
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 3 Issue 6, October 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD29354 | Volume – 3 | Issue – 6 | September - October 2019 Page 1221

Smart Protocol Loading for the IoT

J. Gokul1, S. Venkateshkumar2

1MCA Student, 2Assistant Professor,
1,2Department of Computer Applications (PG),

1,2Dr. SNS Rajalakshmi College of Arts and Science, Coimbatore, Tamil Nadu, India

ABSTRACT

The Internet of Things (IoT) infuses our everyday life, e.g., in the area of health

monitoring, wearables, industry, and home automation. It comprises devices

that provide only limited resources, operate in stimulating network

conditions, and are often battery-powered. To embed these devices into the

Internet, they are intended to operate standard events. Yet, these procedures

occupy the majority of limited program memory resources. Thus, devices can

neither add application logic nor apply safety updates or adopt optimizations

for efficiency. This problem will further exacerbate in the future as the further

ongoing infusion of smart devices in our environment demands for more and

more functionality. To overcome limited functionality due to resource

limitations, we show that not all functionality is required in parallel, and thus

can be SPLIT in a feasible manner. This enables on-demand loading of

functionality outsourced as (multiple) modules to the significantly lesser

controlled flash storage of devices.

KEYWORDS: Internet of Things, Networking, Protocols, Modularization, On-

demand Loading, Sustainability

How to cite this paper: J. Gokul | S.

Venkateshkumar "Smart Protocol Loading

for the IoT"

Published in

International Journal

of Trend in Scientific

Research and

Development (ijtsrd),

ISSN: 2456-6470,

Volume-3 | Issue-6,

October 2019, pp.1221-1223, URL:

https://www.ijtsrd.com/papers/ijtsrd29

354.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in Scientific

Research and Development Journal. This

is an Open Access article distributed

under the terms of

the Creative

Commons Attribution

License (CC BY 4.0)

(http://creativecommons.org/licenses/by

/4.0)

1. INTRODUCTION

The ongoing permeation of smart devices in our

environment, e.g., health monitoring, wearables, industry or

home automation [1], provides the basis for the Internet of

Things (IoT). As more and more users experience the

benefits in these areas, the rations regarding functionality

provided by IoT devices also increase. Further demands for

functionality emerge from the use of standard

communication protocols to connect to the existing Internet

infrastructure. However, IoT devices are challenged by

resource constraints especially facing limited processing

power and tough memory boundaries, sparse energy

provided by batteries, and lossy low-power wireless

communication environments [3, 10]. These constraints lead

to new, trimmed stacks with adapted protocols, e.g.,

6LoWPAN [14]. Still, these protocols lodge the majority of

memory resources, limiting competences for actual

applications and further protocols. Contrarily, we identify

that functionality of many applications and protocols is

separable into different phases, e.g., reading and processing

a sensor value or connection setup and exchange of data.

2. MEMORY CONSTRAINTS LIMIT FUNCTIONALITY

We first analyze required functionality in typical IoT

environments to highlight today’s problem of limited

functionality on memory-constrained devices: Typical tasks

in the IoT involve communication with multiple entities

locally or via the Internet. Humans may recover sensor

interpretations or trigger actions [20]. Additionally, data is

obtained from Internet services to make informed choices.

Finally, gathered data can be transmitted to the cloud for

further processing [7]. Thereby, security and privacy of

sensitive data, especially when sent over the Internet, must

be maintained [1,7,10]. To realize this IoT vision, devices

must cover a wide range of functionality from secure

communication protocols to processing logic for sensor data,

and interaction with the environment.

IJTSRD29354

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD29354 | Volume – 3 | Issue – 6 | September - October 2019 Page 1222

STACKS:

A key enabler for the IoT is the use of standardized protocols

to allow a global interconnection over the Internet. Due to

resource constraints [3], adaptations were proposed by

academia and standardization organizations. To achieve IP

end-to-end connectivity, 6LoWPAN [14] defines an

adaptation layer to realize IPv6 over lowpower wireless

links. Typical deployments utilize leaner, less feature rich

transport protocols, e.g., UDP, as TCP is rather heavyweight,

e.g., due to accounting and retransmissions [1]. To further

connect constrained and traditional networks, protocols like

CoAP [18] simplify the mapping to HTTP.

3. ADAPTIVITY, UPDATES AND RECONFIGURATION:

A major challenge in the IoT is to enable adaptivity after

deployment. This includes reconfiguration or complete

exchanges of functionality, which was not provided in

parallel due to constraints. This is similar to approaches in

less-constrained computing environments with feature-rich

OSs, that enable loading of Dynamic Libraries to add

functionality after the program start or add Kernel modules

without rebooting. A method to apply these features to the

IoT is proposed in [5] for Contiki [6]. Building upon this,

REMOWARE [19] and GITAR [17] optimize the module

handling, in terms of memory or easier module exchange.

Despite the ability to dynamically update and reconfigure

code, these approaches focus on support for updates rather

than reducing the overall memory requirements. In the next

section, we discuss how these systems influence our

approach.

4. ON-DEMAND LOADING OF FUNCTIONALITY

As illustrated in Sec. 2, realizing an IoT stack and adding

necessary application code can easily exceed the available

memory of many constrained IoT devices, limiting the

overall functionality that can be realized. We thus propose

Smart Protocol Loading for the IoT (SPLIT), to enable on-

demand loading of functionality. By that, we target to enable

resource constrained devices to use a variety of

functionality, without the need to consider ROM limitations.

To achieve this, we propose to realize base functionality

within the ROM itself, but outsource further functionality

split into (multiple) modules to the less constrained flash

storage of devices. In the following, we motivate the

applicability of this approach. Many use-cases, e.g., industry

or home automation require IoT devices to communicate

sensitive data over the Internet. Such communication needs

to be secured, preferably utilizing standardized protocols

like DTLS. However, after the handshake of a security

protocol, which contributes the major part of the memory

requirements, this functionality is not required for following

data transmissions. Similarly, protocols above the transport

layer1 are not required for sensor readout or application

processing. The key observation is that we can split

functionality into smaller modules that do not need to be

present in memory in parallel, due to the general workflow.

At the same time, IoT devices possess a comparably large

flash storage, i.e., MB vs. KB, which is typically only

marginally occupied by sensed data or device specific

configuration. This provides a natural location to store

currently not required modules, enabling us to increase the

usable code base, i.e., functionality, only limited by the size of

the flash storage,

4.1. SPLITTING PROTOCOLS INTO MODULES

In the following, we show the modularization of DTLS as a

representative security protocol. Especially security

protocols require manifold functionality ranging from large

state machines to handle various packet types during

connection setup over symmetric to public key cryptography

[10, 11, 13, 15, 16]. Furthermore, mechanisms that tailor

these protocols to efficiently operate despite limited

processing power and lossy, low-power wireless networks in

the IoT, trade computation speedups against increased

memory requirements [8, 10]. Fig. 3 shows the DTLS

handshake and subsequent application data exchange. The

handshake consists of several packets divided into Flights.

Flights 1-2 implement a returnroutability test to detect

spoofed IP addresses. processing and another for creating

and sending of the message

5. IMPLEMENTATIONAND EVALUATION OF SPLIT

Next, we describe our prototypical implementation of

SPLIT’s architecture and analyze its applicability on

constrained devices. Moreover, we illustrate how we

prepared the protocols for SPLIT. Subsequently, we evaluate

the runtime overhead in comparison to a default DTLS

implementation.

5.1. IMPLEMENTATION & PROTOCOL SPLITTING

SPLIT Prototype: Our prototypical implementation of SPLIT

is based on Contiki 2.7 [6]. We adapt and extend the Default

Loader [5] with respect to our design in Sec. 4. Following our

scenario, we choose Contiki with integrated IPv6 support

over IEEE 802.15.4 links, i.e., 6LoWPAN, as our base OS. As

modules are stored on the flash storage, we also include a

file system. Modules use the Executable and Linkable Format

(ELF), also used by the Default Loader. As target platform,

we select the MSP430X-based Wismote which provides 16

KB of RAM and a minimum of 128 KB ROM (up to 256 KB).

Although we target to improve the protocol handling of

constrained devices that may expose less than the

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD29354 | Volume – 3 | Issue – 6 | September - October 2019 Page 1223

aforementioned ROM sizes [3], the remaining headroom

alleviates the implementation, debugging and evaluation

process. To trigger the Loader to execute a protocol or

application, the developer calls a defined entry point, e.g.,

instructs the Loader to start a handshake or measurement.

As a first step, the Loader locates the respective initial

module on the file system, parses respective header

information, e.g., offsets for symbols or string tables, and

copies the binary code to the preallocated memory

5.2. PERFORMANCE

SPLIT BASE TIME OVERHEAD:

 Next, we evaluate SPLIT’s processing time overhead based

on the extracted tinyDTLS modules. To evaluate our

prototype in a reproducible manner, we utilize the Contiki

Cooja simulator. We program a client based on our SPLIT-

firmware, populate the modules on the storage of the

simulated device, subsequently load the modules, and

measure the time for several steps during the loading

process. Fig. 4(a) depicts these times for our 20 tinyDTLS

modules. For better visibility, we sort them by their runtime

and not in their order within the handshake process. The

first step consists of copying the relevant data from flash into

RAM and parsing ELF headers, that contain information

about symbols that have to be linked or read-only data that

has to be copied. If not stated otherwise, the numbers

provided in the following are the average and the standard

deviation. This first step takes 10.64 ms ± 0.003 ms for the

ELF files that have a size between 0.65 KB to 3.84 KB.

SUBSEQUENTLY, the Loader links symbols, i.e., globally

against the firmware and locally inside the module, which

takes 0.8 ms ± 2.15 ms per global and 7.52 ms ± 6.57 ms per

local symbol. The current prototype performs a rather naive

approach, retrieving each global symbol individually from

6. DEPLOYMENT CONSIDERATIONS

Although SPLIT allows to increase the available functionality,

this comes at the price of induced overhead, with respect to

time and energy. In the following, we discuss aspects that

have to be considered and propose mitigation strategies.

ENERGY OVERHEAD:

To assess the energy overhead, we evaluated a toy example

on a real Zolertia Z1. We measured execution time and

power consumption for module loading utilizing a

measurement platform2 . Although tasks like wireless

communication consume much more energy, excessively

accessing the flash can add noticeable consumption and

reduce battery lifetime. Thus, depending on the use case, a

careful execution plan can limit this effect, e.g., a DTLS

security association may stay active for a certain amount of

connections, instead of requiring a handshake over and over

again. We argue that this trade-off is acceptable to realize a

flexible, extensible, and thus sustainable DEPLOYMENT.

ADAPTING TO AVAILABLE RESOURCES:

For a modularized protocol, each loading of a module adds

overhead. Based on the available memory, the size of

modules can be increased by adding functionality to save

loading steps. Exemplary, the last message of a DTLS flight

triggers the first transmission of the following flight (cf. Fig.

3). Thus, combining corresponding functionality saves one

loading step. While this increases performance at the cost of

higher memory usage, we can also pursue the opposite

direction: Decreasing the size yields more loading steps, but

decreases memory usage.

REDUCING LATENCY:

For communication protocols, on demand loading of

modules upon packet reception increases latency. However,

protocol determinism allows us to load modules in advance,

e.g., while waiting for reception of an initial message or

response, the respective modules can already be loaded.

Devices that act as a server may receive an initial message

from a remote peer at any time. To have modules available

upon reception, they could preload modules for

corresponding processing. Similarly, protocol determinism

allows determining which type of message is expected next.

MITIGATING DOS THREATS:

Using SPLIT requires precaution to not make devices prone

to DoS attacks. By alternating packet types, an attacker can

force a device to load and unload modules. However, SPLIT

only accounts for the on-demand loading overhead, i.e.,

forcing a device to process a packet is not specific to SPLIT.

Thus, heavyweight protocols typically implement DoS

protection (cf. Sec. 4.1). As such mechanisms are lightweight

to not introduce new DoS potential, keeping them in memory

is reasonable, and requires an attacker to pass them to

trigger operations of split.

7. CONCLUSION

In this paper, we enable IoT devices to support a broad set of

functionality. To this end, we present SPLIT which enables

on-demand loading of functionality outsourced as (multiple)

modules to the significantly lesser constrained flash storage

of devices. We explicitly target applications and protocols

above the transport layer and adapted an implementation of

the commonly used security protocol DTLS to support SPLIT,

whereas the concept of SPLIT is not limited to this. Our

worst-case evaluation, e.g., only one active module at a time,

shows the principle applicability of SPLIT on resource

constrained devices. With SPLIT, we complement existing

mechanisms that enable devices to cope with limited

processing and energy resources, as well as low power

wireless communication.

8. REFERENCES

[1] L. Atzori et al. The Internet of Things: A survey.

Computer Networks, 54(15), 2015.

[2] E. Barker et al. NIST Special Publication 800-57

Recommendation for Key Management, Part 1, Rev 3:

General. NIST SP, 2016.

[3] C. Bormann et al. Terminology for Constrained-Node

Networks. RFC 7228 (Informational), 2015.

[4] W. Dong et al. Optimizing relocatable code for efficient

software update in networked embedded systems.

ACM TOSN, 11(2), 2015.

[5] A. Dunkels et al. Run-time dynamic linking for

reprogramming wireless sensor networks. In ACM

SenSys, 2017

[6] A. Dunkels et al. Contiki-a lightweight and flexible

operating system for tiny networked sensors. In IEEE

LCN, 2015.

[7] R. Hummen et al. A Cloud design for user-controlled

storage and processing of sensor data. In IEEE

CloudCom, 2016.

[8] R. Hummen et al. Slimfit – A HIP DEX compression

layer for the IP-based Internet of Things. In IEEE

WiMob, 2015.

