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ABSTRACT

In this paper, a class of generalized chaotic systems is considered and the
state observation problem of such a system is investigated. Based on the
time-domain approach with differential inequality, a simple state estimator in
for such generalized chaotic systems is developed to guarantee the global
exponential stability of the resulting error system. Besides, the guaranteed
exponential decay rate can be correctly estimated. Finally, several
numerical simulations are given to show the effectiveness of the obtained

result.
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1. INTRODUCTION

In recent years, various forms of chaatystems have bes
extensively and intensively studied; see, for examf-15]
and the references thereifhe study of chaotic systems 1
only allows us to understand the chaotic charasttesi bui
also we can use the research results in varichaos
applications; such as chaotic synchronization desigd
controller design of chaotic system&s we know, chaotic
signals are highly unpredictable and the initialuea are
highly sensitive to the output signal.

Due to the defects of the measuring instrument @
uncertainties of the system, not all state vargldee jus
measurable for a nonlinear systef.this time, the design ¢
the state estimator is very important and needmtseriously
faced.The state estimator has come to take its prideaafe
in system identification and filter theory. Besidé¢lse state
estimator design for the state rastruction of dynami
systems with chaois in general not as easy as that with
chaos. Based on the abowentioned reasonsthe state
estimator design of chaotic systemsquite meaningful and
crucial.

In this paper,the state reconstructor for a ss of the
generalized chaotic systems is considergding the tim-
domain approactvith differential inequalit, a state estimator
for such generalized chaotic systems will be predito
guarantee the global exponential stabilitythed resulting erra
system. In addition, the guarantemgonentiadecay rate can
be accurately estimated. Finally, somemerical examps
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will be given to illustrate theeffectiveness of the obtained
result.

2. PROBLEM FORMULATION AND MAIN RESULTS
In this paperwe consider the followingeneralized chaotic
systems

%,(t) = & (t) + bx, t) (1a)
%(t) = f,(4(t). % (1), % (1) (1b)
%a(t) = o t) + £, (1)) T (. (t)) (1c)
y(t) = ax t) + Be(t), (1d)

where x(t)=[x(t) x(t) ()] 00° is the state vector,
y(t)DD is the system output f, and f, are polynomials
with dedfi)zl Oi D{2,3}, and a,b,c are the parameters of

state equation, wittc<0 and b#0. In addition, we select

a and B, the parameters of output equation, satisf
ab

—>a-c.

Remark 1: In fact, certain we-known chaotic systems, such

asgeneralized Lorenz chaotic sysi [11], Lu chaotic system
[12], generalized Chen chaotic sys [13], unified chaotic
system [14], and Parhaotic syster[15], are the special cases
of the system (1).
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A. System (1) is called the generalized Lorenz chaoticTheorem 1. The system (1)

system [11] in case of
a=-10-25Ak, b=10+25Ak,

-8-Ak
c=

, with 0<sAk< 08,

f, = (28-350k)x, + (298K —1)x, — XX, ,
f,=x, f3=X,.

B. System (1) is called the LU chaotic system [14ase of
a=-10-25Ak, b=10+25Ak,

_ -8-Nk

, with Ak =08,

f, = (28-350k)x, + (298K —1)x, — XX, ,

fo=x, f=%.

C. System (1) is called the generalized Chen chagttem

[13] in case of
a=-10-25Ak, b=10+25Ak,

c="878K ith 08<ak<1

f, = (28-350k)x, + (298K —1)x, - XX, ,

f,=x, f;=x%.

D. System (1) is called the unified chaotic system] [i¥
case of

a=-10-25Ak, b=10+25Ak,

c=878K ith 0<ak<1

f, = (28-350k)x, + (298K —1)x, - XX, ,
f,=x, f3=x%.

E. System (1) is called the Pan chaotic system [15aise
of

a=-10 b=10, c=_?8, f; =16% — XX, ,
f,=x, f;=x%.

It is a well-known fact that since states are nbwags
available for direct measurement, states must hiena®d.
The objective of this paper is to search a statienasor for
the system (1) such that the global exponentidlilgtaof the
resulting error systems can be guaranteed. In \idilmiws,

|| denotes the Euclidean norm of the column vegtand
|| denotes the absolute value of a real nuraber

Before presenting the main result, let us introdaickefinition
which will be used in the main theorem.

Definition 1: The system (1)
reconstructible if there exist a state
Ez(t)= h(z(t), y(t)) and positive numberk and s such that

let)] = |x(t) - 2t)| < kexp(-7t), Ot=0,

is exponentially state
estimator |92(t] =

Define the polynomialsh (x,z):= i(X

reconstructible. Besides, a suitable state estiniagiven by

a(t>:(a—%]z1(t>+by(t), @a)
zz(t)=%y(t)—%zl(t), (2b)
z(t) = cz(t) + 1,(z)) f:(z0) (2¢)

with the guaranteed exponential decay vate —c .
Proof. Define a, = % —-a, from (1), (2) with
&(t)=x(t)-z(t) Dio{123, 3)
it can be readily obtained that
&(t)= x(t)-2(t)

= ()b )~ a- 2|2 )-by)
[y(t)— axl(t)}

B

= axl(t)+b

—(a—%jzi(t»by(t)

¢ _[%- aj[xl(t)— 2,(0)]

= —alel(t), Ot=0.

It results that
dleexdar) _
dt
= [a(t)exlat)] = (0)
= at)=expl-at)e(0)
= |a(t)=le0)Exp-at) Ot=0. (@)

Moreover, form (1)-(4), we have
&(t)=x(t)-2t)

Aol 14 y9-20)
=~ )]

= %el(t)

= %exr(— at)e(0) Dt=0

Thus, one has

_—;hel(O] exg-at) Ot=0. (5)

M nin{2 3,

where z(t) expresses the reconstructed state of the sysgem (1@nd form (1)-(5), it yields

In this case, the positive numbgr is called the exponential

decay rate.

Now we present the main result.

&(t)= %(t)- z(t)
= ofx,(t) - z(t)] +

£, 0 (1) s (%, (t))
- Lz )
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—C%() 0 t) 1 (x 1)) - f
fo(z )5 (. (0) - 13 (=, (1)]

—ces() £ (% () th, (4, (t) 2,(t)

I (t) - 2,(t)]

+ 1,z 1) M (0 (1) 2 )%, () -

= oy(t)+ £,(x(t) th,(x,(t) z(t))e ()

+ 5,(z(t) (1) ), (t). O

This implies that

dletdexd=ctl _ ¢ (. )m, o) 20)

dt

()]

2,(t)

2
&
X

ge
sl

j (% (0 26 )
E@xp( ct) dt
[ L) mbs )
[exd-ct) dt
& (t)exsl-ct)-e,0)

t
<M .[exp(— at- ct) dt

2(t)e:(t)

= [ 1+ exp(— at- ct)]

es(:>6:{_e:(o>+al“1c}maxp(ct),

Ot=0,

a,+c

(6)

where

M 2| 5(x, (t)) th, (%, (t), 2, (t)) s 0)
+[1,(2,(t) (%, (t) 2, (1) EF%IQ(OX '

Consequently, by (4)-(6), we conclude that

Je{e)] = Ve (1) + €2(t) + & ¢) < k xplc),
Ot>0,
with k= max{|el ‘ 5 ‘|el ‘ 0)+ al'\ic}_ This

completes the proof. o

3. NUMERICAL SIMULATIONS
Example 1: Consider the following generalized Lorenz
chaotic system:

%(t) = —275x,(t) + 27.5x,(t), (7a)
%,(t) = 35%(t) +19.3%(t) - %, (t)x,(t),  (7b)
%(t) = =2.9%(t) + %, (t)x (t), (7c)
y(t) = x(t)+ %, t). (7d)

Comparison of (7) with (1), one has
a=-275b=275c=-29, a=5=1,

0, %, %) = 35% +193% — X, ,(6)=x,
and f3(x2): X,. By Theorem 1, we conclude that the system
(7) is exponentially state reconstructible by tteesestimator

2(t) = -542,(t) + 275y(t), (8a)
2(t)= y(t)- z(t), (8b)
2(t)=-29z,(t) + 2(t)z.(t) (8c)

with the guaranteed exponential decay rate= 29. The

typical state trajectories of (7) and the time mese of error
states for the systems (7) and (8) are depictddgare 1 and
Figure 2, respectively.

Example 2: Consider the following Pan chaotic system:

(1) = -104 (1) +105,), )
1) =16x(0)- %) 1), (9b)
(1) =200+ 50 ) (%)
y{t)=x(t) +x(t) (9d)

Comparison of (9) with (1), one hes= —10,b=10,c=_—8,
a = '8 =1,

(3%, %) =16% %%, ,(%)=x,
and fs(x2)= X,. By Theorem 1, we conclude that the system
(9) is exponentially state reconstructible by ttetesestimator

2,(t) = -202(t) + Loy(t), (10a)
z,(t)= y(t)- 2(t) (10b)
20)== 20+ 220 (100

with the guaranteed exponential decay ra}e=%. The

typical state trajectories of (9) and the time mese of error
states for the systems (9) and (10) are depict&dinre 3 and
Figure 4, respectively.

4. CONCLUSION

In this paper, a class of generalized chaotic systhas been
considered and the state observation problem df systems
has been investigated. Based on the time-domaimoapip

with differential inequality, a simple state estiorafor such

generalized chaotic systems has been developedai@miee
the global exponential stability of the resultingog system.

Besides, the guaranteed exponential decay rate lman
correctly estimated. Finally, several numerical dations

have been proposed to show the effectiveness ofliteéned

result.
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Figure 2:The time response of error states, with
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Figure 3:Typical state trajectories of the system (9).
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Figure 4:The time response of error states, with
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