
# **Calix Assisted Palladium Nanocatalyst: A Review**

Keyur D. Bhatt, Krunal Modi

Department of Chemistry, Faculty of Science, Ganpat University, Kherva, Mehsana, Gujarat, India

# ABSTRACT

The article reviews recent advances in c-c cross coupling area as calix protected palladium nanocatalyst. The extensive use of palladium complex as catalyst in the calix chemistry is newly emerging field which deals with Suzuki, Heck, Stille and Sonogashira cross coupling reactions. The brief survey of cross-coupling reactions also includes yield, catalyst loading, Recyclability



KEYWORDS: Calix, Palladium, Nanoparticles, Nanocatalyst, Coupling reactions

# *How to cite this paper:* Keyur D. Bhatt | Krunal Modi "Calix Assisted Palladium Nanocatalyst: A Review" Published in

International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-4 | Issue-1, December 2019, pp.678-680, URL:



www.ijtsrd.com/papers/ijtsrd29654.pdf

Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed

under the terms of the Creative Commons Attribution License (CC



(http://creativecommons.org/licenses/by

#### **INRODUCTION**

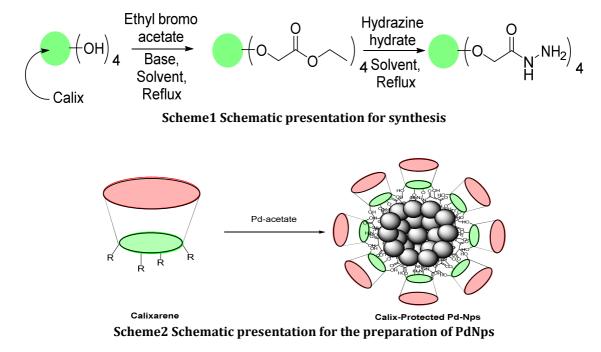
Palladium Chemistry gain considerably interest form 19's sanctuary. Professor Richard Heck is considered as a father of Palladium catalysed coupling chemistry. His first initiation, Pd-catalysed vinylic substitution reactions with aryl halides published in 1972.<sup>1, 2</sup> The award of the 2010 Nobel Prize in Chemistry applauded by chemists worldwide that is belonging for C-C cross coupling to Richard Heck , Ei-ichi Negishi<sup>3</sup> , and Akira Suzuki<sup>4</sup>.

After first and second generation of supramolecules, A third generation has been classified as calixarene which is cyclic tetramers synthesized using p-tert butyl phenol and formaldehyde.<sup>5</sup> The calixarenes has mainly into two (1) hetera-calixarenes, in which hetero atoms such as O, N and S replace the bridge methylene group termed as oxa-calixarene, aza-calixarene, thia-calixarene<sup>6</sup>; and (2) hetero-calixarenes, in which heterocyclic moieties such as resorcinol and pyrroles replace the phenolic unit termed as calix-resorcinol, calix-pyrrole<sup>7</sup>.

In the present review, the different platform of calixarene has been used for the preparation Pd-NPs as catalyst reservoirs for molecular palladium species in various carbon-carbon cross coupling reactions.

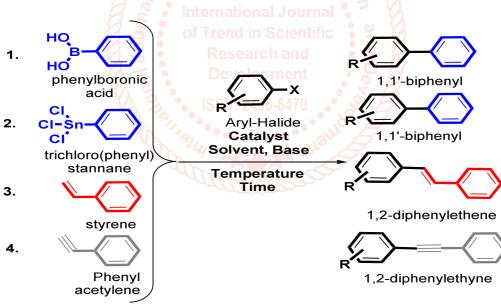
#### Why calixarene?

The calixarenes has been used for the preparations of metal nano-particles (MNPs) due to following properties. (1) Highly optimized upper rim and<sup>8</sup> (2) Vigorously Modified


Palladium Chemistry gain considerably interest form 19's Lower rim<sup>9</sup>. Calix has ability to stabilize and reduce metal sanctuary. Professor Richard Heck is considered as a father into nano form. In calixarene metal Nanoparticle chemistry, of Palladium catalysed coupling chemistry. His first the hydrazine hydrate plays a vital role for the formation of

metal Nanoparticles.<sup>10, 11</sup> The Nitrogen atom present on hydrazide functional group and oxygen atom on carbonyl group was the key inspiration for the functionalization. The hydrazine hydrate group improves the efficiency for of the preparation of nanoparticles. The presence of bridge group electrons and web-type calix system having hydrogen bonding through -NH group made it stabilize and reductive of Pd-NPs in water<sup>11</sup>.

# Synthesis of Palladium nanoparticles:


(4.0)

The synthesis calix-protected nanoparticles have been completed using two main steps. In the first step the synthesis of calixarene (Scheme 1) was initiated which followed by the preparation of palladium nanoparticles using palladium acetate at room temperature (Scheme 2). A calix solution in distilled water was prepared and added dropwise into the preheated solution of Palladium acetate in distilled water and heated the solution was vigorously stirred while heating for 5-7 hr. The formation of watersoluble PdNps and the complete reduction of PdAc in solution was confirmed by a gradual color change black from brown to brownish yellow, as well as by UV-visible spectroscopy, selected area electron diffraction (SAED) and transmission electron microscopy (TEM). International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470



# **C-C Cross coupling reaction:**

A Suzuki-Miyuara reaction<sup>11-14</sup> is the cross-coupling reaction of aryl halide with alkylboranes in the presence of base and catalyst (Scheme 3.1). A reaction between aryl halide and organo stannane reagent in the presence of Pd catalyst and base is termed as Stille cross coupling reaction<sup>11</sup> (Scheme 3.2). A Heck reaction<sup>11, 13-15</sup> is recognized as the reaction of an unsaturated halide with an alkene in the presence of base and Pd catalyst to form a substituted alkene (Scheme 3.3). Sonogashira Reaction<sup>13</sup> is recognized as the reaction of an unsaturated halide with an alkyne in the presence of base and Pd catalyst to form a substituted alkene (Scheme 3.4). The catalyst loading, base, solvent parameter has been taken as per following table 1.



| Sr. No | Pd-Nps | C-C-Cross Coupling Rea. | Catalyst (mmol) | Solvent: water | Base   |
|--------|--------|-------------------------|-----------------|----------------|--------|
| 1      | TMRTH  | Suzuki                  | 1.2             | 1,4-dioxane    | Na2CO3 |
|        | DHOC   | Suzuki                  |                 | DMF            | Na2CO3 |
| 2      |        | Sonogashira             | 0.007           | NMP            | Na2CO3 |
|        |        | Heck                    |                 | NMP            | Na2CO3 |
| 3      | CPTH   | Heck                    | 0.008           | NMP            | Na2CO3 |
| 4      | OXDH   | Suzuki                  | 0.009           | 1,4-dioxane    | Na2CO3 |
|        |        | Heck                    | 0.009           | NMP            | Na2CO3 |
| 5      | TPNH   | Suzuki                  |                 | 1,4-dioxane    | Na2CO3 |
|        |        | Heck                    | 0.009           | Methanol       | Na2CO3 |
|        |        | Stille                  |                 | 1,4-dioxane    | КОН    |

| Table1 | Parameter | for the C-C | cross co | upling rea | ctions |
|--------|-----------|-------------|----------|------------|--------|
|        |           |             |          |            |        |

## International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

### **Outline**:

The reported calix-protected PdNps was utilizing for the Suzuki, Stille, Heck and Sonogashira cross coupling reaction. The Calixprotected Nanoparticles are very efficient, high yield, less time consuming then fashioned catalyst and recyclable more than 5 cycles.

| Sr. No. | Type of NPs | TEM size  | Catalytic activity |       |
|---------|-------------|-----------|--------------------|-------|
| Sr. No  |             | I EM SIZE | Reaction           | Yield |
| 1       | TMRTH       | 5±2 nm    | Suzuki             | 93-97 |
|         | DHOC        | 5±2 nm    | Suzuki             | 89-92 |
| 2       |             |           | Sonogashira        | 83-90 |
|         |             |           | Heck               | 87-95 |
| 3       | СРТН        | 5±2 nm    | Heck               | 90-96 |
| 4       | OXDH        | 5±2 nm    | Suzuki             | 92-98 |
| 4       |             | 5±2 IIII  | Heck               | 93-97 |
|         | TPNH        | 4±2 nm    | Suzuki             | 93-97 |
| 5       |             |           | Heck               | 94-98 |
|         |             |           | Stille             | 94-96 |

# Table2 comparision of various PdNps

# Reference

[7]

[8]

- [1] R. F. Heck and J. P. Nolley, *The Journal of Organic* [9] J. Vicens and V. Böhmer, *Calixarenes: a versatile class of* Chemistry, 1972, 37, 2320-2322. Media, 2012. [2] B. C. Barnard, *Platinum Metals Review*, 2008, 52, 38-45. [10] [3] E.-i. Negishi, Angewandte Chemie International Edition, 2011, 50, 6738-6764. Chemistry, 2016, 374, 28. A. Suzuki, Angewandte Chemie International Edition, [4] [11] 2011, 50, 6722-6737.
  - A. Zinke, E. Ziegler, E. Martinowitz, H. Pichelmayer, M. [5] Tomio, H. Wittmann-Zinke and S. Zwanziger, Berichte der Deutschen Chemischen Gesellschaft [Abteilung] B: Abhandlungen, 1944, 264-272.

[6] H. Kumagai, M. Hasegawa, S. Miyanari, Y. Sugawa, Y.

Tetrahedron letters, 1997, 38, 3971-3972.

Inorganic Chemistry, 2000, 2000, 2303-2310.

Sato, T. Hori, S. Ueda, H. Kamiyama and S. Miyano,

B. König and M. H. Fonseca, European Journal of

- macrocyclic compounds, Springer Science & Business
  - A. R. Kongor, V. A. Mehta, K. M. Modi, M. K. Panchal, S. A. Dey, U. S. Panchal and V. K. Jain, Topics in Current
- K. Modi, C. Patel, U. Panchal, A. Liska, A. Kongor, L. Jiri and V. Jain, New Journal of Chemistry, 2019, 43, 5611-5622.
- [12] U. Panchal, K. Modi, M. Panchal, V. Mehta and V. K. Jain, Chinese Journal of Catalysis, 2016, 37, 250-257.
- [13] V. Mehta, M. Panchal, A. Kongor, U. Panchal and V. Jain, Catalysis Letters, 2016, 146, 1581-1590.
- 245[14] 7 M. Panchal, A. Kongor, V. Mehta, M. Vora, K. Bhatt and V. Jain, Journal of Saudi Chemical Society, 2018, 22, 558-568.
- [15] A. Kongor, M. Panchal, V. Mehta, K. Bhatt, D. Bhagat, D. C. Gutsche, Monographs in Supramolecular Chemistry, Tipre and V. K. Jain, Arabian journal of chemistry, 2017, The Royal Society of Chemistry, Cambridge, 1989, 1. 10, 1125-1135.