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ABSTRACT 

In this paper, two types of one-dimensional discrete

firstly proposed and the chaos behaviors are numerically discussed. Based 

on the time-domain approach, an invariant set and equilibrium points of 

such discrete-time systems are presented. Besides, the stability of 

equilibrium points will be analyzed in detail. Finally, Lyapuno

plots as well as state response and Fourier amplitudes of the proposed 

discrete-time systems are given to verify and demonstrate the chaos 

behaviors. 
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1. INRODUCTION 

In recent years, various types of chaotic systems have 

been widely explored and excavated. As we know, since 

chaotic system is highly sensitive to initial conditions and 

the output behaves like a random signal, several kinds of 

chaotic systems have been widely applied in various 

applications such as master-slave chaotic systems, secure 

communication, ecological systems, biological systems, 

system identification, and chemical reactions; see, 

instance, [1-10] and the references therein.
 

In this paper, two new types of chaotic systems will be 

firstly proposed. Both of invariant set and equilibrium 

points of such chaotic systems will be investigated and 

presented. Finally, various numerical methods will be 

adopted to verify the chaotic behavior of the proposed two 

novel discrete-time systems. 
 

This paper is organized as follows. The problem 

formulation and main result are presented in Section 2. 

Some numerical simulations are given in Section

illustrate the main result. Finally, conclusion is made in 

Section 4. 
 

2. PROBLEM FORMULATION AND MAIN RESULTS

Let us consider the following two types of one

dimensional discrete-time systems 
 

The first type of Sun’s discrete-time systems:
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dimensional discrete-time systems are 

the chaos behaviors are numerically discussed. Based 

domain approach, an invariant set and equilibrium points of 

time systems are presented. Besides, the stability of 

equilibrium points will be analyzed in detail. Finally, Lyapunov exponent 

plots as well as state response and Fourier amplitudes of the proposed 

time systems are given to verify and demonstrate the chaos 
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adopted to verify the chaotic behavior of the proposed two 
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Before presenting the main result, let us introduce a 

definition which will be used in the main theorem.

 

Definition 1: A set RS ⊆
discrete system (1) if ( )x 0

Nk ∈ .  
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definition which will be used in the main theorem. 

 is an invariant set for the 

S∈  implies ( ) Skx ∈ , for all 
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Now we present the first main result. 

Theorem 1: The set of [ ]1,0  is an invariant set for the 

discrete systems (1) and (2). 

 

Proof. It is easy to see that if ( ) [ ]1,0∈kx  implies

( ) [ ] +∈∀∈+ Zkkx ,1,01 . Consequently, we conclude that if 

( ) [ ]1,00 ∈x  implies ( ) [ ] Nkkx ∈∀∈ ,1,0 . This completes the 

proof. ϒ 

 

Now we present the second main results. 

Theorem 2: The set of equilibrium points of the system 

(1) and (2) are given by  { }x,0  and { }x̂,0 , respectively, 

where x  and x̂  satisfy the following equations 

( ) ( ) ( ),2ln
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2
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Furthermore, all of above equilibrium points are unstable. 

Proof. (i) (Analysis of the system (1)) 

Let us define 
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From the equation of ( )xfx = , it results that 0=x  and x , 
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In addition, it is easy to see that 
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This implies that both of equilibrium points 0   

(ii) (Analysis of the system (2)) 
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From the equation of ( )xgx = , it can be readily obtained 

that 1=x  and x̂ , with 

( ) ( )
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Meanwhile, one has ( ) 1
ˆ5.1

ˆ −<
−

−−=′
x

c
dxg  and 

( ) 1
3

2
1 >+=′ abg . It follows that both of equilibrium 

points x̂  and 1 are unstable. This completes the proof. ϒ 

 

 

 

3. NUMERICAL SIMULATIONS 

Lyapunov exponent plots of the discrete-time systems of 

(1), with ( ) 25.00 =x , is depicted in Figure 1. Time response 

of ( )kx  and Fourier amplitudes for the nonlinear system 

(1), with ( ) 25.00 =x  and ( ) ( )7.1,8.1, =db , are depicted in 

Figure 2 and Figure 3, respectively. Besides, the Lyapunov 

exponent plots of the nonlinear systems of (2), with

( ) 35.00 =x , is depicted in Figure 4. Time response of ( )kx  

and Fourier amplitudes for the discrete-time system (2), 

with ( ) 35.00 =x  and ( ) ( )9.1,6.1, =db , are depicted in 

Figure 5 and Figure 6, respectively. The simulation graphs 

show that both of systems (1) and (2) have chaotic 

behavior. This is due to the fact that all of Lyapunov 

exponent are larger than one. 

 

4. CONCLUSION 

In this paper, two types of Sun’s one-dimensional discrete-

time systems are firstly proposed and the chaos behaviors 

are numerically discussed. Based on the time-domain 

approach, an invariant set and equilibrium points of such 

discrete-time systems have been presented. Besides, the 

stability of equilibrium points has been analyzed in detail. 

Finally, Lyapunov exponent plots as well as state response 

and Fourier amplitudes for the proposed discrete-time 

systems have been given to verify and demonstrate the 

chaos behaviors. 
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Figure 1: Lyapunov exponents of the system (1). Initial value ( ) 25.00 =x , sample size 3105×  points, and initial 410  

points discarded. 

 

 
Figure 2: The time response of ( )kx  for the system (1), with ( ) 25.00 =x  and ( ) ( )7.1,8.1, =db . 

 

 

Figure 3: Fourier amplitudes for the system (1) with ( ) 25.00 =x  and ( ) ( )7.1,8.1, =db . Sample size 3105×  points and 

initial 410  points discarded. 
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Figure 4: Lyapunov exponents of the systems (2). Initial value ( ) 35.00 =x , sample size 3105×  points, and initial 410  

points discarded. 

 

 
Figure 5: The time response of ( )kx  for the system (2), with ( ) 35.00 =x  and ( ) ( )9.1,6.1, =db . 

 

 

Figure 6: Fourier amplitudes for the system (2) with ( ) 35.00 =x  and ( ) ( )9.1,6.1, =db . Sample size 3105×  points and 

initial 410  points discarded.
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