − � − 3

 � + 1! � − 2! 

 

Applying inverse Laplace Transform 

T = 	�� W � − 1
�5 � − 2! � + 1!X − 	�� W � − 3

 � + 1! � − 2!X… .  1! 

  T = Y + Z	…… . .  2! 

 

Y = 	�� W � − 1
�5 � − 2! � + 1!X 

 

Solving by partial fraction, we get 

Y = −3
4	�� W1�X+

1
2 	�� W 1

�5X 
 

+2
3	�� W 1

� + 1X 	+
1
12 	�� W 1

� − 2X 

 

Y = −3
4 + 1

2 � + 2
3 ��� + 1

12 �5� 

 

And,  

Z = 	�� W � − 3
 � + 1! � − 2!X 

 

Solving by Heaviside’s expansion 

Let  � �! = � − 3 \ �! = �5 − � − 2 

 

Therefore, \b �! = 2� − 1 

Putting	\ �! = 0, then � = −1,2 

Here, \ �! have two distinct roots. 

Also the degree of � �! is less than the degree of\ �!. 

Therefore by Heaviside’s expansions 

Z = 	�� ]� �!
\ �!^ 

 

= � −1!
\b −1! �� + � 2!

\b 2! �5� 

Z = −1
3 �5�−	43 ��� 

 

From (2), T = Y + Z 

 

E = −D
` + S

C G + C
D a�G + S

SCaCG − S
DaCG−	`D a�G 

 

CONCLUSION 

The solutions of differential equations including Leguerre 

Polynomial via Laplace Transform Method are obtained 

successfully. It is revealed that the Laplace transform is a 

very useful mathematical for obtaining the solutions of 

differential equations including Leguerre Polynomial.  
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