
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 4 Issue 1, December 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD29816 | Volume – 4 | Issue – 1 | November-December 2019 Page 1216

A Review Paper on Big Data and Hadoop for Data Science

Mr. Ketan Bagade1, Mrs. Anjali Gharat2, Mrs. Helina Tandel3

1Faculty of Information Technology, 2Faculty of Computer Engineering,
3Faculty of Electronics & Telecommunications,

1,2,3Vidyalankar Polytechnic, Wadala, Mumbai, Maharashtra, India

ABSTRACT

Big data is a collection of large datasets that cannot be processed using

traditional computing techniques. It is not a single technique or a tool, rather it

has become a complete subject, which involves various tools, technqiues and

frameworks. Hadoop is an open-source framework that allows to store and

process big data in a distributed environment across clusters of computers

using simple programming models. It is designed to scale up from single

servers to thousands of machines, each offering local computation and storage.

KEYWORDS: Big Data, Hadoop, Map Reduce, HDFS, Hadoop Components

How to cite this paper: Mr. Ketan Bagade

| Mrs. Anjali Gharat | Mrs. Helina Tandel

"A Review Paper on Big Data and Hadoop

for Data Science"

Published in

International Journal

of Trend in Scientific

Research and

Development (ijtsrd),

ISSN: 2456-6470,

Volume-4 | Issue-1,

December 2019, pp.1216-1221, URL:

www.ijtsrd.com/papers/ijtsrd29816.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in Scientific

Research and Development Journal. This

is an Open Access article distributed

under the terms of

the Creative

Commons Attribution

License (CC BY 4.0)

(http://creativecommons.org/licenses/by

/4.0)

1. INRODUCTION

A. What is BigData

Big Data is also data but with a huge size. Big Data is a term

used to describe a collection of data that is huge in size and

yet growing exponentially with time. In short such data is so

large and complex that none of the traditional data

management tools are able to store it or process it efficiently.

B. 3 Vs of Big Data

Volume of data: Volume refers to amount of data. Volume of

data stored in enterprise repositories have grown from

megabytes and gigabytes to petabytes.

Variety of data: Different types of data and sources of data.

Data variety exploded from structured and legacy data

stored in enterprise repositories to unstructured, semi

structured, audio, video, XML etc.

Velocity of data: Velocity refers to the speed of data

processing. For time-sensitive processes such as catching

fraud, big data must be used as it streams into your

enterprise in order to maximize its value.

C. Problem with Big Data Processing

i. Heterogeneity and Incompleteness

When humans consume information, a great deal of

heterogeneity is comfortably tolerated. In fact, the nuance

and richness of natural language can provide valuable depth.

However, machine analysis algorithms expect homogeneous

data, and cannot understand nuance. In consequence, data

must be carefully structured as a first step in (or prior to)

data analysis. Computer systems work most efficiently if

they can store multiple items that are all identical in size and

structure. Efficient representation, access, and analysis of

semi-structured data require further work.

ii. Scale

Of course, the first thing anyone thinks of with Big Data is its

size. After all, the word “big” is there in the very name.

Managing large and rapidly increasing volumes of data has

been a challenging issue for many decades. In the past, this

challenge was mitigated by processors getting faster,

following Moore’s law, to provide us with the resources

needed to cope with increasing volumes of data. But, there is

a fundamental shift underway now: data volume is scaling

faster than compute resources, and CPU speeds are static.

iii. Timeliness

The flip side of size is speed. The larger the data set to be

processed, the longer it will take to analyze. The design of a

system that effectively deals with size is likely also to result

in a system that can process a given size of data set faster.

However, it is not just this speed that is usually meant when

one speaks of Velocity in the context of Big Data. Rather,

there is an acquisition rate challenge

iv. Privacy

The privacy of data is another huge concern, and one that

increases in the context of Big Data. For electronic health

records, there are strict laws governing what can and cannot

IJTSRD29816

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD29816 | Volume – 4 | Issue – 1 | November-December 2019 Page 1217

be done. For other data, regulations, particularly in the US,

are less forceful. However, there is great public fear

regarding the inappropriate use of personal data,

particularly through linking of data from multiple sources.

Managing privacy is effectively both a technical and a

sociological problem, which must be addressed jointly from

both perspectives to realize the promise of big data.

v. Human Collaboration

In spite of the tremendous advances made in computational

analysis, there remain many patterns that humans can easily

detect but computer algorithms have a hard time finding.

Ideally, analytics for Big Data will not be all computational

rather it will be designed explicitly to have a human in the

loop. The new sub-field of visual analytics is attempting to do

this, at least with respect to the modeling and analysis phase

in the pipeline. In today’s complex world, it often takes

multiple experts from different domains to really understand

what is going on. A Big Data analysis system must support

input from multiple human experts, and shared exploration

of results. These multiple experts may be separated in space

and time when it is too expensive to assemble an entire team

together in one room. The data system has to accept this

distributed expert input, and support their collaboration.

D. Big data architecture style

A big data architecture is designed to handle the ingestion,

processing, and analysis of data that is too large or complex

for traditional database systems.

Architecture of Big Data

Big data solutions typically involve one or more of the

following types of workload:

� Batch processing of big data sources at rest.

� Real-time processing of big data in motion.

� Interactive exploration of big data.

� Predictive analytics and machine learning.

� Most big data architectures include some or all of the

following components:

Data sources: All big data solutions start with one or more

data sources. Examples include:

� Application data stores, such as relational databases.

� Static files produced by applications, such as web server

log files.

� Real-time data sources, such as IoT devices.

Data storage: Data for batch processing operations is

typically stored in a distributed file store that can hold high

volumes of large files in various formats. This kind of store is

often called a data lake.

Batch processing: Because the data sets are so large, often a

big data solution must process data files using long-running

batch jobs to filter, aggregate, and otherwise prepare the

data for analysis. Usually these jobs involve reading source

files, processing them, and writing the output to new files

Real-time message ingestion: If the solution includes real-

time sources, the architecture must include a way to capture

and store real-time messages for stream processing. This

might be a simple data store, where incoming messages are

dropped into a folder for processing. However, many

solutions need a message ingestion store to act as a buffer

for messages, and to support scale-out processing, reliable

delivery, and other message queuing semantics.

Stream processing: After capturing real-time messages, the

solution must process them by filtering, aggregating, and

otherwise preparing the data for analysis. The processed

stream data is then written to an output sink.

Analytical data store: Many big data solutions prepare data

for analysis and then serve the processed data in a

structured format that can be queried using analytical tools.

Analysis and reporting: The goal of most big data solutions

is to provide insights into the data through analysis and

reporting. To empower users to analyze the data, the

architecture may include a data modeling layer, such as a

multidimensional

Orchestration: Most big data solutions consist of repeated

data processing operations, encapsulated in workflows, that

transform source data, move data between multiple sources

and sinks, load the processed data into an analytical data

store, or push the results straight to a report or dashboard

2. Hadoop: Solution for Big Data Processing

Hadoop is a Programming framework used to support the

processing of large data sets in a distributed computing

environment. Hadoop was developed by Google’s

MapReduce that is a software framework where an

application break down into various parts. The Current

Apache Hadoop ecosystem consists of the Hadoop Kernel,

MapReduce, HDFS and numbers of various components like

Apache Hive, Base and Zookeeper. HDFS and MapReduce are

explained in following points.

Hadoop Architecture Overview

Apache Hadoop offers a scalable, flexible and reliable

distributed computing big data framework for a cluster of

systems with storage capacity and local computing power by

leveraging commodity hardware. Hadoop follows a Master

Slave architecture for the transformation and analysis of

large datasets using Hadoop MapReduce paradigm. The 3

important hadoop components that play a vital role in the

Hadoop architecture are -

a. Hadoop Distributed File System (HDFS) – Patterned

after the UNIX file system

b. Hadoop MapReduce

c. Yet Another Resource Negotiator (YARN)

Hadoop Architecture

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD29816 | Volume – 4 | Issue – 1 | November-December 2019 Page 1218

Hadoop Architecture Explained

Hadoop skillset requires thoughtful knowledge of every

layer in the hadoop stack right from understanding about the

various components in the hadoop architecture, designing a

hadoop cluster, performance tuning it and setting up the top

chain responsible for data processing.

Hadoop follows a master slave architecture design for data

storage and distributed data processing using HDFS and

MapReduce respectively. The master node for data storage is

hadoop HDFS is the NameNode and the master node for

parallel processing of data using Hadoop MapReduce is the

Job Tracker. The slave nodes in the hadoop architecture are

the other machines in the Hadoop cluster which store data

and perform complex computations. Every slave node has a

Task Tracker daemon and a DataNode that synchronizes the

processes with the Job Tracker and NameNode respectively.

In Hadoop architectural implementation the master or slave

systems can be setup in the cloud or on-premise.

Role of Distributed Storage - HDFS in Hadoop

Application Architecture Implementation

A file on HDFS is split into multiple bocks and each is

replicated within the Hadoop cluster. A block on HDFS is a

blob of data within the underlying file system with a default

size of 64MB.The size of a block can be extended up to 256

MB based on the requirements.

HDFS Architecture

Hadoop Distributed File System (HDFS) stores the

application data and file system metadata separately on

dedicated servers. NameNode and DataNode are the two

critical components of the Hadoop HDFS architecture.

Application data is stored on servers referred to as

DataNodes and file system metadata is stored on servers

referred to as NameNode. HDFS replicates the file content on

multiple DataNodes based on the replication factor to ensure

reliability of data. The NameNode and DataNode

communicate with each other using TCP based protocols. For

the Hadoop architecture to be performance efficient, HDFS

must satisfy certain pre-requisites –

� All the hard drives should have a high throughput.

� Good network speed to manage intermediate data

transfer and block replications.

NameNode

All the files and directories in the HDFS namespace are

represented on the NameNode by Inodes that contain

various attributes like permissions, modification timestamp,

disk space quota, namespace quota and access times.

NameNode maps the entire file system structure into

memory. Two files fsimage and edits are used for persistence

during restarts.

� Fsimage file contains the Inodes and the list of blocks

which define the metadata.It has a complete snapshot of

the file systems metadata at any given point of time.

� The edits file contains any modifications that have been

performed on the content of the fsimage file.Incremental

changes like renaming or appending data to the file are

stored in the edit log to ensure durability instead of

creating a new fsimage snapshot everytime the

namespace is being altered.

When the NameNode starts, fsimage file is loaded and then

the contents of the edits file are applied to recover the latest

state of the file system. The only problem with this is that

over the time the edits file grows and consumes all the disk

space resulting in slowing down the restart process. If the

hadoop cluster has not been restarted for months together

then there will be a huge downtime as the size of the edits

file will be increase. This is when Secondary NameNode

comes to the rescue. Secondary NameNode gets the fsimage

and edits log from the primary NameNode at regular

intervals and loads both the fsimage and edit logs file to the

main memory by applying each operation from edits log file

to fsimage. Secondary NameNode copies the new fsimage file

to the primary NameNode and also will update the modified

time of the fsimage file to fstime file to track when then

fsimage file has been updated.

DataNode

DataNode manages the state of an HDFS node and interacts

with the blocks .A DataNode can perform CPU intensive jobs

like semantic and language analysis, statistics and machine

learning tasks, and I/O intensive jobs like clustering, data

import, data export, search, decompression, and indexing. A

DataNode needs lot of I/O for data processing and transfer.

On startup every DataNode connects to the NameNode and

performs a handshake to verify the namespace ID and the

software version of the DataNode. If either of them does not

match then the DataNode shuts down automatically. A

DataNode verifies the block replicas in its ownership by

sending a block report to the NameNode. As soon as the

DataNode registers, the first block report is sent. DataNode

sends heartbeat to the NameNode every 3 seconds to

confirm that the DataNode is operating and the block

replicas it hosts are available.

Role of Distributed Computation - MapReduce in Hadoop

Application Architecture Implementation

The heart of the distributed computation platform Hadoop is

its java-based programming paradigm Hadoop MapReduce.

Map or Reduce is a special type of directed acyclic graph that

can be applied to a wide range of business use cases. Map

function transforms the piece of data into key-value pairs

and then the keys are sorted where a reduce function is

applied to merge the values based on the key into a single

output.

How does the Hadoop MapReduce architecture work?

The execution of a MapReduce job begins when the client

submits the job configuration to the Job Tracker that

specifies the map, combine and reduce functions along with

the location for input and output data. On receiving the job

configuration, the job tracker identifies the number of splits

based on the input path and select Task Trackers based on

their network vicinity to the data sources. Job Tracker sends

a request to the selected Task Trackers.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD29816 | Volume – 4 | Issue – 1 | November-December 2019 Page 1219

The processing of the Map phase begins where the Task

Tracker extracts the input data from the splits. Map function

is invoked for each record parsed by the “InputFormat”

which produces key-value pairs in the memory buffer. The

memory buffer is then sorted to different reducer nodes by

invoking the combine function. On completion of the map

task, Task Tracker notifies the Job Tracker. When all Task

Trackers are done, the Job Tracker notifies the selected Task

Trackers to begin the reduce phase. Task Tracker reads the

region files and sorts the key-value pairs for each key. The

reduce function is then invoked which collects the

aggregated values into the output file.

Hadoop Architecture Design – Best Practices to Follow

Use good-quality commodity servers to make it cost efficient

and flexible to scale out for complex business use cases. One

of the best configurations for Hadoop architecture is to begin

with 6 core processors, 96 GB of memory and 1 0 4 TB of

local hard drives. This is just a good configuration but not an

absolute one.

� For faster and efficient processing of data, move the

processing in close proximity to data instead of

separating the two.

� Hadoop scales and performs better with local drives so

use Just a Bunch of Disks (JBOD) with replication instead

of redundant array of independent disks (RAID).

� Design the Hadoop architecture for multi-tenancy by

sharing the compute capacity with capacity scheduler

and share HDFS storage.

� Do not edit the metadata files as it can corrupt the state

of the Hadoop cluster.

3. Literature Review

S. Vikram Phaneendra & E. Madhusudhan Reddy et.al.

Illustrated that in olden days the data was less and easily

handled by RDBMS but recently it is difficult to handle huge

data through RDBMS tools, which is preferred as “big data”.

In this they told that big data differs from other data in 5

dimensions such as volume, velocity, variety, value and

complexity. They illustrated the hadoop architecture

consisting of name node, data node, edge node, HDFS to

handle big data systems. Hadoop architecture handle large

data sets, scalable algorithm does log management

application of big data can be found out in financial, retail

industry, health-care, mobility, insurance. The authors also

focused on the challenges that need to be faced by

enterprises when handling big data: - data privacy, search

analysis, etc [1].

Kiran kumara Reddi & Dnvsl Indira et.al. Enhanced us

with the knowledge that Big Data is combination of

structured , semi-structured ,unstructured homogenous and

heterogeneous data .The author suggested to use nice model

to handle transfer of huge amount of data over the network

.Under this model, these transfers are relegated to low

demand periods where there is ample ,idle bandwidth

available . This bandwidth can then be repurposed for big

data transmission without impacting other users in system.

The Nice model uses a store –and-forward approach by

utilizing staging servers. The model is able to accommodate

differences in time zones and variations in bandwidth. They

suggested that new algorithms are required to transfer big

data and to solve issues like security, compression, routing

algorithms [2].

Jimmy Lin et.al. used Hadoop which is currently the large –

scale data analysis “ hammer” of choice, but there exists

classes of algorithms that aren’t “ nails” in the sense that

they are not particularly amenable to the MapReduce

programming model . He focuses on the simple solution to

find alternative non-iterative algorithms that solves the

same problem. The standard MapReduce is well known and

described in many places .Each iteration of the pagerank

corresponds to the MapReduce job. The author suggested

iterative graph, gradient descent & EM iteration which is

typically implemented as Hadoop job with driven set up

iteration &Check for convergences. The author suggests that

if all you have is a hammer, throw away everything that’s not

a nail [3].

Wei Fan & Albert Bifet et.al. Introduced Big Data Mining as

the capability of extracting Useful information from these

large datasets or streams of data that due to its Volume,

variability and velocity it was not possible before to do it.

The author also started that there are certain controversy

about Big Data. There certain tools for processes. Big Data as

such hadoop, strom, apache S4. Specific tools for big graph

mining were PEGASUS & Graph. There are certain Challenges

that need to death with as such compression, visualization

etc.[4].

Albert Bifet et.al. Stated that streaming data analysis in real

time is becoming the fastest and most efficient way to obtain

useful knowledge, allowing organizations to react quickly

when problem appear or detect to improve performance.

Huge amount of data is created everyday termed as “ big

data”. The tools used for mining big data are apache hadoop,

apache big, cascading, scribe, storm, apache hbase, apache

mahout, MOA, R, etc. Thus, he instructed that our ability to

handle many exabytes of data mainly dependent on

existence of rich variety dataset, technique, software

framework [5].

Bernice Purcell et.al. Started that Big Data is comprised of

large data sets that can’t be handle by traditional systems.

Big data includes structured data, semi-structured and

unstructured data. The data storage technique used for big

data includes multiple clustered network attached storage

(NAS) and object based storage. The Hadoop architecture is

used to process unstructured and semi-structured using map

reduce to locate all relevant data then select only the data

directly answering the query. The advent of Big Data has

posed opportunities as well challenges to business [6].

Sameer Agarwal et.al. Presents a BlinkDB, a approximate

query engine for running interactive SQL queries on large

volume of data which is massively parallel. BlinkDB uses two

key ideas: (1) an adaptive optimization framework that

builds and maintains a set of multi-dimensional stratified

samples from original data over time, and (2) A dynamic

sample selection strategy that selects an appropriately sized

sample based on a query’s accuracy or response time

requirements [7].

Yingyi Bu et.al. Used a new technique called as HaLoop

which is modified version of Hadoop MapReduce

Framework, as Map Reduce lacks built-in-support for

iterative programs HaLoop allows iterative applications to

be assembled from existing Hadoop programs without

modification, and significantly improves their efficiency by

providing inter- iteration caching mechanisms and a loop-

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD29816 | Volume – 4 | Issue – 1 | November-December 2019 Page 1220

aware scheduler to exploit these caches. He presents the

design, implementation, and evaluation of HaLoop, a novel

parallel and distributed system that supports large-scale

iterative data analysis applications. HaLoop is built on top of

Hadoop and extends it with a new programming model and

several important optimizations that include (1) a loop-

aware task scheduler, (2) loop-invariant data caching, and

(3) caching for efficient fix point verification [8].

Shadi Ibrahim et.al. Project says presence of partitioning

skew1 causes a huge amount of data transfer during the

shuffle phase and leads to significant unfairness on the

reduce input among different data nodes In this paper,

author develop a novel algorithm named LEEN for locality

aware and fairness-aware key partitioning in MapReduce.

LEEN embraces an asynchronous map and reduce scheme.

Author has integrated LEEN into Hadoop. His experiments

demonstrate that LEEN can efficiently achieve higher locality

and reduce the amount of shuffled data. More importantly,

LEEN guarantees fair distribution of the reduce inputs. As a

result, LEEN achieves a performance improvement of up to

45% on different workloads. To tackle all this he presents a

present a technique for Handling Partitioning Skew in

MapReduce using LEEN [9].

Kenn Slagter et.al. Proposes an improved partitioning

algorithm that improves load balancing and memory

consumption. This is done via an improved sampling

algorithm and partitioner. To evaluate the proposed

algorithm, its performance was compared against a state of

the art partitioning mechanism employed by Tera Sort as the

performance of MapReduce strongly depends on how evenly

it distributes this workload. This can be a challenge,

especially in the advent of data skew. In MapReduce,

workload distribution depends on the algorithm that

partitions the data. One way to avoid problems inherent

from data skew is to use data sampling. How evenly the

partitioner distributes the data depends on how large and

representative the sample is and on how well the samples

are analyzed by the partitioning mechanism. He uses an

improved partitioning mechanism for optimizing massive

data analysis using MapReduce for evenly distribution of

workload [10].

Ahmed Eldawy et.al. presents the first full-fledged

MapReduce framework with native support for spatial data

that is spatial data Spatial Hadoop pushes its spatial

constructs in all layers of Hadoop, namely, language, storage,

MapReduce and operations layers. In the language layer, a

simple high level language is provided to simplify spatial

data analysis for non-technical users. In the storage layer, a

two-layered spatial index structure is provided where the

global index partitions data across nodes while the local

index organizes data in each node. This structure is used to

build a grid index, an R-tree or an R+-tree. Spatial-Hadoop is

a comprehensive extension to Hadoop that pushes spatial

data inside the core functionality of Hadoop. Spatial Hadoop

runs existing Hadoop programs as is, yet, it achieves order(s)

of magnitude better performance than Hadoop when dealing

with spatial data. SpatialHadoop employs a simple spatial

high level language, a two-level spatial index structure, basic

spatial components built inside the MapReduce layer, and

three basic spatial operations: range queries, k-NN queries,

and spatial join. Author presents an efficient MapReduce

framework for Spatial Data [11].

Jeffrey Dean et.al. Implementation of MapReduce runs on a

large cluster of commodity machines and is highly scalable: a

typical MapReduce computation processes many terabytes

of data on thousands of machines. Programmers and the

system easy to use: hundreds of MapReduce programs have

been implemented and upwards of one thousand

MapReduce jobs are executed on Google's clusters every day.

Programs written in this functional style are automatically

parallelized and executed on a large cluster of commodity

machines. The run-time system takes care of the details of

partitioning the input data, scheduling the program's

execution across a set of machines, handling machine

failures, and managing the required inter-machine

Communication. This allows programmers without any

experience with parallel and distributed systems to easily

utilize the resources of a large distributed system. Author

proposes Simplified Data Processing on Large Clusters [12].

Chris Jermaine et. al. Proposes a Online Aggregation for

Large-Scale Computing. Given the potential for OLA to be

newly relevant, and given the current interest on very large-

scale, data-oriented computing, in this paper we consider the

problem of providing OLA in a shared-nothing environment.

While we concentrate on implementing OLA on top of a

MapReduce engine, many of author’s most basic project

contributions are not specific to MapReduce, and should

apply broadly. Consider how online aggregation can be built

into a MapReduce system for large-scale data processing.

Given the MapReduce paradigm’s close relationship with

cloud computing (in that one might expect a large fraction of

MapReduce jobs to be run in the cloud), online aggregation is

a very attractive technology. Since large-scale cloud

computations are typically pay-as-you-go, a user can

monitor the accuracy obtained in an online fashion, and then

save money by killing the computation early once sufficient

accuracy has been obtained [13].

Tyson Condie et.al. propose a modified MapReduce

architecture in which intermediate data is pipelined between

operators, while preserving the programming interfaces and

fault tolerance models of other MapReduce frameworks. To

validate this design, author developed the Hadoop Online

Prototype (HOP), a pipelining version of Hadoop. Pipelining

provides several important advantages to a MapReduce

framework, but also raises new design challenges. To

simplify fault tolerance, the output of each MapReduce task

and job is materialized to disk before it is consumed. In this

demonstration, we describe a modified MapReduce

architecture that allows data to be pipelined between

operators. This extends the MapReduce programming model

beyond batch processing, and can reduce completion times

and improve system utilization for batch jobs as well. We

demonstrate a modified version of the Hadoop MapReduce

framework that supports online aggregation, which allows

users to see “early returns” from a job as it is being

computed. Our Hadoop Online Prototype (HOP) also

supports continuous queries, which enable MapReduce

programs to be written for applications such as event

monitoring and stream processing [14].

Jonathan Paul Olmsted et.al. Derive the necessary results to

apply variation Bayesian inference to the ideal point model.

This deterministic, approximate solution is shown to

produce comparable results to those from standard

estimation strategies. However, unlike these other

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD29816 | Volume – 4 | Issue – 1 | November-December 2019 Page 1221

estimation approaches, solving for the (approximate)

posterior distribution is rapid and easily scales to ‘big data’.

Inferences from the variation Bayesian approach to ideal

point estimation are shown to be equivalent to standard

approaches on modestly-sized roll call matrices from recent

sessions of the US Congress. Then, the ability of variation

inference to scale to big data is demonstrated and contrasted

with the performance of standard approaches.[15]

Jonathan Stuart Ward et.al. did a survey of Big data

definition, Anecdotally big data is predominantly associated

with two ideas: data storage and data analysis. Despite the

sudden Interest in big data, these concepts are far from new

and have long lineages. This, therefore, raises the question as

to how big data is notably different from conventional data

processing techniques. For rudimentary insight as to the

answer to this question one need look no further than the

term big data. \Big" implies significance, complexity and

challenge. Unfortunately the term\big" also invites

quantification and therein lies the difficulty in furnishing a

definition. The lack of a consistent definition introduces

ambiguity and hampers discourse relating to big data. This

short paper attempts to collate the various definitions which

have gained some degree of traction and to furnish a clear

and concise definition of an otherwise ambiguous term [16].

Albert Bifet et.al. Discuss the current and future trends of

mining evolving data streams, and the challenges that the

field will have to overcome during the next years. Data

stream real time analytics are needed to manage the data

currently generated, at an ever increasing rate, from such

applications as: sensor networks, measurements in network

monitoring and traffic management, log records or click-

streams in web exploring, manufacturing processes, call

detail records, email, blogging, twitter posts and others. In

fact, all data generated can be considered as streaming data

or as a snapshot of streaming data, since it is obtained from

an interval of time. Streaming data analysis in real time is

becoming the fastest and most efficient way to obtain useful

knowledge from what is happening now, allowing

organizations to react quickly when problems appear or to

detect new trends helping to improve their performance.

Evolving data streams are contributing to the growth of data

created over the last few years. We are creating the same

quantity of data every two days, as we created from the

dawn of time up until 2003. Evolving data streams methods

are becoming a low-cost, green methodology for real time

online prediction and analysis [17].

4. Conclusion

We have entered an era of Big Data. The paper describes the

concept of Big Data along with 3 Vs, Volume, Velocity and

variety of Big Data. The paper also focuses on Big Data

processing problems. These technical challenges must be

addressed for efficient and fast processing of Big Data. The

challenges include not just the obvious issues of scale, but

also heterogeneity, lack of structure, error-handling, privacy,

timeliness, provenance, and visualization, at all stages of the

analysis pipeline from data acquisition to result

interpretation. These technical challenges are common

across a large variety of application domains, and therefore

not cost-effective to address in the context of one domain

alone. The paper describes Hadoop which is an open source

software used for processing of Big Data.

REFERENCES

[1] S. Vikram Phaneendra & E. Madhusudhan Reddy “Big

Data- solutions for RDBMS problems- A survey” In

12th IEEE/IFIP Network Operations & Management

Symposium (NOMS 2010) (Osaka, Japan, Apr 19{23

2013).

[2] Kiran kumara Reddi & Dnvsl Indira “Different

Technique to Transfer Big Data : survey” IEEE

Transactions on 52(8) (Aug.2013) 2348 { 2355}

[3] Jimmy Lin “MapReduce Is Good Enough?” The control

project. IEEE Computer 32 (2013).

[4] Umasri.M.L, Shyamalagowri.D ,Suresh Kumar.S

“Mining Big Data:- Current status and forecast to the

future” Volume 4, Issue 1, January 2014 ISSN: 2277

128X

[5] Albert Bifet “Mining Big Data In Real Time”

Informatica 37 (2013) 15–20 DEC 2012

[6] Bernice Purcell “The emergence of “big data”

technology and analytics” Journal of Technology

Research 2013.

[7] Sameer Agarwal†, Barzan MozafariX, Aurojit Panda†,

Henry Milner†, Samuel MaddenX, Ion Stoica “BlinkDB:

Queries with Bounded Errors and Bounded Response

Times on Very Large Data” Copyright © 2013ì ACM

978-1-4503-1994 2/13/04

[8] Yingyi Bu _ Bill Howe _ Magdalena Balazinska _ Michael

D. Ernst “The HaLoop Approach to Large-Scale

Iterative Data Analysis” VLDB 2010 paper “HaLoop:

Efficient Iterative Data Processing on Large Clusters.

[9] Shadi Ibrahim⋆ _ Hai Jin _ Lu Lu “Handling Partitioning

Skew in MapReduce using LEEN” ACM 51 (2008) 107–

113

[10] Kenn Slagter · Ching-Hsien Hsu “An improved

partitioning mechanism for optimizing massive data

analysis using MapReduce” Published online: 11 April

2013©Springer Science+Business Media New York

2013.

[11] Ahmed Eldawy, Mohamed F. Mokbel “A Demonstration

of SpatialHadoop:An Efficient MapReduce Framework

for Spatial Data” Proceedings of the VLDB Endowment,

Vol. 6, No. 12 Copyright 2013 VLDB Endowment

21508097/13/10.

[12] Jeffrey Dean and Sanjay Ghemawat “MapReduce:

Simplified Data Processing on Large Clusters” OSDI

2010

[13] Niketan Pansare1, Vinayak Borkar2, Chris Jermaine1,

Tyson Condie “Online Aggregation for Large

MapReduce Jobs” August 29September 3, 2011, Seattle,

WA Copyright 2011 VLDB Endowment, ACM

[14] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.

Hellerstein “Online Aggregation and Continuous Query

support in MapReduce” SIGMOD’10, June 6–11, 2010,

Indianapolis, Indiana, USA. Copyright 2010 ACM 978-1-

4503-0032-2/10/06.

[15] Jonathan Paul Olmsted “Scaling at Scale: Ideal Point

Estimation with ‘Big-Data” Princeton Institute for

Computational Science and Engineering 2014.

[16] Jonathan Stuart Ward and Adam Barker “Undefined By

Data: A Survey of Big Data Definitions” Stamford, CT:

Gartner, 2012.

[17] Balaji Palanisamy, Member, IEEE, Aameek Singh,

Member, IEEE Ling Liu, Senior Member, IEEE” Cost-

effective Resource Provisioning for MapReduce in a

Cloud”gartner report 2010, 25

