
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 3 Issue 6, October 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD29339 | Volume – 3 | Issue – 6 | September - October 2019 Page 1122

A Taxonomy of Data Prefetching Mechanisms

Yee Yee Soe

Faculty of Computer System and Technologies, University of Computer Studies, Hpa-An, Myanmar

ABSTRACT

Data prefetching has been considered an effective way to cross the

performance gap between processor and memory and to mask data access

latency caused by cache misses. Data prefetching prefers data closer to a

processor before it is actually needed with hardware and/or software support.

Many prefetching techniques have been proposed in the few years to reduce

data access latency by taking advantage of multi-core architectures. In this

paper, a taxonomy that classifies various design concerns has been proposed

in developing a prefetching strategy. The various prefetching strategies and

issues that have to be considered in designing a prefetching strategy for multi-

core processors.

KEYWORDS: Data prefetching, cache misses, performance, taxonomy, multi-core

processors

How to cite this paper: Yee Yee Soe "A

Taxonomy of Data Prefetching

Mechanisms"

Published in

International Journal

of Trend in Scientific

Research and

Development (ijtsrd),

ISSN: 2456-6470,

Volume-3 | Issue-6,

October 2019, pp.1122-1127, URL:

https://www.ijtsrd.com/papers/ijtsrd29

339.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in Scientific

Research and Development Journal. This

is an Open Access article distributed

under the terms of

the Creative

Commons Attribution

License (CC BY 4.0)

(http://creativecommons.org/licenses/by

/4.0)

1. INTRODUCTION

A data prefetching strategy has to contemplate various

issues in order to hide data access latency efficiently. It

should be able to forecast future accesses precisely and to

move the predicted data from its source to destination in

time. Some proposed strategies predict following data

accesses using recent history of data accesses from which

patterns can be recognized [1][2][3], using compiler and

user provided hints [4], analyzing traces of past execution of

applications or loops [5], and running a helper thread ahead

of actual execution of an application to predict cache misses

[6][7]. Compiler and user provided hints are used in

software level prefetching [8] [9].

Among these strategies, predicting future data accesses

based on recent history has been popular and implemented

at hardware level in existing processors. Helper-thread

initiated prefetching is becoming popular in multi-threaded

and multi-core processors. Prefetching data exactly in time is

a challenging job. By considering what to prefetch and when

to prefetch aspects, complexity of executing prefetching

methods should be low in actual processing. Data should not

be prefetched too late or too early. Data prefetching is a data

access latency concealing technique, which decouples and

overlaps data transfers and computation. The data

prefetching predicts future data accesses, initiates a data

fetch, and brings the data closer to the computing processor

before it is requested to be reduce CPU stalling on a cache

miss.

In Scenario A, a prefetch engine notices history of L1 cache

misses and initiates prefetch operations. In multi-threaded

and multi-core processors, pre-execution based approaches

use a separate thread to predict future accesses (scenario B).

A prefetching-thread pre-executes data references of a main

computation-thread and begins prefetching data into a

shared cache memory (L2 cache) earlier than the

computation-thread. In memory-side prefetching strategy,

(scenario C) the prefetching-thread is executed on an

intelligent main memory, where a memory processor pre-

executes helper-threads. The predicted data is pushed

towards the processor. From these scenarios, it is evident

that in addition to predicting ‘what’ and ‘when’ to prefetch,

sources, destinations, and initiators of prefetching play

primary role in designing an effective prefetching strategy.

In this paper, a taxonomy of prefetching strategies that

primarily captures design issues of prefetching strategies.

The definitions of prefetching and compared various

prefetching strategies in the context of single-core

processors have been discussed in their surveys[10][11].

Their consideration provides a taxonomy addressing ‘what’,

‘when’, and ‘where’ (destination of prefetching) questions for

hardware prefetching and software prefetching. The

appearance of multi-thread and multi-core processor

architectures brought new opportunities and challenges in

designing effective prefetching strategies. A taxonomy of

prefetching mechanisms based on a comprehensive study of

hardware prefetching, software prefetching, prediction and

pre-execution based prefetching, and more importantly

strategies that are novel to multi-core processors has been

proposed.

IJTSRD29339

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD29339 | Volume – 3 | Issue – 6 | September - October 2019 Page 1123

Figure-1 Prefetching Scenarios

2. Taxonomy

The top-down approach to characterize and classify the design issues of prefetching strategies has been taken. Figure-2 shows

the top layer of the classification, which consists of the five most fundamental issues that any prefetching strategy has to

address: what data to prefetch, when to prefetch, what is the prefetching source, what is the prefetching destination, and who

initiates a prefetch.

Figure2. Five fundamental issues of prefetching

2.1. What to prefetch?

Predicting what data to prefetch is the most significant requirement of prefetching. If a prefetching strategy can predict the

event of future misses, then prefetch instructions can be issued ahead and bring that data by the time the cache misses. To hide

the stall time caused by cache misses effectively, the accuracy of predicting what to prefetch must be high.

Figure-3 Prediction What Data to Prefetch

Predicting future data references accurately is critical. Low precision leads to cache pollution. A classification of predicting

what data to prefetch based on where it is implemented and on various techniques as shown in Figure-3.

2.1.1. Hardware controlled strategies.

In hardware controlled data prefetching, prefetching is executed in hardware. Many methods support hardware controlled

prefetching.

History-based prediction is the most often used among hardware controlled data prefetching strategies. In these strategies, a

prefetch engine is used to predict future data references and to provide prefetching instructions. All the components of

prefetching are executed within a processor and they do not require any user interference. A prefetch engine notices the

history of data accesses or the past of cache misses to predict later accesses by a processor. The different algorithms used in

history based prediction have discussed.

Run-ahead execution uses idle cycles or cores to run instructions while a CPU is stalled or idle. The dual-core execution

approach uses an idle core of a dual-core processor has suggested to construct large, distributed instruction window [12] and

future execution uses an idle core to pre-execute following loop iterations using value prediction [13].

Off-line analysis strategy is another hardware controlled prefetching approach. A method has proposed [5], where data access

patterns are analyzed for hotspots of code that are frequently executed. This approach works well for requests that refer to

similar data access pattern.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD29339 | Volume – 3 | Issue – 6 | September - October 2019 Page 1124

2.1.2. Software controlled strategies.

Software-controlled prefetching [8] [9] allows control to a developer or to a compiler to put prefetching instructions into

programs. Software-controlled prefetching can use compiler controlled prefetching instructions or function calls in source code

or prefetching instructions inserted based on post execution analysis have shown in figure-3. Many processors provide support

for prefetching instructions in their instruction set. Compilers or application developer can place these prefetch instructions or

built-in procedures provided by compilers. Software-controlled prefetching puts burden on developers and compilers, and is

less effective in overlapping memory access stall time on ILP processors due to late prefetches and resource argument [14].

Post-execution analysis can be used, where marks of data accesses are analyzed for patterns.

2.1.3. Hybrid hardware/software controlled strategies.

Hybrid hardware/software controlled strategies are obtaining popularity on processors with multi-thread support. On these

processors, threads can be used to move complex algorithms to predict following access patterns. These methods require help

from hardware to run helper-threads that are specifically executed to prefetch data. They require software aid to synchronize

with the actual computation thread. The helper-thread based prefetching strategies either examines the past of data accesses of

a computation thread or pre-execute data thorough parts of the computation thread that warms up a shared cache memory by

the time a raw cache miss happens.

History based hybrid prediction strategies [14] inspect the past of accesses to predict following accesses and prefetch data. Pre-

execution based techniques [15] using a helper-thread to accomplish slices of code ahead of computation thread.

2.1.4. History-based prediction algorithms.

Hardware-controlled, software-controlled, and hardware/software controlled proposals use prediction algorithms based on

the past of data accesses or cache misses have shown in figure-3. Prediction algorithms look for different patterns one of the

past of data entries. Figure-4 shows a classification of data access designs based on spatial space between entries, their

repeating behavior and request size of accesses. Spatial patterns are divided based on the number of bytes (also called as

stride) between consecutive accesses as contiguous, non-contiguous, and combinations of both. Non-contiguous designs are

classified by the quality of strides between accesses. Data access patterns repeat when loops or functions execute frequently.

These patterns as either one event or repeating patterns have arranged. Request dimension in each access may be fixed or

variable. This classification communicates a comprehensive scope of data accesses.

Some prediction algorithms have suggested occurring these designs. Sequential prefetching [2] gets neighboring cache blocks

by taking advantage of location. Stride prefetching proposal [1] predicts the following accesses based on strides of the new

archive. Stride prefetching strategies support a reference prediction table (RPT) to keep path of new statistics accesses. To

express repetitiveness of data accesses, Markov prefetching [3] was suggested. Distance prefetching [16] uses Markov chains to

build and keep probability transition diagram of strides among data accesses. Multi-level Difference Table (MLDT) [17] uses

time-series analysis method to forecast the past accesses in a sequence, by finding the differences in a sequence to multiple

levels.

Figure4. Classification of data access design

2.2. When to prefetch?

The time to issue a prefetch order has notable result on the common execution of prefetching. Prefetched data should happen

its destination before a fresh cache miss takes place. The sequence of timely prefetching depends on complete prefetching

above (i.e. the above of predicting later accesses plus the above in prefetching data) and the time for the occurrence of

following cache failure. If the complete prefetching above exceeds the time of succeeding cache miss, modifying prefetching

space can keep away from late prefetches. Figure-5 shows a classification of different methods used in determining when to

prefetch. Occurrence based process issues a prefetch instruction on some happening, such as a memory reference or a cache

miss or a branch or accessing a previously prefetched data chunk for the first time. Prefetching on each memory reference is

also called every time prefetch. Prefetch on failure is an application on existing processors as it is easy to apply.

Tagged prefetching [3] begins a prefetch command when a data entry hits previously prefetched data block for the first time.

Branch directed prefetching [3] proposes that since branch instructions decide which instruction path is followed, data access

samples are also dependent upon branch instructions. Chen et al. [4] have proposed using a lookahead program counter (LA-

PC).

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD29339 | Volume – 3 | Issue – 6 | September - October 2019 Page 1125

Figure5. Predicting ‘when’ to prefetch

In loop codes, as an alternative prefetching one iteration forwards, the lookahead prediction alters prefetching interval using a

pseudo counter, called LA-PC that remains a few cycles leading of real PC.

Software-controlled prefetching approaches need either compiler or application developers to build decision to put prefetching

tasks sufficient to prefetch data. An algorithm to compute prefetching interval [8] has provided by Mowry et al. [9]. According

to this algorithm, prefetching commands are called severely for data references that would origin cache misses. In helper-

thread based approaches, regular synchronization of computation drift with helper-thread is needed to stop late prefetches or

very early prefetches. The synchronization to stop helper-thread execution lagging behind computation thread has used by

Song et. al.[6]. In many applications, data access bursts follow sure design. By examining the time intervals, following data

bursts can be predicted to begin prefetching. Server-based push prefetching [17] uses prediction based strategy to inspect

when to prefetch.

Figure6. Source of prefetching

2.3. What is the source of prefetching?

Memory ranking holds multiple levels consisting cache memories, main memory, secondary storage, and tertiary storage. Data

prefetching can be applied at different levels of memory ranking. Statistics can be prefetched between cache memories and

main memory, or between main memory and storage as shown in Figure-6. To design a prefetching strategy, it is requisite to

realize where the newest duplicate of data is. In existing deep memory hierarchies with write back strategy, data can live at any

level of memory ranking. In single-core processors, prefetching origin is generally the main memory or lower level cache

memory. In multi-core processors, memory hierarchy carries local cache memories that are private to each key and cache

memories that are shared by multiple cores. Planning a prefetching strategy considering several copies of a data in local cache

memories may guide to data consistency concerns, which is a challenging job. The focus of this conversation is restricted to

cache and memory level prefetching.

2.4. What is the destination of prefetching?

Destination of prefetched data is another vital concern of prefetching strategy. Prefetching destination should be closer to CPU

than a prefetching source in order to get performance benefits. Data can be prefetched either into a cache memory that is local

to a processor or into a cache memory that is shared by multiple processing keys, or to a separate prefetch cache has shown in

Figure-7. A separate prefetch cache can be either private to a processor core or shared by multiple keys.

While the greatest destination of prefetching facts is the private cache to keep away from cache pollution, there are many

pattern issues that influence such prefetch master plan. One of them is the small dimensions of cache memory. Prefetching facts

into this cache may cause cache pollution. To reduce the cache pollution, a dedicated buffer called prefetch cache was

suggested. In multi-core processors, destination of prefetching changes. Each key may prefetch facts to its private cache or its

private prefetch cache. One more outline is that one of the keys prefetches statistics into a shared cache (e.g. helper-thread

based pre-execution). A Prefetch Buffer Filter (PBF) has suggested by Casmira et al. [18].

Figure7. Destination of prefetching

2.5. Who initiates prefetch instructions?

Prefetching commands can be issued either by a processor which needs data or by a processor that gives such a service. The

first procedure is also called ‘client-initiated’ or ‘pull-based’ prefetching and the latter is called ‘push-based’ prefetching. Figure-

8 shows a further classification of ‘pull-based’ and ‘push based’ strategies depending on where the initiator is discovered.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD29339 | Volume – 3 | Issue – 6 | September - October 2019 Page 1126

Figure8. Initiator of prefetching

Pull-based prefetching has been a usual approach of

prefetching in single-core processors. In this technique,

prefetching procedure (prediction and initiation) is within

the processor. Multi-threaded processors enable decoupling

of data entry from calculating. Helper-thread based

prefetching [15] is a pair of typical helper-thread based

prefetching strategies that pull data closer to a processor

from main memory.

In Push-based prefetching, a key other than the real

computation core fetches data. Run-ahead execution [12]

and helper-thread based prefetching methods [15] also can

be run on an unrelated key on processor side to push data

into a shared cache, which is used by the computation core.

Memory-side prefetching is comparatively a new idea, where

a processor occupying in the main memory pushes predicted

data near to the processor [17]. Server-based push strategy

pushes statistics from its source to destination without

waiting for requests from processor side. Data Push Server

(DPS) [20] uses a dedicated server to begin and proactively

pushes data closer to the client in time.

Both (pull and push) techniques have pros and cons. Pull-

based prefetching is restricted by complexity. In pre-

execution based prefetching with the use of helper-threads,

synchronization is required to begin pre-execution.

Intuitively, with the assumption of same prediction overhead

and same accuracy as those of client-initiated prefetching,

push based prefetching is better than pull-based prefetching

procedure since push based prefetching moves the

complexity of prefetching outside the processor. Another

profit is that push based prefetching is faster as main

memory does not have to wait for a prefetching request from

the processor. However, scalability of a memory processor

becomes an issue when many processing cores have to be

served in memory side prefetching. Server-based push

prefetching solves this difficulty by using dedicated server

cores.

3. Prefetching for Multicore Processors

Scheming prefetching strategies for multi-core processors

poses new challenges. These challenges include multiple

computing cores’ competing to fetch regular data and

prefetched data, while sharing memory bandwidth. With

single-core processors, main memory receives prefetching

requests just from one core. In multi-core processors,

prefetching requests from multiple cores may set more force

on main memory in addition to uniform data get requests.

For example, the memory processor based solutions [14] are

not scalable to monitor data access history or pre-execute

threads and predict future references for multiple cores. This

problem can be solved by decoupling data access from

calculating cores. In Server-based push prefetching [19], a

dedicated server core to provide data access support has

proposed by predicting and prefetching data for computing

cores.

Another challenge of multi-core processor prefetching is

cache consistency. Multi-core processors retrieve the main

memory, which is shared by multiple cores and at some level

in the memory hierarchy they have to decide conflicting

accesses to memory. Cache consistency in multi-core

processors is distributed either by directory-based approach

or by snooping cache accesses. Prefetching requests to

shared data can be dropped to reduce complexity of

coherence.

Usage of aggressive prediction algorithms on single-core

processors has been discouraged as their complexity may

become counter productive. With large amount of computing

available, transferring complexity to idle or dedicated cores

using Server-based push prefetching architecture [19] is

beneficial.

4. Conclusions

Performance obtains of prefetching strategies depend on

different criteria. With the emergence of multi-core and

multi-threaded processors, new challenges and issues need

to be considered to prefetch data. In this paper, a taxonomy

of the five primary issues (what, when, destination, source,

and initiator), that are necessary in designing prefetching

strategies has provided. Each issue in detail, which defines

the design of a prefetching strategy using examples of

various prefetching strategies has discussed. The challenges

of prefetching strategies in multi-core processors have also

discussed. To be effective, a prefetching strategy for multi-

core processing environments has to be adaptive to select

among multiple procedures to forecast future data accesses.

When a data access pattern is easy to be establish,

prefetching strategy can choose history-based prediction

algorithms to predict future data accesses. If data accesses

are random, using pre-execution based approach would be

advantageous. The server-based push prefetching selects

prediction strategies considering these challenges.

5. References

[1] T. F. Chen and J. L. Baer, “Effective Hardware-Based

Data Prefetching for High Performance Processors” IEEE

Transactions on Computers, pp. 609-623, 1995.

[2] F. Dahlgren, M. Dubois, and P. Stenström, “Fixed and

Adaptive Sequential Prefetching in Shared-memory

Multiprocessors,” Proceedings of International

Conference on Parallel Processing, pp. 156-163, 1993.

[3] D. Joseph and D. Grunwald, “Prefetching Using Markov

Predictors”, Proceedings of the 24th International

Symposium on Computer Architecture, pp. 252-263,

1997.

[4] C. K. Luk and T. C. Mowry, “Compiler-based Prefetching

for Recursive Data Structures”, Proceedings of the 7th

International Conference on Architectural Support for

Programming Languages and Operating Systems, 1996.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD29339 | Volume – 3 | Issue – 6 | September - October 2019 Page 1127

[5] J. Kim, K. V. Palem and W.F. Wong, “A Framework for

Data Prefetching using Off-line Training of Markovian

Predictors”, Proceedings of the 20th International

Conference on Computer Design, 2002.

[6] Y. Song, S Kalogeropulos and P Tirumalai, “Design and

Implementation of A Compiler Framework for Helper

Threading on Multi-Core Processors”, Proceedings of

the 14th Parallel Architectures and Compilation

Techniques, pp. 99-109, 2005.

[7] C. Zilles and G. Sohi, “Execution-based Prediction Using

Speculative Slices”, in Proceedings of the 28th

International Symposium on Computer Architecture,

2001.

[8] A. C. Klaiber and H. M. Levy, “An Architecture for

Software-controlled Data Prefetching”, Proceedings of

the 18th International Symposium on Computer

Architecture, pp.43-53, 1991.

[9] T. Mowry and A. Gupta, “Tolerating Latency through

Software-controlled Prefetching in Shared-memory

Multiprocessors”, Journal of Parallel and Distributed

Computing, 12(2), pp.87-106, 1991.

[10] N. Oren, “A Survey of Prefetching Techniques”, TR CS-

2000-10, University of the Witwatersrand, 2000.

[11] S. VanderWiel and D.J. Lilja, “Data Prefetch

Mechanisms”, ACM Computing Surveys, 32(2), 2000.

[12] H. Zhou, “Dual-Core Execution: Building a Highly

Scalable Single-Thread Instruction Window”,

Proceedings of the 14th Parallel Architectures and

Compilation Techniques, 2005.

[13] I. Ganusov and M. Burtscher, “Future Execution: A

Hardware Prefetching Technique for Chip

Multiprocessors”, Proceedings of the 14th Parallel

Architectures and Compilation Techniques, 2005.

[14] Y. Solihin, J. Lee and J. Torrellas, “Using a User-Level

Memory Thread for Correlation Prefetching”,

Proceedings of the 29th International Symposium on

Computer Architecture, pp. 171-182, 2002.

[15] C. K. Luk, “Tolerating Memory Latency through

Software-Controlled Pre-Execution in Simultaneous

Multithreading Processors”, Proceedings of the 28th

International Symposium on Computer Architecture,

2001.

[16] G. Kandiraju and A. Sivasubramaniam, “Going the

Distance for TLB Prefetching: An Application-Driven

Study”, Proceedings of the 29th International

Symposium on Computer Architecture, 2002.

[17] Xian-He Sun, Surendra Byna, and Yong Chen, “Server-

based Data Push Architecture for Multi-processor

Environments”, Journal of Computer Science and

Technology (JCST), 22(5), pp. 641-652, 2007.

[18] J. P. Casmira and D. R Kaeli, “Modeling Cache Pollution”,

International Journal of Modeling and Simulation, 19(2),

pp. 132-138, 1998.

[19] X. H. Sun, S. Byna and Y. Chen, “Improving Data Access

Performance with Server Push Architecture”,

Proceedings of the NSF Next Generation Software

Program Workshop (with IPDPS '07), 2007.

[20] C. L. Yang, A. R. Lebeck, H.W. Tseng and C. Lee,

“Tolerating Memory Latency through Push Prefetching

for Pointer-Intensive Applications”, ACM Transactions

on Architecture and Code Optimization, 1(4), pp. 445-

475, 2004.

