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ABSTRACT 

The Internet of Things (IoT) infuses our everyday life, e.g., in the area of health 

monitoring, wearables, industry, and home automation. It comprises devices 

that provide only limited resources, operate in stimulating network 

conditions, and are often battery-powered. To embed these devices into the 

Internet, they are intended to operate standard events. Yet, these procedures 

occupy the majority of limited program memory resources. Thus, devices can 

neither add application logic nor apply safety updates or adopt optimizations 

for efficiency. This problem will further exacerbate in the future as the further 

ongoing infusion of smart devices in our environment demands for more and 

more functionality. To overcome limited functionality due to resource 

limitations, we show that not all functionality is required in parallel, and thus 

can be SPLIT in a feasible manner. This enables on-demand loading of 

functionality outsourced as (multiple) modules to the significantly lesser 

controlled flash storage of devices. 
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1. INTRODUCTION 

The ongoing permeation of smart devices in our 

environment, e.g., health monitoring, wearables, industry or 

home automation [1], provides the basis for the Internet of 

Things (IoT). As more and more users experience the 

benefits in these areas, the rations regarding functionality 

provided by IoT devices also increase. Further demands for 

functionality emerge from the use of standard 

communication protocols to connect to the existing Internet 

infrastructure. However, IoT devices are challenged by 

resource constraints especially facing limited processing 

power and tough memory boundaries, sparse energy 

provided by batteries, and lossy low-power wireless 

communication environments [3, 10]. These constraints lead 

to new, trimmed stacks with adapted protocols, e.g., 

6LoWPAN [14]. Still, these protocols lodge the majority of 

memory resources, limiting competences for actual 

applications and further protocols. Contrarily, we identify 

that functionality of many applications and protocols is 

separable into different phases, e.g., reading and processing 

a sensor value or connection setup and exchange of data. 

 

2. MEMORY CONSTRAINTS LIMIT FUNCTIONALITY 

We first analyze required functionality in typical IoT 

environments to highlight today’s problem of limited 

functionality on memory-constrained devices: Typical tasks 

in the IoT involve communication with multiple entities 

locally or via the Internet. Humans may recover sensor  

 

 

interpretations or trigger actions [20]. Additionally, data is 

obtained from Internet services to make informed choices.  
 

 
 

Finally, gathered data can be transmitted to the cloud for 

further processing [7]. Thereby, security and privacy of 

sensitive data, especially when sent over the Internet, must 

be maintained [1,7,10]. To realize this IoT vision, devices 

must cover a wide range of functionality from secure 

communication protocols to processing logic for sensor data, 

and interaction with the environment.  
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STACKS:  

 
 

A key enabler for the IoT is the use of standardized protocols 

to allow a global interconnection over the Internet. Due to 

resource constraints [3], adaptations were proposed by 

academia and standardization organizations. To achieve IP 

end-to-end connectivity, 6LoWPAN [14] defines an 

adaptation layer to realize IPv6 over lowpower wireless 

links. Typical deployments utilize leaner, less feature rich 

transport protocols, e.g., UDP, as TCP is rather heavyweight, 

e.g., due to accounting and retransmissions [1]. To further 

connect constrained and traditional networks, protocols like 

CoAP [18] simplify the mapping to HTTP. 

 

3. ADAPTIVITY, UPDATES AND RECONFIGURATION:  

A major challenge in the IoT is to enable adaptivity after 

deployment. This includes reconfiguration or complete 

exchanges of functionality, which was not provided in 

parallel due to constraints. This is similar to approaches in 

less-constrained computing environments with feature-rich 

OSs, that enable loading of Dynamic Libraries to add 

functionality after the program start or add Kernel modules 

without rebooting. A method to apply these features to the 

IoT is proposed in [5] for Contiki [6]. Building upon this, 

REMOWARE [19] and GITAR [17] optimize the module 

handling, in terms of memory or easier module exchange. 

Despite the ability to dynamically update and reconfigure 

code, these approaches focus on support for updates rather 

than reducing the overall memory requirements. In the next 

section, we discuss how these systems influence our 

approach. 

 

4. ON-DEMAND LOADING OF FUNCTIONALITY  

As illustrated in Sec. 2, realizing an IoT stack and adding 

necessary application code can easily exceed the available 

memory of many constrained IoT devices, limiting the 

overall functionality that can be realized. We thus propose 

Smart Protocol Loading for the IoT (SPLIT), to enable on-

demand loading of functionality. By that, we target to enable 

resource constrained devices to use a variety of 

functionality, without the need to consider ROM limitations. 

To achieve this, we propose to realize base functionality 

within the ROM itself, but outsource further functionality 

split into (multiple) modules to the less constrained flash 

storage of devices. In the following, we motivate the 

applicability of this approach. Many use-cases, e.g., industry 

or home automation require IoT devices to communicate 

sensitive data over the Internet. Such communication needs 

to be secured, preferably utilizing standardized protocols 

like DTLS. However, after the handshake of a security 

protocol, which contributes the major part of the memory 

requirements, this functionality is not required for following 

data transmissions. Similarly, protocols above the transport 

layer1 are not required for sensor readout or application 

processing. The key observation is that we can split 

functionality into smaller modules that do not need to be 

present in memory in parallel, due to the general workflow. 

At the same time, IoT devices possess a comparably large 

flash storage, i.e., MB vs. KB, which is typically only 

marginally occupied by sensed data or device specific 

configuration. This provides a natural location to store 

currently not required modules, enabling us to increase the 

usable code base, i.e., functionality, only limited by the size of 

the flash storage,  

 

4.1. SPLITTING PROTOCOLS INTO MODULES  

In the following, we show the modularization of DTLS as a 

representative security protocol. Especially security 

protocols require manifold functionality ranging from large 

state machines to handle various packet types during 

connection setup over symmetric to public key cryptography 

[10, 11, 13, 15, 16]. Furthermore, mechanisms that tailor 

these protocols to efficiently operate despite limited 

processing power and lossy, low-power wireless networks in 

the IoT, trade computation speedups against increased 

memory requirements [8, 10]. Fig. 3 shows the DTLS 

handshake and subsequent application data exchange. The 

handshake consists of several packets divided into Flights. 

Flights 1-2 implement a returnroutability test to detect 

spoofed IP addresses. processing and another for creating 

and sending of the message 
 

 
 

5. IMPLEMENTATIONAND EVALUATION OF SPLIT 

Next, we describe our prototypical implementation of 

SPLIT’s architecture and analyze its applicability on 

constrained devices. Moreover, we illustrate how we 

prepared the protocols for SPLIT. Subsequently, we evaluate 

the runtime overhead in comparison to a default DTLS 

implementation.  

 

5.1. IMPLEMENTATION & PROTOCOL SPLITTING  

SPLIT Prototype: Our prototypical implementation of SPLIT 

is based on Contiki 2.7 [6]. We adapt and extend the Default 

Loader [5] with respect to our design in Sec. 4. Following our 

scenario, we choose Contiki with integrated IPv6 support 

over IEEE 802.15.4 links, i.e., 6LoWPAN, as our base OS. As 

modules are stored on the flash storage, we also include a 

file system. Modules use the Executable and Linkable Format 

(ELF), also used by the Default Loader. As target platform, 

we select the MSP430X-based Wismote which provides 16 

KB of RAM and a minimum of 128 KB ROM (up to 256 KB). 

Although we target to improve the protocol handling of 

constrained devices that may expose less than the 
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aforementioned ROM sizes [3], the remaining headroom 

alleviates the implementation, debugging and evaluation 

process. To trigger the Loader to execute a protocol or 

application, the developer calls a defined entry point, e.g., 

instructs the Loader to start a handshake or measurement. 

As a first step, the Loader locates the respective initial 

module on the file system, parses respective header 

information, e.g., offsets for symbols or string tables, and 

copies the binary code to the preallocated memory 
 

5.2. PERFORMANCE  

SPLIT BASE TIME OVERHEAD: 

 Next, we evaluate SPLIT’s processing time overhead based 

on the extracted tinyDTLS modules. To evaluate our 

prototype in a reproducible manner, we utilize the Contiki 

Cooja simulator. We program a client based on our SPLIT-

firmware, populate the modules on the storage of the 

simulated device, subsequently load the modules, and 

measure the time for several steps during the loading 

process. Fig. 4(a) depicts these times for our 20 tinyDTLS 

modules. For better visibility, we sort them by their runtime 

and not in their order within the handshake process. The 

first step consists of copying the relevant data from flash into 

RAM and parsing ELF headers, that contain information 

about symbols that have to be linked or read-only data that 

has to be copied. If not stated otherwise, the numbers 

provided in the following are the average and the standard 

deviation. This first step takes 10.64 ms ± 0.003 ms for the 

ELF files that have a size between 0.65 KB to 3.84 KB. 

SUBSEQUENTLY, the Loader links symbols, i.e., globally 

against the firmware and locally inside the module, which 

takes 0.8 ms ± 2.15 ms per global and 7.52 ms ± 6.57 ms per 

local symbol. The current prototype performs a rather naive 

approach, retrieving each global symbol individually from 
 

6. DEPLOYMENT CONSIDERATIONS  

Although SPLIT allows to increase the available functionality, 

this comes at the price of induced overhead, with respect to 

time and energy. In the following, we discuss aspects that 

have to be considered and propose mitigation strategies.  
 

ENERGY OVERHEAD:  

To assess the energy overhead, we evaluated a toy example 

on a real Zolertia Z1. We measured execution time and 

power consumption for module loading utilizing a 

measurement platform2 . Although tasks like wireless 

communication consume much more energy, excessively 

accessing the flash can add noticeable consumption and 

reduce battery lifetime. Thus, depending on the use case, a 

careful execution plan can limit this effect, e.g., a DTLS 

security association may stay active for a certain amount of 

connections, instead of requiring a handshake over and over 

again. We argue that this trade-off is acceptable to realize a 

flexible, extensible, and thus sustainable DEPLOYMENT.  
 

ADAPTING TO AVAILABLE RESOURCES:  

For a modularized protocol, each loading of a module adds 

overhead. Based on the available memory, the size of 

modules can be increased by adding functionality to save 

loading steps. Exemplary, the last message of a DTLS flight 

triggers the first transmission of the following flight (cf. Fig. 

3). Thus, combining corresponding functionality saves one 

loading step. While this increases performance at the cost of 

higher memory usage, we can also pursue the opposite 

direction: Decreasing the size yields more loading steps, but 

decreases memory usage.  

REDUCING LATENCY: 

For communication protocols, on demand loading of 

modules upon packet reception increases latency. However, 

protocol determinism allows us to load modules in advance, 

e.g., while waiting for reception of an initial message or 

response, the respective modules can already be loaded. 

Devices that act as a server may receive an initial message 

from a remote peer at any time. To have modules available 

upon reception, they could preload modules for 

corresponding processing. Similarly, protocol determinism 

allows determining which type of message is expected next.  

 

MITIGATING DOS THREATS:  

Using SPLIT requires precaution to not make devices prone 

to DoS attacks. By alternating packet types, an attacker can 

force a device to load and unload modules. However, SPLIT 

only accounts for the on-demand loading overhead, i.e., 

forcing a device to process a packet is not specific to SPLIT. 

Thus, heavyweight protocols typically implement DoS 

protection (cf. Sec. 4.1). As such mechanisms are lightweight 

to not introduce new DoS potential, keeping them in memory 

is reasonable, and requires an attacker to pass them to 

trigger operations of split. 

 

7. CONCLUSION  

In this paper, we enable IoT devices to support a broad set of 

functionality. To this end, we present SPLIT which enables 

on-demand loading of functionality outsourced as (multiple) 

modules to the significantly lesser constrained flash storage 

of devices. We explicitly target applications and protocols 

above the transport layer and adapted an implementation of 

the commonly used security protocol DTLS to support SPLIT, 

whereas the concept of SPLIT is not limited to this. Our 

worst-case evaluation, e.g., only one active module at a time, 

shows the principle applicability of SPLIT on resource 

constrained devices. With SPLIT, we complement existing 

mechanisms that enable devices to cope with limited 

processing and energy resources, as well as low power 

wireless communication. 
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