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ABSTRACT 
Path-based network diffusion kernel is its tenability, that it can consider 

different number of shortest paths in kernel computation. This resembles, 

vaguely, a Taylor-expansion of network topology to form a diffusion kernel 

with different orders of expansion. One can extend this key idea to design 

other network diffusion kernels to approximate other general diffusion 

models such as SIR the challenge of determining sources is compounded as the 

true propagation dynamics are typically unknown, and when they have been 

directly measured, they rarely conform to the assumptions of any of the well-

studied models. In this paper introduce a method called Network Infusion (NI) 

that has been designed to circumvent these issues, making source inference 

practical for large, complex real world networks. A stateless receiver-based 

multicast (RBMulticast) protocol that simply uses a list of the multicast 

members’ (e.g., sinks’) addresses, embedded in packet headers, to enable 

receivers to decide the best way to forward the multicast traffic. This protocol, 

called Receiver-Based Multicast, exploits the knowledge of the geographic 

locations of the nodes to remove the need for costly state maintenance. The 

key idea is that to infer the source node in the network, full characterization of 

diffusion dynamics, in many cases, may not be necessary. This objective is 

achieved by creating a diffusion kernel that well-approximates standard 

diffusion models such as the susceptible-infected diffusion model, but lends 

itself to inversion, by design, via likelihood maximization or error 

minimization. We apply NI for both single-source and multi-source diffusion, 

for both single-snapshot and multi-snapshot observations, and for both 

homogeneous and heterogeneous diffusion setups. We prove the mean-field 

optimality of NI for different scenarios, and demonstrate its effectiveness over 

several synthetic networks. Moreover, we apply NI to a real-data application, 

identifying news sources in the Digg social network, and demonstrate the 

effectiveness of NI compared to existing methods. 
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INTRODUCTION 

Information from a single node (entity) can reach other 

nodes (entities) by propagation over network connections. 

For instance, a viral infection (either computer or biological) 

can propagate to different nodes in a network and become 

an epidemic, while rumors can spread in a social network 

through social interactions. Even a financial failure of an 

institution can have cascading effects on other financial 

entities and may lead to a financial crisis. As a final example, 

in some human diseases, abnormal activities of few encoding 

genes for example, transcription factors, can cause their 

target genes and therefore some essential biological 

processes to fail to operate normally in the cell. In order to 

gain insight into these processes, mathematical models have 

been developed, primarily focusing on application to the 

study of virus propagation in networks.  

 

A well-established continuous-time diffusion model for viral 

epidemics is known as the susceptible-infected (SI) model, 

where infected nodes spread the virus to their neighbors 

probabilistically. For that diffusion model, explore the  

 

relationship between network structure, infection rate, and 

the size of epidemics, while considering learning SI model 

parameters. Other diffusion methods use random walks to 

model information spread and label propagation in 

networks. These references study the forward problem of 

signal diffusion. Source inference is the inverse problem. It 

aims to infer source nodes in a network by merely knowing 

the network structure and observing the information spread 

at single or multiple snapshots (Figure 1). Even within the 

context of the well-studied diffusion kernels, source 

inference is a difficult problem in great part owing to the 

presence of path multiplicity in the network.  

 

Network Infusion (NI) aims to identify source node(s) by 

reversing information propagation in the network. NI is 

based on a path-based network diffusion process that closely 

approximates the observed diffusion pattern, while leading 

to a tractable source inference method for large complex 

networks. The displayed network and infection pattern are 

parts of the Digg social news network. Recently, the inverse 
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problem of a diffusion process in a network under a discrete 

time memory less diffusion model, and when time steps are 

known, has been considered, while the problem of 

identifying seed nodes (effectors) of a partially activated 

network in the steady state of an Independent-Cascade 

model is investigated in. Moreover reference has considered 

the source inference problem using incomplete diffusion 

traces by maximizing the likelihood of the trace under the 

learned model. The problem setup and diffusion models 

considered in those works are different than the continuous-

time diffusion setup considered in the present paper. The 

work in uses the Minimum Description Length principle to 

identify source nodes using a heuristic cost function which 

combines the model cost and the data cost. Moreover, for the 

case of having a single source node in the network, some 

methods infer the source node based on distance centrality, 

or degree centrality measures of the infected sub graph. 

These methods can be efficiently applied to large networks, 

but, amongst other drawbacks, their performance lacks 

provable guarantees in general. For tree structures under a 

homogeneous SI diffusion model, computes a maximum 

likelihood solution for the source inference problem and 

provides provable guarantees for its performance. Over tree 

structures, their solution is equivalent to the distance 

centrality of the infected subgraph. The problem of inferring 

multiple sources in the network has an additional 

combinatorial complexity compared to the single-source 

case.  

 

Reference has considered this problem under an 

Independent Cascade (IC) model and introduced a 

polynomial time algorithm based on dynamic-programming 

for some special cases. Source inference in real-world 

networks is made more challenging as the true propagation 

dynamics are typically unknown, and when they have been 

directly measured, they rarely conform to the assumptions 

of well-studied canonical diffusion models such as SI, 

partially owing to heterogeneous information diffusion over 

network edges, latent sources of information, noisy network 

connections, non-memory less transport and so forth. As an 

example, we consider news spread over the Digg social news 

network for more than 3,500 news stories. We find that in 

approximately 65% of cases, nodes who have received the 

news at a time t, did not have any neighbors who had already 

received the news by that time violating the most basic 

conditional independence assumption of the SI model. 

Furthermore, the empirical distribution of remaining news 

propagation times over edges of the Digg social news 

network cannot be approximated closely by a single 

distribution of a homogenous SI diffusion model, even by 

fitting a general Weibull distribution to the observed data. 

 

Owing to high computational complexity of solving the 

source inference problem under the well-studied SI diffusion 

models and considering the fact that those kernels are 

unlikely to match precisely a real-world diffusion, our key 

idea to solve the inverse problem is to identify a diffusion 

process that closely approximates the observed diffusion 

pattern, but also leads to a tractable source inference 

method by design. Thus, we develop a diffusion kernel that is 

distinct from the standard SI diffusion models, but its order 

of diffusion well approximates many of them in various 

setups. We shall show that this kernel leads to an efficient 

source inference method that can be computed efficiently for 

large complex networks and shall provide theoretical 

performance guarantees under general conditions. The key 

original observation, from both a theoretical and practical 

perspective, is that in order to solve the inverse problem one 

does not need to know the full dynamics of the diffusion, 

instead to solve the inversion one can do so from statistics 

that are consistent across many diffusion models. 

  

LITERATURE SURVEY 

1. Statistical Inference of Computer Virus Propagation 

Using Non-Homogeneous Poisson Processes by H. 

Okamura, K. Tateishi, and T. Dohi, 
This paper presents measurable surmising of PC infection 

spread utilizing non-homogeneous Poisson forms (NHPPs). 

Under some numerical suppositions, the quantity of tainted 

hosts can be displayed by a NHPP. Specifically, this paper 

applies a structure of blended sort NHPPs to the measurable 

deduction of intermittent infection spread. The blended sort 

NHPP is characterized by a superposition of NHPPs. In 

numerical analyses, we look at a decency of-fit measure of 

NHPPs on fitting to genuine infection disease information, 

and talk about the adequacy of the model-based expectation 

approach for PC infection spread. we have built up the 

factual models to portray the PC infection proliferation 

dependent on NHPPs. Specifically, when we apply the 

calculated and extraordinary esteem appropriations to the 

disease time dissemination, the subsequent mean conduct of 

NHPP models are actually the same as the outstanding 

strategic and Gompertz bends. Along these lines the 

structure of NHPP models basically contains the traditional 

relapse investigation. Additionally, we have presented the 

blended kind NHPP models to speak to the proliferation of 

PC infection. Since the blended kind NHPP models can 

express occasional disease wonder, it is better than the 

typical non-blended NHPPs with unimodal contamination 

time conveyance, as far as decency of-fit. For the factual 

examination, we have proposed the EM calculation with the 

goal that we could undoubtedly gauge show parameters for 

infection disease information. In numerical analyses, we 

have performed KS trial of the NHPP models for 116 sorts of 

infection information. Thus, all infection disease would be 

demonstrated by NHPPs. Additionally, we analyzed the 

expectation capacities for the proposed blended sort NHPP 

models, contrasted with the ordinary relapse models with 

the strategic and Gompertz bends. And we have explored 

that the blended sort NHPP models were fit for fitting to any 

sort of disease information in numerical examinations, the 

forecast capacity is inadequate to assess the future infection 

contamination notwithstanding when we utilize the blended 

kind NHPP. 

 

2. Spotting Culprits in Epidemics: How many and 
Which ones? by B. A. Prakash, J. Vreeken, and C. 

Faloutsos, 

Given a depiction of a substantial chart, in which a 

contamination has been spreading for quite a while, would 

we be able to recognize those hubs from which the disease 

begun to spread? At the ending of the day, can we 

dependably tell who the offenders are? Here, we answer this 

inquiry certifiably, and give a proficient technique called 

NETSLEUTH for the outstanding Susceptible-Infected 

infection proliferation display. Basically, we are after that 

arrangement of seed hubs that best clarify the given 

depiction. We propose to utilize the least Description Length 

guideline to distinguish the best arrangement of seed hubs 

and infection engendering swell, as the one by which we can 
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most compactly portray the contaminated diagram. We give 

an exceptionally productive calculation to distinguish likely 

arrangements of seed hubs given a preview. At that point, 

given these seed hubs, we demonstrate we can streamline 

the infection spread swell principledly by augmenting 

probability. With every one of the three consolidated, 

NETSLEUTH can consequently recognize the right number of 

seed hubs, and additionally which hubs are the guilty parties. 

Experimentation on our strategy demonstrates high 

exactness in the discovery of seed hubs, notwithstanding the 

right programmed recognizable proof of their number. In 

addition, we indicate NETSLEUTH scales straightly in the 

quantity of hubs of the chart. we examined discovering guilty 

parties, the testing issue of distinguishing the hubs from 

which a contamination in a diagram began to spread. We 

proposed to utilize the Minimum Description Length 

standard for distinguishing that arrangement of seed hubs 

from which the given depiction can be portrayed generally 

concisely. We presented NETSLEUTH (in view of a novel 

'submatrix-laplacian' strategy), a very proficient calculation 

for both distinguishing the arrangement of seed hubs that 

best portrays the given circumstance, and consequently 

choosing the best number of seed hubs—rather than the best 

in class.  

 

3. The Effect of Network Topology on the Spread of 

Epidemics by A. Ganesh, L. Massouli´e, and D. 

Towsley 
Numerous framework ponders are all around shown as 

spreads of pandemics through a framework. Perceptible 

points of reference consolidate the spread of worms and 

email diseases, and, even more all things considered, 

weaknesses. Various sorts of information dispersal can 

similarly be shown as spreads of pandemics. In this paper we 

address the subject of what makes a pandemic either slight 

or serious, More precisely, we perceive topological 

properties of the chart that choose the creativity of 

sicknesses. In particular, we exhibit that if the extent of fix to 

pollution rates is greater than the unearthly scope of the 

graph, by then the mean pandemic lifetime is of demand 

Iogn, where 7) is the amount of centers. Then again, if this 

extent is tinier than a theory of the isoperimetric predictable 

of the graph, by then the mean pandemic lifetime is of 

demand, for a positive relentless a. We apply these results to 

a couple of framework topologies including the hypercube, 

which is an agent accessibility graph for a spread hash table, 

the whole outline, which h a basic system graph for BGP, and 

the power law graph, of which the AS-level Inkmet diagram 

is a prime model. 

 

We likewise ponder the star topology and the Erd6s-Rhyi 

chart as their plague spreading practices decide the 

spreading conduct of intensity law diagrams. We have 

displayed a primer examination of how topology influences 

the spread of a pestilence, roused by systems administration 

wonders, for example, worms and infections, falling 

disappointments, and dispersal of data. We have created 

adequate conditions under which pestilences either cease to 

exist rapidly (logarithmically in the span of the system) or 

gradually (exponentially in the measure of the system). 

 

4. Explosive Percolation in Random Networks by D. 

Achlioptas, R. M. D’Souza, and J. Spencer 

Systems in which the development of associations is 

represented by an arbitrary procedure regularly experience 

a permeation change, wherein around a basic point, the 

expansion of few associations makes a sizable portion of the 

system all of a sudden wind up connected together. 

Ordinarily such advances are nonstop, with the goal that the 

level of the system connected together will in general zero 

appropriate over the progress point. Regardless of whether 

permeation advances could be spasmodic has been an open 

inquiry. Here, we demonstrate that fusing a restricted 

measure of decision in the great Erdös-Rényi arrange 

development show causes its permeation change to end up 

spasmodic. Other than water transforming into ice or steam, 

other prototypical stage advances are the unconstrained 

development of charge and superconductivity in metals, the 

pestilence spread of malady, and the sensational change in 

availability of systems and cross sections known as 

permeation. Maybe the most key normal for a stage progress 

is its request, i.e., regardless of whether the plainly visible 

amount it influences changes persistently or spasmodically 

at the change. Persistent (smooth) changes are called 

second-arrange and incorporate numerous charge marvels, 

while spasmodic (unexpected) advances are called first-

arrange, a commonplace model being the intermittent drop 

in entropy when fluid water transforms into strong ice at 

0°C.  

 

5. A tutorial introduction to Bayesian inference for 

stochastic epidemic models using Markov chain 

Monte Carlo methods by P. D. ONeill, 
Later Bayesian techniques for the investigation of irresistible 

ailment flare-up information utilizing stochastic plague 

models are surveyed. These strategies depend on Markov 

chain Monte Carlo techniques. Both fleeting and 

nontemporal information are considered. The strategies are 

outlined with various precedents highlighting diverse 

models and datasets. Contingent upon the application being 

referred to, models may join dormant periods, variable 

infectivity, diminished defenselessness following 

recuperation, and so forth. Also, parts of populace 

heterogeneity, for example, age structure, shifting 

helplessness, differential blending rates between gatherings 

of people, and so forth can be incorporated as suitable. 

Similarly as with any factual displaying, there is a harmony 

between models that are excessively convoluted for the 

information, making it impossible to completely illuminate, 

and those which are excessively shortsighted, making it 

impossible to be viewed truly as a reason for producing 

helpful induction. By and by it isn't constantly clear to 

accomplish this parity by means of a formal method; issues 

of model sufficiency and integrity of-fit are not particularly 

all around created in the writing. Circumstances in which the 

information basically comprise of rehashed free perceptions. 

 

6. Mixing patterns in networks by M. E. Newman 

We contemplate assortative blending in systems, the 

propensity for vertices in systems to be associated with 

different vertices that resemble ~or not at all like! them here 

and there. We consider blending as per discrete qualities, for 

example, dialect or race in informal organizations and scalar 

attributes, for example, age. As an uncommon case of the last 

we consider blending as per vertex degree, i.e., as per the 

quantity of associations vertices need to different vertices: 

do gregarious individuals will in general connect with 

different gregarious individuals? We propose various 

proportions of assortative blending suitable to the different 

blending types, and apply them to an assortment of 
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certifiable systems, demonstrating that assortative blending 

is an unavoidable wonder found in numerous systems. We 

additionally propose a few models of assortatively blended 

systems, both explanatory ones dependent on producing 

capacity strategies, and numerical ones dependent on Monte 

Carlo diagram age techniques. We utilize these models to 

test the properties of systems as their dimension of 

assortativity is shifted. In the specific instance of blending by 

degree, we find solid variety with assortativity in the 

availability of the system and in the flexibility of the system 

to the evacuation of vertices. Assortative blending can 

profoundly affect the basic properties of a system. For 

instance, assortative blending of a system by a discrete 

trademark will in general split the system up into 

independent networks. In the event that individuals want to 

be companions with other people who talk their very own 

dialect, for instance, at that point one may expect nations 

with in excess of one dialect to isolate into networks by 

dialect. Assortative blending by age could cause stratification 

of social orders along age lines. 
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