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ABSTRACT 

In this paper, the robust stabilization for a class of uncertain chaotic or non

chaotic systems with single input is investigated. Based on Lyapunov

Theorem with differential and integral inequalities, a simple linear control 

is developed to realize the global exponential stabilization of such 

uncertain systems. In addition, the guaranteed exponential convergence 

rate can be correctly estimated. Finally, some numerical simulations with 

circuit realization are provided to show the effectivenes

result. 
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1. INTRODUCTION 

In the past, various chaotic systems have been discussed, 

studied, and applied in physical systems; such as nonlinear 

systems and uncertain systems; see, for instance, [1]

and the references therein. The scientific community has 

confirmed that chaos is not only one of the factors that 

cause system instability, but also the source of system 

oscillations. For chaotic systems, designing cont

remove unstable or oscillating factors is often the mission 

of most researchers and engineers. 

 

On the other hand, the linear controller is not only easy to 

implement, but also has the advantage of being 

inexpensive. For an uncertain chaotic con

designing a practical and economical linear controller is an 

important issue today. The number of controllers often 

affects the price of the overall controller. Therefore, how 

to reduce the number of controllers is a big challenge for 

experts and scholars. Generally speaking, due to the 

uncertainty of the system parameters and the error of the 

system modeling, the real system can be presented in the 

form of an uncertain system to reflect the truth of the 

system. Therefore, in order to fully pre

physical system, most scholars analyze or design for 

uncertain systems. 

 

Based on the above mentioned reasons, this paper aims at 

a class of uncertain chaotic control systems, using
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In the past, various chaotic systems have been discussed, 

studied, and applied in physical systems; such as nonlinear 

systems; see, for instance, [1]-[16] 

and the references therein. The scientific community has 

confirmed that chaos is not only one of the factors that 

cause system instability, but also the source of system 

oscillations. For chaotic systems, designing controllers to 

remove unstable or oscillating factors is often the mission 

On the other hand, the linear controller is not only easy to 

implement, but also has the advantage of being 

inexpensive. For an uncertain chaotic control system, 

designing a practical and economical linear controller is an 

important issue today. The number of controllers often 

affects the price of the overall controller. Therefore, how 

to reduce the number of controllers is a big challenge for 

and scholars. Generally speaking, due to the 

uncertainty of the system parameters and the error of the 

system modeling, the real system can be presented in the 

form of an uncertain system to reflect the truth of the 

system. Therefore, in order to fully present the real 

physical system, most scholars analyze or design for 

Based on the above mentioned reasons, this paper aims at 

class of uncertain chaotic control systems, using  

 

Lyapunov-like Theorem with differential and integral 

inequalities to design a single and linear controller to 

ensure that the closed-loop control system achieves global 

exponential stability. Throughout this paper, 

the n-dimensional Euclidean space, 

Euclidean norm of the vector

modulus of a real number 

minimum eigenvalue of the matrix 

 

2. PROBLEM FORMULATION AND MAIN 

Consider the following uncertain nonlinear systems with 

single input described by 

( ) ( ) ( )
( ),,, 3211

2111

xxxf

txdtxatx

+
⋅∆+⋅∆=&

  

( ) ( ) ( )
( ) ( ),, 3212

23122

tubxxxf

txdtxdtx

⋅∆++
⋅∆+⋅∆=&

( ) ( ) ( )321333 ,, xxxftxctx +⋅∆=&

 

where ( ) ( ) ( )[ 321:= xtxtxtx

( ) ℜ∈tu  is the control input, 

uncertain parameters, and 

( ) { }3,2,1,00,0,0 ∈∀= ifi . In addition, for the solution 
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like Theorem with differential and integral 

alities to design a single and linear controller to 

loop control system achieves global 

exponential stability. Throughout this paper, nℜ  denotes 

dimensional Euclidean space, x  denotes the 

Euclidean norm of the vector nx ℜ∈ , a  denotes the 

modulus of a real number a, and ( )Pminλ  denotes the 

minimum eigenvalue of the matrix P with real eigenvalues. 

PROBLEM FORMULATION AND MAIN RESULTS 

Consider the following uncertain nonlinear systems with 

 (1a) 

),   (1b) 

,  (1c) 

( )] 13×ℜ∈Tt  is the state vector, 

is the control input, ,,, cba ∆∆∆  and id∆  are 

uncertain parameters, and if  is nonlinear term with 

. In addition, for the solution 
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existence of the uncertain nonlinear systems (1), we 

assume that ,, 21 ff  and 3f  are smooth functions.  

 

Throughout this paper, the following assumptions are 

made: 

(A1) There exist constants ,,,,,, ccbbaa  and id  such that 

,0,0 bbbaaa ≤∆≤<<−≤∆≤−  

,0<−≤∆≤− ccc  

{ }.3,2,1, ∈∀≤∆ idd ii  

 

(A2) There exist positive numbers ,, 21 kk  and 3k  such that  

( ) 0,,
3

1
321 =⋅⋅∑

=i
iii xxxfxk . 

 

Remark 1. In fact, Zhu chaotic system [16] is a special 

case of the uncertain systems (1) with 

( ) ,,,,5.1,1 3232111 xxxxxfda ==∆−=∆  

( ) ,,,,5.2,0 31321232 xxxxxfdd −==∆=∆  

( ) 213213 ,,,9.4,0 xxxxxfcb =−=∆=∆ . 

 

The global exponential stabilization and the exponential 

convergence rate of the system (1) are defined as follows. 

 

Definition 1. The system (1) is said to be globally 

exponentially stable if there exist a control u and positive 

numbers α and k, such that 

( ) { }3,2,1,0, ∈≥∀⋅≤ − itektx t
i

α . 

 

In this case, the positive number α  is called the 

exponential convergence rate. 

 

The objective of this paper is to search a simple linear 

control such that the global exponential stabilization of 

uncertain nonlinear system (1) can be guaranteed. 

Furthermore, an estimate of the exponential convergence 

rate of such stable systems is also studied. 

 

Now we present the main result for the global exponential 

stabilization of uncertain nonlinear systems (1) with (A1) 

and (A2). 

 

Theorem 1. The uncertain nonlinear system (1) with (A1) 

and (A2) is globally exponentially stabilizable at the zero 

equilibrium point by the linear control  

2rxu −= ,     (2) 
 

with 

( )
bakk

dkdk

b

d
r

21

2

22113

4

++> .    (3) 

 

Besides, the guaranteed exponential convergence rate is 

given by 

( )
{ }321

min

,,max2 kkk

Pλ
,   (4) 

 

with 

( )
( ) ( )











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



−+−
+−

=
ck

drbkdkdk

dkdkak

P

3

322211

22111

200

02

02

: . 

Proof. It can be readily obtained that [ ]( ) ,02det 1 >ak  

( )
( ) ( ) ,0

2

2
det

322211

22111 >


























−+−
+−

drbkdkdk

dkdkak
 and ( ) 0det >P , in 

view of (A1), (A2), and (3). This implies that the matrix of 

P  is positive definite. Let 

( )( ) ( ) ( ) ( )txktxktxktxV 2
33

2
22

2
11: ⋅+⋅+⋅= .   (5) 

 

Obviously, one has 

{ } ( )
( )( )txV

txkkk

≤

⋅ 2

321 ,,min
  

{ } ( ) .,,max
2

321 txkkk ⋅≤    (6) 

 

The time derivative of ( )( )txV  along the trajectories of 

dynamical error system, with (1)-(6) and (A1)-(A2), is 

given by 

( )( ) 333222111 222 xxkxxkxxktxV &&&& ⋅+⋅+⋅=  

( )
( )
( )3333
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2
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( ) ( ) .0,
2
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( )
{ } ( ) .0,
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Thus, one has 
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It follows that 
( )

{ } ( )( )

( )
{ } ( )( ) ( )( )0321

min
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,,max

0
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xVtxVe

dttxVe
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From (6) and (7), it is easy to obtain that 

{ } ( )
( )( )

( )
{ } ( )( )

( )
{ } { } ( ) .0,0,,max
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,,min

2

321
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2
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Consequently, we conclude that 
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This completes the proof. □ 

 

3. NUMERICAL SIMULATIONS WITH CIRCUIT 

IMPLEMENTATION 

Example 1. Consider the system (1) with  

,2.11,8.02.1 ≤∆≤−≤∆≤− ba   (8a) 

,2.0,6.1,7.42.5 21 ≤∆≤∆−≤∆≤− ddc  (8b) 

( ) ,,,,7.2 3232113 xxxxxfd =≤∆   (8c) 

( ) ( ) .,,,,, 213213313212 xxxxxfxxxxxf =−=  (8d) 

 

By selecting the parameters ,8.0,2.1 == aa  ,1,2.1 == bb  

,7.4,2.5 == cc  ,6.11 =d  ,7.2,2.0 32 == dd and 

,2,1 231 === kkk  (A1)-(A2) are evidently satisfied.  

 

Thus, one has 
( )

325.3
4 21

2

22113 =++
bakk

dkdk

b

d
. 

 

Consequently, by Theorem 1 with the choice 4=r , we 

conclude that the system (1) with (8) and 24xu −= , is 

globally exponentially stable. In this case, from (4), the 

guaranteed exponential convergence rate is given by 

( )
{ } 18.0

,,max2 321

min =
kkk

Pλ
. 

 

The typical state trajectories of the uncontrolled system 

and the feedback-controlled system are depicted in Fig. 1 

and Fig. 2, respectively. Besides, the control signal and the 

electronic circuit to realize such a control law are depicted 

in Fig. 3 and Fig. 4, respectively. 

 

4. CONCLUSION 

In this paper, the robust stabilization for a class of 

uncertain nonlinear systems with single input has been 

investigated. Based on Lyapunov-like Theorem with 

differential and integral inequalities, a simple linear 

control has been developed to realize the global 

exponential stabilization of such uncertain systems. In 

addition, the guaranteed exponential convergence rate can 

be correctly estimated. Finally, some numerical 

simulations with circuit realization have been provided to 

show the effectiveness of the obtained result. 
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Figure 1: Typical state trajectories of the uncontrolled 

system of Example 1. 

 

 

 
Figure 2: Typical state trajectories of the feedback-

controlled system of Example 1. 

 

 
Figure 3: Control signal of Example 1. 
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Figure 4: The diagram of implementation of Example 

1, where Ω= kR 101  and .402 Ω= kR  
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