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ABSTRACT

The stability problem is a fundamental issue in the design of any distributed
systems like local area networks, multiprocessor systems, distribution
computation and multidimensional queuing systems. In Mathematics
stability theory addresses the stability solutions of differential, integral and
other equations, and trajectories of dynamical systems under small in
perturbations of initial conditions. Differential equations describe many
mathematical models of a great interest in Economics, Control theory,
Engineering, Biology, Physics and to many areas of interest.

In this study the recent work of Jinghao Huang, Qusuay. H. Algifiary, and
Yongjin Li in establishing the super stability of differential equation of
second order with boundary condition was extended to establish the super
stability of differential equation third order with boundary condition.
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INTRODUCTION

In recent years, a great deal of work has been done on
various aspects of differential equations of third order.
Third order differential equations describe many
mathematical models of great iterest in engineering,
biology and physics. Equation of the form
X" +a(X)X" +b(X)X +c(X)x = f (t) arise in the study of
entry-flow phenomena, a problem of hydrodynamics
which is of considerable importance in many branches of
engineering.

There are different problems concerning third order
differential equations which have drawn the attention of
researchers throughout the world. [17]

In mathematics stability theory addresses the stability of
solutions of differential equations, Integral equations,
including other equations and trajectories of dynamical
systems under small perturbations. Following this,
stability means that the trajectories do not change too
much under small perturbations [7].The stability problem
is a fundamental issue in the design of any distributed
systems like local area networks, multiprocessor systems,
mega computations and multidimensional queuing
systems and others. In the field of economics, stability is
achieved by avoiding or limiting fluctuations in
production, employment and price.
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The stability problem in mathematics started by Poland
mathematician Stan Ulam for functional equations around
1940; and the partial solution of Hyers to the Ulam’s
problem [2] and [20].

In 1940, Ulam [21] posed a problem concerning the
stability of functional equations:

“Give conditions in order for a linear function near an
approximately linear function to exist.”

A year later, Hyers answered to the problem of Ulam for
additive functions defined on Banach space: let X; and X,
be real Banach spaces and € > 0. Then for every function

f: X, - X, Satisfying
[f(x+y)-f()-f(y)se X, yOX,

There exists a unique additive function A: X, - X,

with the property

If () -AX)|| <& xO X,

Thereafter, Rassias [14] attempted to solve the stability
problem of the Cauchy additive functional equations in
more general setting. A generalization of Ulam’s problem
is recently proposed by replacing functional equations

with differential equations ¢@(f,Yy, y’,...y(”) )= 0 and
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has the Hyers-Ulam stability if for a given £>0 and a
function Yy such that

‘¢( f,y,y',...y‘”’)‘ <¢

There exists a solution Y, of the differential equation
such that
V() = Yo(t)] < k(&) And lim k(&) =0

£

Those previous results were extended to the Hyers-Ulam
stability of linear differential equations of first order and
higher order with constant coefficients in [8, 18] and in
[19] respectively.

Rus investigated the Hyers-Ulam stability of differential
and integral equations using the Granwall lemma and the
technique of weakly Picard operators [15, 16].

Miura et al [13] proved the Hyers-Ulam stability of the
first-order linear differential equations

y't)+g(®)y(t)=0,

Where g(t) is a continuous function, while Jung (4)

proved the Hyers-Ulam stability of differential equations
of the form

pO)y't) =y

Motivation of this study comes from the work of Li [5]
where he established the stability of linear differential
equations of second order in the sense of the Hyers and
Ulam.

y'=Ay

Li and Shen [6] proved the stability of non-homogeneous
linear differential equation of second order in the sense of
the Hyers and Ulam

y'"+ p(X)y+aq(x)y+r(x)=0

While Gavaruta et al [1] proved the Hyers- Ulam stability
of the equation
y"+ B(x)y(x) =0

with boundary and initial conditions.

The recently, introduced notion of super stability
[10,11,12,13] is utilized in numerous applications of the
automatic control theory such as robust analysis, design of
static output feedback, simultaneous stabilization, robust
stabilization, and disturbance attenuation.

Recently, Jinghao Huang, Qusuay H. Alqifiary, Yongjin Li[3]
established the super stability of differential equations of
second order with boundary conditions or with initial
conditions as well as the super stability of differential
equations  of  higher order in the form

YO () +B(X)y(x) =0  with
y@ = y@ =..=y"@=0

initial conditions,

This study aimed to extend the super stability of second
order to the third order linear ordinary differential
homogeneous equations with boundary condition.

Main result
Super stability with boundary condition

Definition: Assume that for any function y[Jc"[&, b] if
y satisfies the differential inequalities

‘¢(f,y,y',...,y(”)) |<e....... @
for all xD[a, b] and for some £=0 with boundary

conditions, then either y is a solution of the differential
equation

A(F, v,y Y )= Coe 2)
or |y(X)|S ke for any xD[a,b], where K is a
constant. Then, we say that (2) has super stability with

boundary conditions.
Preliminaries
Lemma 1[10]. Let yJc?[a,b], y(a) =0= y(b),then
2
max |Y(X)| s(b—Sa) max|y "(x) .
Proof
Let M = max{|y (] :xO[a b]} since

y(a) =0=y(b), there exists X, [1(a,b) such that
‘y(xo)‘ = M. By Taylor’s formula, we have

y"(9)

y(@) = Y(%) + Y'(X)(X, —a) + o (Xo—a)?,
V) = Y00)+ Y ()03 + L (0-x,7
Where O, 1] D(a,b)
Ths | (0 =~
(%-a)
2M
y'm=—
) (b-x)
In the case X, D(a, (a;b)]we have
2M S 2M _ av
(%-a)" (b-a)" (b-a)°
4
In the case X, D{%b,bj,we have
2M S M _ av
(b-%)" (b-a)" (b-a)°
4

So, maxy" (x)= &M ___ 8

(b-a) (b
(b-a)’
8

7 maxy &)

Therefore, max‘y(X) |S max‘y "(X) |
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In (2011) the three researchers Pasc Gavaruta, Soon-Mo,
Jung and Yongjin Li, investigate the Hyers-Ulam stability of
second order linear differential equation

y'"(X)+ L(X)Y(X) =0 (3)
with boundary conditions y(a) = y(b) =0

where, yDcz[a, b] ,ﬁ(X)DC[a,b] ,—0<a<b<+owo

Definition: We say (3) has the Hyers-Ulam stability with
boundary conditions
y(@) = y(b) =0 if there exists a positive constant K

with the following property:
For every & > O,yD02 [a,b] , if

ly"(x)+ B Y(X)|< e,

Andy(a) =y(b) =0, then
zOc? [a, b] satisfying
z"(x)+ B(X)z(x) =0
And z(a) = 0= z(b), such that |y(X) = (X)| < K&

there exists some

Theorem 1[1]. Consider the differential equation

Y'(X) + BOYY(X) = 0-remromememmemeomeaes (4)
With boundary conditions y(a) = y(b) =0

Where yc?[a,b], B(x)0c[a,b] ,—w <a<b<+ow
8

(b-a)’

then the equation (4) above has the super stability with
boundary condition

If max| B (x) <

y(@) =y(b)=0
Proof:
For every £>O,yDC2[a,b] if

|y"(x) + B(X)y(X)| < € and y(a) =0=y(b)

LetM = max{|y )} :xO[a b],since y(a)=0=y(b),
there exists X, [J(a,b)

Such that |y(x0)| =M . By Taylor formula, we have

y"(9)

M 2M _ av
(x,-a)? (b-a)?® (b-a)?
4

(a+b)
2

On the case X, D[ ,bj we have

2M S M _ av
(b-%)* (b-a)?® (b-a)’
4

So max|y"(X)| > M 5 = 8 >
(b-a) (b-a)
a)

Therefore max| y(x)| < (b_T

max| y(X)|

max|y"(X)|

Thus
(b-

max| y(x)| <

_(b-a"  (b-a)

max|3 (x] maxy )

(b-a)
8{1—(b_8a)2 max3 p}

z,(x)=0 is a
y"(X) - B(X)y(X) =0 with the Boundary conditions
y(@) =0=y(0).

V() — z,(X)| < Ke

Let k =

Obviously, solution of

Hence the differential equation Yy"(X)+ B(X)y(x)=0
has the super stability with boundary

y(@=0=y(b)

In (2014) the researchers J. Huang, Q. H. Aliqifiary, Y. Li
established the super stability of the linear differential
equations.

condition

Y0+ Py () +a(x)y(x) =0
With boundary conditions y(a) =0=y(b)

¥(@) = y06) + Y (%) (%o - )+ (%= @)%, Where
’ 2 1 0
B . y"(7) yOc*[a,b], pOc'{a,b],q0c’[ab] ,—o <a<b<+ow
y(0) = y(x,) + y'(%)(b—Xp) MarTe (b—xo)*,
' Then the aim of this paper is to investigate the super
Where 4,70 (a' b) stability of third-order linear differential homogeneous
. 2M equations by extending the work of ]. Huang, Q. H.
Thus |y (5)| = W . Aliqifiary and Y. Li using the standard procedures of them.
X —a
. 2™ Lemma( 2) .Let y[Ic® [a, b] and y(a) =0 = y(b), then
‘y (’7)‘ - _b 2 3
(XO ) (b - a) m
(a+h) maxy (x) < === maxy ")
On the case X, | a, , we have 48
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Proof

LetM = max{|y (Xj :xD[a ,b]} since y(a) = 0= y(b) there exists:

%o D(a, b) Such that |y(xo)| =M

By Taylor’s formula we have

y"(9)

y"(%,) . (Xo_a)f%,

2!

y(@) = V(%) + ¥'(X%) (X —a) + (xo-a)" +

V)= Y0)+ Y )0 = %) + L8 (0= + LI (-,

3

yé)!(O) (x-a)",

(Xo_a)2 +

y"(9)
3!

= |y(@)| < |y)| +] y'(%o)] (%, —a) +

nd = [y(0)] < YO0+ )] 0= 1)+ Do,

3

PO o

Where 5,/7D(a,b)

3IM _ 6M

% -a)° (% -a)°
3M _ 6M
b-%)°"  (b—x)*

hus (@) =

And |y"(7)| = (

a+b ( a+
For the case X, Ul a, 5 thatis a< X, < ,we have

6M _ B6M  _ 6V _ 48v
(xo—a)3_(a+b f (b-a)°®  (b-a)’
-a -
2 8

a+b a+b
And for the case X, U [T,bj thatis < X, <Db we have

6M S 6M 6M 48U
RN EONCORCE)
2
6M > 48\
(-x) " (b-af
woy_ 48V 48

Thus max]y ") b-a)  (b-a) may &)
48
(b-a)’

=

maxy &)

from max|y I"(Xj >

(b-a)’
= max]y (x) 54—8 maxy ")

Theorem 2. Consider Y"(X)+mM(X)y"(X)+ p(X)y '(X) + q(X)y(X) = 0-------rmmermeemav (5)
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with boundary conditions y(a) =0= y( l‘)

where yJc®[a,b],mOc?*[a,b],pOc{ab] ,q0c’[ab]-o<a<b<+eo

If max |q(x) +%(p -p) +%(pp' —2mp’ + mp? — 2p?) — %p3| < (bii)3 ------- (6)

Then (5) has the super stability with boundary conditions y(a)=0= y(b)
Proof

Suppose that Yy [J c? [a, b] satisfies the inequality:
Y™ () + m(X)y"(X) + PX)Y'(X) + AX)Y(X)| < & ---nmreemer (7) for some & > 0

Let U(x) = y"(x) + m(x)y"(x) + P(x)y (x)q(x)y (X) -~ (8)

For all xD[a, b] and define z(X) by

—Eji p(r)dr

y)=2(e e ©)

And by taking the first, second and third derivative of (9)
That is

V0 =(2-Zm]e [ pnyar

a

—%JX‘ p(r)dr

y"(X) — (Zn _ er_lzpr +1'Zp2je A
2 4
—%Jx.p(r)dr

y"(x) :(Z"'_EZ" P=2"p-2'p 2P 22 =7 + P+ +—1Zp“12'03je '
2 2 2 2456-647 4 2" 8

And by substituting (9) and its first, second and third derivatives in (8) we get

u(x) :[Zm_lz"IO—Z"IO—Z'IO'*LEZ'ID2 ——12'p'——12|0 "+—1pr '+—12'|o2 +—1pz——1zp3+
2 2 2 2 4 4 27 8

—%T p(r)dr

m(z"—z'p—izp'+—12p2j+ p(z'——lzpj+ zq |e™
2 4 2

{Z"'_EZ"IO—Z"IO-Z'I0'+—1Z'IO2 S22 PSP g+
- 2 2 2 2 4 4 2 8

l)(
S SN SRR S el
p Ezmp+zzmp + pz —22p +oz | e

= [z"'+ mz"—gz"p+z'p—z'mp—igz'p'+—3z'p2 +qz+—12p+—12pp'——12mp'——12p +
- 2 2 4 2 4 2 2

1, 1, 1 o
—zmp° - =2p° -7 e’
Tt ]

- Z"'+(m—§ p}Z“(D—mp—g p'+—3p2jz'+
- 2 2" 4
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1 I 1
(q+§(p-ra)+Z(m3-2np+np2—2p2y~§p{]z]e .

2

§p
_4

~Spup
2

Now choose mZE P ang M=

—%j p(r)dr

By doing this the coefficients of 2"(X) and Z'(X) will vanish.

To check whether the relation holds or not, for

Spt-2pup
47 2
p

£
2

N

5

Tl

5

[
N w
U—

+

5

Nlw

y U
Nlw NIw Nlw

v—

I

o
VR

T
MNlw

yol
N—

N w
o_|o.
X |©
1

o
VR
|_\
I

Alow
o
N—

dp 2

= —3 = 5 dx using partial fraction
p(l— Z pj

3
1 4 1
Since — * =
p 1_§ _3
4P p(l 4pj
3
1"' 4 dp——2dx ________ *
Y 1_§ 3
p
4

By integrating both sides of (*) we have

3 2
Injp|-Inl-—p|==x+
[pl=Infl-2p =2x+g
=1In % =—X+¢

1_i
4IO

2y
:>—p=Ce3
P

4

2, 3
=Ce® |1-—
p=ce’(1-2p]
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2 2
X

—cev -3 Cpe3
4

3 2, 2, 3 2
p+ZC|oe3 =Ce?® = p(1+ZCe3j

0 Ce? m-3p
- _ _3
Zx 2
1+§Ce3
4
2,
3 Ce?
m=", 2
2l 1+3ce”
4
l)(
1 w1, . 1 ~[p@ar
Then Z +(q+§(p—p )+Z(pp—2mp+mp2—2p2)—§p3jze % zu)

Then from the inequality (7) we get

1 SSHSTGY , 1
z +(q+§(p- p )+Z(pp—mp+mp2—2p2)-§p3)z

EXp(r)dr }Xp(r)dr
2 2
u(x)|e™ < ge™

lX
——I p(r)dr
From the boundary condition y(a) =0 = y(b) and Y(X) = z(X)e i
We have z(a) =0 = z(b)

1 1 , 1
Define B(X) = q+§(p- p )+Z(pp - 2mp +mp? - 2p2)-§p3

m %jﬁ p(r)dr %jﬁ p(T)dr
Then |2"(X) + Bz(X)| =|u(x)|e™ < ge’

Using lemma (2)

max|z(x) < u maxz ")

—a
48
(b-a)’
48

<

[ max|z "(x)+ Bz (x )+ mays| maie X |}

(b-a) || (b-a) ‘
< 28 maxs< e E+ 18 ma>{,8| ma1|<z>(|‘

%j p(r)dr
Since Maxe * < 00 on the interval [a, b]
Hence, there exists a constant K >0 such that
|Z(X)| < K& Forall xD[a, b]

—%j p(r)dr

More over maxe ° < 0 on the interval [a’ b] which implies that there exists a constant such that K'>0
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ly(x)| =

Z(Xx) exp(—%j p( )drj

1X
< max{ exp[—§£ p ¢ )er}kgs k &

=|y(x)|<k'e

Then y™(X)+m(X)y"(X)+ p(X)y '(X) + q(x)y(x) = O has super stability with boundary conditions
y(@)=0=y(b)

Example

Consider the differential equation below

2 2

.3 e . o) o
y+§ 3 % y 3 2 y+y=0__._ (10)
1+Ze3 1+Ze3

With boundary conditions y(a)= 0 =y(b)

2 2

2, 2
Where yDcs[a,b] ,§ e > DCZ[a,b], s > Dcl[a,b] ,1Dc°[ab] ,—0o<a<b<+oo
2|, 32 3 %
1+-¢€ 1+ "ed
4
2 2 " 2 2 2 2
max 1+l e es 1 e e’ e’ es N
If 2 2, 2 4 2 2 | 2 2
1437 | 14 3¢ 1+’j:e3X 14 67 T AC ol | I
2 2 3
ZX ZX Ex ,ZX
3 e3 e3 e3 1 e3 > 48
2 2x z | - 2| g 2, 33 (11)
1+§e3 1+§e3 1+§es 8 1+§e3 (b a)

Then (10) has super stability with boundary conditions y(a) =0=y(b)

Suppose that Yy [ c? [a, b] satisfies the inequality

2 2

n 3 egx " eT\.J)X ,
y +§ 3 % y + EN Y +y <€ forsome € >0 --mmmme- (12)
1+*e3 1+ie3
4 4
2y 2,
- 3 e3 " e3 ,
Letv(x) = Y +E — |y + 2 NESv— (13)
4 4

For all xD[a, b] and define z(X) by
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2
=X
3

1} e
| 3 o
a1+=e3
yx)=z(xe * - (14)
2,
1 3
gx _E Z gxdr
, 1 es3 a1+ g3
y={zZ-=2 3 2 e
1+—ed
4
] 2 2,
2 2 2 Y
Zx =X =X 2 33
"o_ n_ e3 _ 1 e3 + 1 e3 al+ze3
A I Y Wl 35| 4 35|
1+—¢€3 1+Ze3 1+—ed
2
2 2 2 2
—X —X —X —X
n /) 1 " e3 — n e3 — ! e3 + ) e3 —
y'=1z z 3 2 3 % z 3 2 5% 3 2
1+—e3 1+-—ed 1+—e? +—e3
2 2 2 2
—X —X —X —X
1, ed 1 es N 1 ed es N
52 2 | 5 2 - 2 2
3 3 x 3 3
1+—¢€? 1+—ed 1+-—e® 1+—e?
2 3 x 2
2, 2, 2, Hie
1., ¢ 1| ed 1| ed e 2e”
i et I el -t byl BB
1+—¢? 1+—e? 1+—4e3

2y 2,
3| e’ 3| e€®
Jn 4
i eyt i ey
1+-¢d 1+—¢e?
! 2
2 2 2y 2 &
e’ 3| ed ed 3| esd 3 e?d
32 2| 32 3% | 2| 35| 4 2| |7
1+—€® 1+—e® 1+?1e3 1+—4e3 e
n I I
2 2 2 2 =Y =
N 1+1 e | el L1 € e’ 3 e’ e’
3 2 32 3 X 32 33 33
1+—ed 1+—ed 1+—e® || I+—g® *+—ed || g3
2
2 2 3 x 2%
2 2 2 2 1 632 d
- —X —X =X 2a 3=
4 3 ed es _5 es 1 es 1oe?
2| 3% 3 32| 8/, 32 )2]e
1+—e® || 1+-¢e® 1+ —e3 1+—e3
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Since z'and Z"

gX gX EX EX gX 72)(
R K e e s | 3| 7| 32 3%
1+—e® | 1+—¢® 1+—e® || 1I+—e?d +—ed || *+—e?®
4 4 4 4 4 4
2 2 3 X x
gx g>< gx gx _; e3 7,97
3 3 es 1 e3 a1,3g3"
+g es 2 e3 2| 45| el e )
1+—e® || 1+—e3 1+—e3 1+ —e?d
4 4 4 4
Then from inequality (12) we get
2 2, 2, 2, 2, 2,
G e By e N i Iy 35| 7| 32 3 &
1+=e® | 1l+-—e® 1+—e® || I+—¢e3 e’ | *+—e?®
4 4 4 4 4 4
2 2 3
2, 2, 2, 2
L3 € e’ 3 e’ _l€e? )z‘
2 2 2 2
4 4 4 4
2y 2
1; € 1r e®
=|v(x)|exp Ej Z dr | < ex EJ 7 dr |
al+7e3 al+7e3
4 4
From the boundary condition y(a) =0 = y(b) and
2
1¢ €3
y(X) = z(x) exp —EJ 5—d7 | wehave z(a) = 0 = z(b)
214 3"
4
Define:
2 2, 2, 2, 2, 2,
3 3 3 3 3
h= 1+% es 2 e3 E +711 es 2 es 7|7 es B esx
1+—e* |1+-¢€® 1+—ed || I+—¢e3 I+—e® || g3
4 4 4 4 4 4
2 2 3
2, 2, 2 2
L3 € e’ 3 e’ 1 e
2 2 2 2
211436 || 14 367" 1+ 36 1+ e
4 4 4 4
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Then |Z" + Bz(X)| =|v(X)|exp %j

using lemma (2)

(b-a)’
max|z(xjsT

4

(b-a)°

IN

since Maxy ex —J.

EX

© dr [< ex —1J

3 2x 2 Zx

- al+—e?
4

maxz " )

3
max:{ ex 1je—zdr &+
2

b_ 3
s%[maXIZ'”ﬁZ (<] + mao{ maje X )

(b-a)

a
o maig mafe x|

< o on the interval [a, b]

Hence there exists a constants K > O such that |Z(X)| <ke

ly(x)| =|z(x) exp -

= |y(¥)|<ke

N/ 3
Then the differential equation Yy~ +—

Has the super stability with boundary condition y(a) = 0= y(b) on closed bounded interval [a, b]

max

To show the

2

3

n

1+2e%
4

n

I

4
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To make our work simple we simplify the expression (**)
Then the simplified form of (**) is
2 2.\? 2.\3 2 \*
6 8 32 12 48
maxy |1+ Y < 5 e ()
1+ e (b-2)
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Figure:1
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The graph which shows the max< |1+ <
3 2 4 (b _ a)3
{1+ 2 e3xj

Conclusion

In this study, the super stability of third order linear

third order linear ordinary differential homogeneous

ordinary differential homogeneous equation in the form of
Y () +m(x)y"(x) + p(QY'(X) +a(X)y(x) =0 with
boundary condition was established. And the standard
work of JinghaoHuang, QusuayH.Alqifiary, Yongjin Li on
investigating the super stability of second order linear
ordinary differential homogeneous equation with
boundary condition is extended to the super stability of

equation with Dirchilet boundary condition.

In this thesis the super stability of third order ordinary
differential homogeneous equation was established using
the same procedure coming researcher can extend for
super stability of higher order differential homogeneous
equation.
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