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ABSTRACT 

Big data is a collection of large datasets that cannot be processed using 

traditional computing techniques. It is not a single technique or a tool, rather it 

has become a complete subject, which involves various tools, technqiues and 

frameworks. Hadoop is an open-source framework that allows to store and 

process big data in a distributed environment across clusters of computers 

using simple programming models. It is designed to scale up from single 

servers to thousands of machines, each offering local computation and storage. 
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1. INRODUCTION 

A. What is BigData  

Big Data is also data but with a huge size. Big Data is a term 

used to describe a collection of data that is huge in size and 

yet growing exponentially with time. In short such data is so 

large and complex that none of the traditional data 

management tools are able to store it or process it efficiently. 
 

B. 3 Vs of Big Data  

Volume of data: Volume refers to amount of data. Volume of 

data stored in enterprise repositories have grown from 

megabytes and gigabytes to petabytes.  
 

Variety of data: Different types of data and sources of data. 

Data variety exploded from structured and legacy data 

stored in enterprise repositories to unstructured, semi 

structured, audio, video, XML etc.  
 

Velocity of data: Velocity refers to the speed of data 

processing. For time-sensitive processes such as catching 

fraud, big data must be used as it streams into your 

enterprise in order to maximize its value. 
 

C. Problem with Big Data Processing  

i. Heterogeneity and Incompleteness  

When humans consume information, a great deal of 

heterogeneity is comfortably tolerated. In fact, the nuance 

and richness of natural language can provide valuable depth. 

However, machine analysis algorithms expect homogeneous 

data, and cannot understand nuance. In consequence, data  

must be carefully structured as a first step in (or prior to)  

 

 

data analysis. Computer systems work most efficiently if 

they can store multiple items that are all identical in size and 

structure. Efficient representation, access, and analysis of 

semi-structured data require further work. 
 

ii. Scale  

Of course, the first thing anyone thinks of with Big Data is its 

size. After all, the word “big” is there in the very name. 

Managing large and rapidly increasing volumes of data has  

been a challenging issue for many decades. In the past, this 

challenge was mitigated by processors getting faster, 

following Moore’s law, to provide us with the resources 

needed to cope with increasing volumes of data. But, there is 

a fundamental shift underway now: data volume is scaling 

faster than compute resources, and CPU speeds are static.  
 

iii. Timeliness  

The flip side of size is speed. The larger the data set to be 

processed, the longer it will take to analyze. The design of a 

system that effectively deals with size is likely also to result 

in a system that can process a given size of data set faster. 

However, it is not just this speed that is usually meant when 

one speaks of Velocity in the context of Big Data. Rather, 

there is an acquisition rate challenge  
 

iv. Privacy  

The privacy of data is another huge concern, and one that 

increases in the context of Big Data. For electronic health 

records, there are strict laws governing what can and cannot 
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be done. For other data, regulations, particularly in the US, 

are less forceful. However, there is great public fear 

regarding the inappropriate use of personal data, 

particularly through linking of data from multiple sources. 

Managing privacy is effectively both a technical and a 

sociological problem, which must be addressed jointly from 

both perspectives to realize the promise of big data.  

 

v. Human Collaboration  

In spite of the tremendous advances made in computational 

analysis, there remain many patterns that humans can easily 

detect but computer algorithms have a hard time finding. 

Ideally, analytics for Big Data will not be all computational 

rather it will be designed explicitly to have a human in the 

loop. The new sub-field of visual analytics is attempting to do 

this, at least with respect to the modeling and analysis phase 

in the pipeline. In today’s complex world, it often takes 

multiple experts from different domains to really understand 

what is going on. A Big Data analysis system must support 

input from multiple human experts, and shared exploration 

of results. These multiple experts may be separated in space 

and time when it is too expensive to assemble an entire team 

together in one room. The data system has to accept this 

distributed expert input, and support their collaboration. 

 

D. Big data architecture style 

A big data architecture is designed to handle the ingestion, 

processing, and analysis of data that is too large or complex 

for traditional database systems. 

 

 
Architecture of Big Data 

 

Big data solutions typically involve one or more of the 

following types of workload: 

� Batch processing of big data sources at rest. 

� Real-time processing of big data in motion. 

� Interactive exploration of big data. 

� Predictive analytics and machine learning. 

� Most big data architectures include some or all of the 

following components: 

 

Data sources: All big data solutions start with one or more 

data sources. Examples include: 

� Application data stores, such as relational databases. 

� Static files produced by applications, such as web server 

log files. 

� Real-time data sources, such as IoT devices. 

 

Data storage: Data for batch processing operations is 

typically stored in a distributed file store that can hold high 

volumes of large files in various formats. This kind of store is 

often called a data lake.  

 

Batch processing: Because the data sets are so large, often a 

big data solution must process data files using long-running 

batch jobs to filter, aggregate, and otherwise prepare the 

data for analysis. Usually these jobs involve reading source 

files, processing them, and writing the output to new files 

Real-time message ingestion: If the solution includes real-

time sources, the architecture must include a way to capture 

and store real-time messages for stream processing. This 

might be a simple data store, where incoming messages are 

dropped into a folder for processing. However, many 

solutions need a message ingestion store to act as a buffer 

for messages, and to support scale-out processing, reliable 

delivery, and other message queuing semantics.  
 

Stream processing: After capturing real-time messages, the 

solution must process them by filtering, aggregating, and 

otherwise preparing the data for analysis. The processed 

stream data is then written to an output sink.  
 

Analytical data store: Many big data solutions prepare data 

for analysis and then serve the processed data in a 

structured format that can be queried using analytical tools.  
 

Analysis and reporting: The goal of most big data solutions 

is to provide insights into the data through analysis and 

reporting. To empower users to analyze the data, the 

architecture may include a data modeling layer, such as a 

multidimensional  
 

Orchestration: Most big data solutions consist of repeated 

data processing operations, encapsulated in workflows, that 

transform source data, move data between multiple sources 

and sinks, load the processed data into an analytical data 

store, or push the results straight to a report or dashboard 
 

2. Hadoop: Solution for Big Data Processing  

Hadoop is a Programming framework used to support the 

processing of large data sets in a distributed computing 

environment. Hadoop was developed by Google’s 

MapReduce that is a software framework where an 

application break down into various parts. The Current 

Apache Hadoop ecosystem consists of the Hadoop Kernel, 

MapReduce, HDFS and numbers of various components like 

Apache Hive, Base and Zookeeper. HDFS and MapReduce are 

explained in following points. 
 

Hadoop Architecture Overview 

Apache Hadoop offers a scalable, flexible and reliable 

distributed computing big data framework for a cluster of 

systems with storage capacity and local computing power by 

leveraging commodity hardware. Hadoop follows a Master 

Slave architecture for the transformation and analysis of 

large datasets using Hadoop MapReduce paradigm. The 3 

important hadoop components that play a vital role in the 

Hadoop architecture are - 

a. Hadoop Distributed File System (HDFS) – Patterned 

after the UNIX file system 

b. Hadoop MapReduce 

c. Yet Another Resource Negotiator (YARN) 
 

 
Hadoop Architecture 
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Hadoop Architecture Explained 

Hadoop skillset requires thoughtful knowledge of every 

layer in the hadoop stack right from understanding about the 

various components in the hadoop architecture, designing a 

hadoop cluster, performance tuning it and setting up the top 

chain responsible for data processing. 

 

Hadoop follows a master slave architecture design for data 

storage and distributed data processing using HDFS and 

MapReduce respectively. The master node for data storage is 

hadoop HDFS is the NameNode and the master node for 

parallel processing of data using Hadoop MapReduce is the 

Job Tracker. The slave nodes in the hadoop architecture are 

the other machines in the Hadoop cluster which store data 

and perform complex computations. Every slave node has a 

Task Tracker daemon and a DataNode that synchronizes the 

processes with the Job Tracker and NameNode respectively. 

In Hadoop architectural implementation the master or slave 

systems can be setup in the cloud or on-premise. 

 

Role of Distributed Storage - HDFS in Hadoop 

Application Architecture Implementation 

A file on HDFS is split into multiple bocks and each is 

replicated within the Hadoop cluster. A block on HDFS is a 

blob of data within the underlying file system with a default 

size of 64MB.The size of a block can be extended up to 256 

MB based on the requirements. 

 

 
HDFS Architecture 

 

Hadoop Distributed File System (HDFS) stores the 

application data and file system metadata separately on 

dedicated servers. NameNode and DataNode are the two 

critical components of the Hadoop HDFS architecture. 

Application data is stored on servers referred to as 

DataNodes and file system metadata is stored on servers 

referred to as NameNode. HDFS replicates the file content on 

multiple DataNodes based on the replication factor to ensure 

reliability of data. The NameNode and DataNode 

communicate with each other using TCP based protocols. For 

the Hadoop architecture to be performance efficient, HDFS 

must satisfy certain pre-requisites – 

� All the hard drives should have a high throughput. 

� Good network speed to manage intermediate data 

transfer and block replications. 

 

NameNode  

All the files and directories in the HDFS namespace are 

represented on the NameNode by Inodes that contain 

various attributes like permissions, modification timestamp, 

disk space quota, namespace quota and access times. 

NameNode maps the entire file system structure into 

memory. Two files fsimage and edits are used for persistence 

during restarts. 

� Fsimage file contains the Inodes and the list of blocks 

which define the metadata.It has a complete snapshot of 

the file systems metadata at any given point of time. 

� The edits file contains any modifications that have been 

performed on the content of the fsimage file.Incremental 

changes like renaming or appending data to the file are 

stored in the edit log to ensure durability instead of 

creating a new fsimage snapshot everytime the 

namespace is being altered. 
 

When the NameNode starts, fsimage file is loaded and then 

the contents of the edits file are applied to recover the latest 

state of the file system. The only problem with this is that 

over the time the edits file grows and consumes all the disk 

space resulting in slowing down the restart process. If the 

hadoop cluster has not been restarted for months together 

then there will be a huge downtime as the size of the edits 

file will be increase. This is when Secondary NameNode 

comes to the rescue. Secondary NameNode gets the fsimage 

and edits log from the primary NameNode at regular 

intervals and loads both the fsimage and edit logs file to the 

main memory by applying each operation from edits log file 

to fsimage. Secondary NameNode copies the new fsimage file 

to the primary NameNode and also will update the modified 

time of the fsimage file to fstime file to track when then 

fsimage file has been updated. 
 

DataNode 

DataNode manages the state of an HDFS node and interacts 

with the blocks .A DataNode can perform CPU intensive jobs 

like semantic and language analysis, statistics and machine 

learning tasks, and I/O intensive jobs like clustering, data 

import, data export, search, decompression, and indexing. A 

DataNode needs lot of I/O for data processing and transfer. 
 

On startup every DataNode connects to the NameNode and 

performs a handshake to verify the namespace ID and the 

software version of the DataNode. If either of them does not 

match then the DataNode shuts down automatically. A 

DataNode verifies the block replicas in its ownership by 

sending a block report to the NameNode. As soon as the 

DataNode registers, the first block report is sent. DataNode 

sends heartbeat to the NameNode every 3 seconds to 

confirm that the DataNode is operating and the block 

replicas it hosts are available. 
 

Role of Distributed Computation - MapReduce in Hadoop 

Application Architecture Implementation 

The heart of the distributed computation platform Hadoop is 

its java-based programming paradigm Hadoop MapReduce. 

Map or Reduce is a special type of directed acyclic graph that 

can be applied to a wide range of business use cases. Map 

function transforms the piece of data into key-value pairs 

and then the keys are sorted where a reduce function is 

applied to merge the values based on the key into a single 

output. 
 

How does the Hadoop MapReduce architecture work? 

The execution of a MapReduce job begins when the client 

submits the job configuration to the Job Tracker that 

specifies the map, combine and reduce functions along with 

the location for input and output data. On receiving the job 

configuration, the job tracker identifies the number of splits 

based on the input path and select Task Trackers based on 

their network vicinity to the data sources. Job Tracker sends 

a request to the selected Task Trackers. 
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The processing of the Map phase begins where the Task 

Tracker extracts the input data from the splits. Map function 

is invoked for each record parsed by the “InputFormat” 

which produces key-value pairs in the memory buffer. The 

memory buffer is then sorted to different reducer nodes by 

invoking the combine function. On completion of the map 

task, Task Tracker notifies the Job Tracker. When all Task 

Trackers are done, the Job Tracker notifies the selected Task 

Trackers to begin the reduce phase. Task Tracker reads the 

region files and sorts the key-value pairs for each key. The 

reduce function is then invoked which collects the 

aggregated values into the output file. 

 

Hadoop Architecture Design – Best Practices to Follow 

Use good-quality commodity servers to make it cost efficient 

and flexible to scale out for complex business use cases. One 

of the best configurations for Hadoop architecture is to begin 

with 6 core processors, 96 GB of memory and 1 0 4 TB of 

local hard drives. This is just a good configuration but not an 

absolute one. 

� For faster and efficient processing of data, move the 

processing in close proximity to data instead of 

separating the two. 

� Hadoop scales and performs better with local drives so 

use Just a Bunch of Disks (JBOD) with replication instead 

of redundant array of independent disks (RAID). 

� Design the Hadoop architecture for multi-tenancy by 

sharing the compute capacity with capacity scheduler 

and share HDFS storage. 

� Do not edit the metadata files as it can corrupt the state 

of the Hadoop cluster. 

 

3. Literature Review 

S. Vikram Phaneendra & E. Madhusudhan Reddy et.al. 

Illustrated that in olden days the data was less and easily 

handled by RDBMS but recently it is difficult to handle huge 

data through RDBMS tools, which is preferred as “big data”. 

In this they told that big data differs from other data in 5 

dimensions such as volume, velocity, variety, value and 

complexity. They illustrated the hadoop architecture 

consisting of name node, data node, edge node, HDFS to 

handle big data systems. Hadoop architecture handle large 

data sets, scalable algorithm does log management 

application of big data can be found out in financial, retail 

industry, health-care, mobility, insurance. The authors also 

focused on the challenges that need to be faced by 

enterprises when handling big data: - data privacy, search 

analysis, etc [1]. 

 

Kiran kumara Reddi & Dnvsl Indira et.al. Enhanced us 

with the knowledge that Big Data is combination of 

structured , semi-structured ,unstructured homogenous and 

heterogeneous data .The author suggested to use nice model 

to handle transfer of huge amount of data over the network 

.Under this model, these transfers are relegated to low 

demand periods where there is ample ,idle bandwidth 

available . This bandwidth can then be repurposed for big 

data transmission without impacting other users in system. 

The Nice model uses a store –and-forward approach by 

utilizing staging servers. The model is able to accommodate 

differences in time zones and variations in bandwidth. They 

suggested that new algorithms are required to transfer big 

data and to solve issues like security, compression, routing 

algorithms [2]. 

Jimmy Lin et.al. used Hadoop which is currently the large –

scale data analysis “ hammer” of choice, but there exists 

classes of algorithms that aren’t “ nails” in the sense that 

they are not particularly amenable to the MapReduce 

programming model . He focuses on the simple solution to 

find alternative non-iterative algorithms that solves the 

same problem. The standard MapReduce is well known and 

described in many places .Each iteration of the pagerank 

corresponds to the MapReduce job. The author suggested 

iterative graph, gradient descent & EM iteration which is 

typically implemented as Hadoop job with driven set up 

iteration &Check for convergences. The author suggests that 

if all you have is a hammer, throw away everything that’s not 

a nail [3]. 
 

Wei Fan & Albert Bifet et.al. Introduced Big Data Mining as 

the capability of extracting Useful information from these 

large datasets or streams of data that due to its Volume, 

variability and velocity it was not possible before to do it. 

The author also started that there are certain controversy 

about Big Data. There certain tools for processes. Big Data as 

such hadoop, strom, apache S4. Specific tools for big graph 

mining were PEGASUS & Graph. There are certain Challenges 

that need to death with as such compression, visualization 

etc.[4].  
 

Albert Bifet et.al. Stated that streaming data analysis in real 

time is becoming the fastest and most efficient way to obtain 

useful knowledge, allowing organizations to react quickly 

when problem appear or detect to improve performance. 

Huge amount of data is created everyday termed as “ big 

data”. The tools used for mining big data are apache hadoop, 

apache big, cascading, scribe, storm, apache hbase, apache 

mahout, MOA, R, etc. Thus, he instructed that our ability to 

handle many exabytes of data mainly dependent on 

existence of rich variety dataset, technique, software 

framework [5].  
 

Bernice Purcell et.al. Started that Big Data is comprised of 

large data sets that can’t be handle by traditional systems. 

Big data includes structured data, semi-structured and 

unstructured data. The data storage technique used for big 

data includes multiple clustered network attached storage 

(NAS) and object based storage. The Hadoop architecture is 

used to process unstructured and semi-structured using map 

reduce to locate all relevant data then select only the data 

directly answering the query. The advent of Big Data has 

posed opportunities as well challenges to business [6].  
 

Sameer Agarwal et.al. Presents a BlinkDB, a approximate 

query engine for running interactive SQL queries on large 

volume of data which is massively parallel. BlinkDB uses two 

key ideas: (1) an adaptive optimization framework that 

builds and maintains a set of multi-dimensional stratified 

samples from original data over time, and (2) A dynamic 

sample selection strategy that selects an appropriately sized 

sample based on a query’s accuracy or response time 

requirements [7].  
 

Yingyi Bu et.al. Used a new technique called as HaLoop 

which is modified version of Hadoop MapReduce 

Framework, as Map Reduce lacks built-in-support for 

iterative programs HaLoop allows iterative applications to 

be assembled from existing Hadoop programs without 

modification, and significantly improves their efficiency by 

providing inter- iteration caching mechanisms and a loop-
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aware scheduler to exploit these caches. He presents the 

design, implementation, and evaluation of HaLoop, a novel 

parallel and distributed system that supports large-scale 

iterative data analysis applications. HaLoop is built on top of 

Hadoop and extends it with a new programming model and 

several important optimizations that include (1) a loop-

aware task scheduler, (2) loop-invariant data caching, and 

(3) caching for efficient fix point verification [8]. 

 

Shadi Ibrahim et.al. Project says presence of partitioning 

skew1 causes a huge amount of data transfer during the 

shuffle phase and leads to significant unfairness on the 

reduce input among different data nodes In this paper, 

author develop a novel algorithm named LEEN for locality 

aware and fairness-aware key partitioning in MapReduce. 

LEEN embraces an asynchronous map and reduce scheme. 

Author has integrated LEEN into Hadoop. His experiments 

demonstrate that LEEN can efficiently achieve higher locality 

and reduce the amount of shuffled data. More importantly, 

LEEN guarantees fair distribution of the reduce inputs. As a 

result, LEEN achieves a performance improvement of up to 

45% on different workloads. To tackle all this he presents a 

present a technique for Handling Partitioning Skew in 

MapReduce using LEEN [9]. 

 

Kenn Slagter et.al. Proposes an improved partitioning 

algorithm that improves load balancing and memory 

consumption. This is done via an improved sampling 

algorithm and partitioner. To evaluate the proposed 

algorithm, its performance was compared against a state of 

the art partitioning mechanism employed by Tera Sort as the 

performance of MapReduce strongly depends on how evenly 

it distributes this workload. This can be a challenge, 

especially in the advent of data skew. In MapReduce, 

workload distribution depends on the algorithm that 

partitions the data. One way to avoid problems inherent 

from data skew is to use data sampling. How evenly the 

partitioner distributes the data depends on how large and 

representative the sample is and on how well the samples 

are analyzed by the partitioning mechanism. He uses an 

improved partitioning mechanism for optimizing massive 

data analysis using MapReduce for evenly distribution of 

workload [10]. 

 

Ahmed Eldawy et.al. presents the first full-fledged 

MapReduce framework with native support for spatial data 

that is spatial data Spatial Hadoop pushes its spatial 

constructs in all layers of Hadoop, namely, language, storage, 

MapReduce and operations layers. In the language layer, a 

simple high level language is provided to simplify spatial 

data analysis for non-technical users. In the storage layer, a 

two-layered spatial index structure is provided where the 

global index partitions data across nodes while the local 

index organizes data in each node. This structure is used to 

build a grid index, an R-tree or an R+-tree. Spatial-Hadoop is 

a comprehensive extension to Hadoop that pushes spatial 

data inside the core functionality of Hadoop. Spatial Hadoop 

runs existing Hadoop programs as is, yet, it achieves order(s) 

of magnitude better performance than Hadoop when dealing 

with spatial data. SpatialHadoop employs a simple spatial 

high level language, a two-level spatial index structure, basic 

spatial components built inside the MapReduce layer, and 

three basic spatial operations: range queries, k-NN queries, 

and spatial join. Author presents an efficient MapReduce 

framework for Spatial Data [11].  

Jeffrey Dean et.al. Implementation of MapReduce runs on a 

large cluster of commodity machines and is highly scalable: a 

typical MapReduce computation processes many terabytes 

of data on thousands of machines. Programmers and the 

system easy to use: hundreds of MapReduce programs have 

been implemented and upwards of one thousand 

MapReduce jobs are executed on Google's clusters every day. 

Programs written in this functional style are automatically 

parallelized and executed on a large cluster of commodity 

machines. The run-time system takes care of the details of 

partitioning the input data, scheduling the program's 

execution across a set of machines, handling machine 

failures, and managing the required inter-machine 

Communication. This allows programmers without any 

experience with parallel and distributed systems to easily 

utilize the resources of a large distributed system. Author 

proposes Simplified Data Processing on Large Clusters [12]. 

 

Chris Jermaine et. al. Proposes a Online Aggregation for 

Large-Scale Computing. Given the potential for OLA to be 

newly relevant, and given the current interest on very large-

scale, data-oriented computing, in this paper we consider the 

problem of providing OLA in a shared-nothing environment. 

While we concentrate on implementing OLA on top of a 

MapReduce engine, many of author’s most basic project 

contributions are not specific to MapReduce, and should 

apply broadly. Consider how online aggregation can be built 

into a MapReduce system for large-scale data processing. 

Given the MapReduce paradigm’s close relationship with 

cloud computing (in that one might expect a large fraction of 

MapReduce jobs to be run in the cloud), online aggregation is 

a very attractive technology. Since large-scale cloud 

computations are typically pay-as-you-go, a user can 

monitor the accuracy obtained in an online fashion, and then 

save money by killing the computation early once sufficient 

accuracy has been obtained [13]. 

 

Tyson Condie et.al. propose a modified MapReduce 

architecture in which intermediate data is pipelined between 

operators, while preserving the programming interfaces and 

fault tolerance models of other MapReduce frameworks. To 

validate this design, author developed the Hadoop Online 

Prototype (HOP), a pipelining version of Hadoop. Pipelining 

provides several important advantages to a MapReduce 

framework, but also raises new design challenges. To 

simplify fault tolerance, the output of each MapReduce task 

and job is materialized to disk before it is consumed. In this 

demonstration, we describe a modified MapReduce 

architecture that allows data to be pipelined between 

operators. This extends the MapReduce programming model 

beyond batch processing, and can reduce completion times 

and improve system utilization for batch jobs as well. We 

demonstrate a modified version of the Hadoop MapReduce 

framework that supports online aggregation, which allows 

users to see “early returns” from a job as it is being 

computed. Our Hadoop Online Prototype (HOP) also 

supports continuous queries, which enable MapReduce 

programs to be written for applications such as event 

monitoring and stream processing [14]. 

 

Jonathan Paul Olmsted et.al. Derive the necessary results to 

apply variation Bayesian inference to the ideal point model. 

This deterministic, approximate solution is shown to 

produce comparable results to those from standard 

estimation strategies. However, unlike these other 
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estimation approaches, solving for the (approximate) 

posterior distribution is rapid and easily scales to ‘big data’. 

Inferences from the variation Bayesian approach to ideal 

point estimation are shown to be equivalent to standard 

approaches on modestly-sized roll call matrices from recent 

sessions of the US Congress. Then, the ability of variation 

inference to scale to big data is demonstrated and contrasted 

with the performance of standard approaches.[15] 

 

Jonathan Stuart Ward et.al. did a survey of Big data 

definition, Anecdotally big data is predominantly associated 

with two ideas: data storage and data analysis. Despite the 

sudden Interest in big data, these concepts are far from new 

and have long lineages. This, therefore, raises the question as 

to how big data is notably different from conventional data 

processing techniques. For rudimentary insight as to the 

answer to this question one need look no further than the 

term big data. \Big" implies significance, complexity and 

challenge. Unfortunately the term\big" also invites 

quantification and therein lies the difficulty in furnishing a 

definition. The lack of a consistent definition introduces 

ambiguity and hampers discourse relating to big data. This 

short paper attempts to collate the various definitions which 

have gained some degree of traction and to furnish a clear 

and concise definition of an otherwise ambiguous term [16]. 

 

Albert Bifet et.al. Discuss the current and future trends of 

mining evolving data streams, and the challenges that the 

field will have to overcome during the next years. Data 

stream real time analytics are needed to manage the data 

currently generated, at an ever increasing rate, from such 

applications as: sensor networks, measurements in network 

monitoring and traffic management, log records or click-

streams in web exploring, manufacturing processes, call 

detail records, email, blogging, twitter posts and others. In 

fact, all data generated can be considered as streaming data 

or as a snapshot of streaming data, since it is obtained from 

an interval of time. Streaming data analysis in real time is 

becoming the fastest and most efficient way to obtain useful 

knowledge from what is happening now, allowing 

organizations to react quickly when problems appear or to 

detect new trends helping to improve their performance. 

Evolving data streams are contributing to the growth of data 

created over the last few years. We are creating the same 

quantity of data every two days, as we created from the 

dawn of time up until 2003. Evolving data streams methods 

are becoming a low-cost, green methodology for real time 

online prediction and analysis [17]. 

 

4. Conclusion  

We have entered an era of Big Data. The paper describes the 

concept of Big Data along with 3 Vs, Volume, Velocity and 

variety of Big Data. The paper also focuses on Big Data 

processing problems. These technical challenges must be 

addressed for efficient and fast processing of Big Data. The 

challenges include not just the obvious issues of scale, but 

also heterogeneity, lack of structure, error-handling, privacy, 

timeliness, provenance, and visualization, at all stages of the 

analysis pipeline from data acquisition to result 

interpretation. These technical challenges are common 

across a large variety of application domains, and therefore 

not cost-effective to address in the context of one domain 

alone. The paper describes Hadoop which is an open source 

software used for processing of Big Data. 
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