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ABSTRACT 
The genome represents a design for creating the body, with each one being 
different. In cancer genomic medicine, many genes are simultaneously 
examined using mainly cancer tissues (the oncogene panel test), and gene 
mutations are revealed. Cancer treatments are then initiated according to each 
individual’s constitution and medical condition based on gene mutations. A 
system for cancer genome medical treatment is currently being developed. In 
the treatment of several cancer types, the “oncogene test with an oncogene 
companion diagnosis” is already being performed as a standard test using 
cancer tissue to detect one or several gene mutations. Precision Medicine: 
discovering unique therapies that treat an individual’s cancer based on the 
specific abnormalities, i.e. germline or somatic mutations of their tumors. In 
this paper, we will explain the biological role of C-MYC and emphasize the 
importance of C-MYC as a target factor in cancer precision medicine. The 
functional activated C-MYC for cell proliferation and tumorigenesis is potential 
candidate as anti-oncogenic molecule. 
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Precision medicine is an approach to patient care that allows doctors to select 
treatments that are most likely to help patients based on a genetic 
understanding of their disease. This may also be called personalized medicine.  
 

The idea of precision medicine is not new, but recent 
advances in science and technology have helped speed up 
the pace of this area of research. Today, when patients are 
diagnosed with cancer, patients usually receive the same 
treatment as others who have same type and stage of cancer. 
Even so, different patient may respond differently, and, until 
recently, doctors didn’t know why. After decades of research, 
scientists now understand that patients’ tumors have genetic 
changes that cause cancer to grow and spread. They have 
also learned that the changes that occur in one person’s 
cancer may not occur in others who have the same type of 
cancer. And, the same cancer-causing changes may be found 
in different types of cancer. 
 
Myelocytomatosis oncogene (MYC) was initially discovered 
in the form of a viral oncogene of an avian myelocytomatosis 
virus, MYC 29, and subsequently identified in various 
vertebrate genomes in the forms of its cellular counterpart, 
C-MYC, and transducing viral MYC oncogene homologue (v-
MYC) in several oncogenic retroviruses [1,2]. The C-MYC 
protooncogene encodes a DNA-binding factor that can 
activate and repress transcription. Via this mechanism, C-
MYC regulates expression of numerous target genes that 
control key cellular functions, including cell growth and cell 
cycle progression. C-MYC also has a critical role in DNA 

replication. Deregulated C-MYC expression resulting from 
various types of genetic alterations leads to constitutive C-
MYC activity in a variety of cancers and promotes 
oncogenesis [3]. Research experiment showed that the 
normal human homolog of the avian MYC oncogene was 
present in multiple copies in the DNA of a malignant 
promyelocyte cell line derived from the peripheral blood of a 
patient with acute promyelocytic leukemia [4]. Other human 
oncogenes were not amplified.  
 
Contrary to the previous belief that C-MYC is wildtype in 
both types of tumors, 65% of 57 Burkitt lymphomas and 
30% of 10 mouse plasmacytomas reportedly exhibited at 
least 1 amino acid substitution [5]. These mutations were 
apparently homozygous in all Burkitt lymphoma biopsies, 
implying that the mutations often occur before C-MYC/Ig 
(OMIM 147220) translocation. In the mouse plasmacytomas, 
only the mutant MYC allele was expressed, indicating a 
functional homozygosity with occurrence of mutations at the 
translocation. Many mutations were clustered in regions 
associated with transcriptional activation and apoptosis, and 
in the Burkitt lymphomas, they frequently occurred at sites 
of phosphorylation, suggesting that the mutations had a 
pathogenetic role. Most of the mutations were clearly not 
polymorphisms, for reasons in addition to the large number 
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of different mutations observed: 1) a high proportion were 
missense mutations; 2) most tumors contained multiple 
mutations; and 3) each tumor had a unique pattern of 
mutations.  
 
We examined differential expression of c-Myc mRNA in 
hepatocytes after partial hepatectomy in order to 
understand molecular process of c-Myc gene expression. Our 
findings suggest the existence of a short-lived protein, which 
suppresses the expression of c-Myc. In an attempt to identify 
these putative regulatory elements, we mapped DNase I 
hypersensitive sites (HSs) in the rat c-Myc locus in 
hepatocytes after partial hepatectomy. In functional in vivo 
analyses, we elucidated the chromatin structure and 
potentiality of regulating factor(s) for c-Myc gene expression. 
 
Rats were killed at various times after partial hepatectomy 
and total RNA was extracted from their regenerating liver 
[6,7]. Figure 1 shows the results of analysis of the RNA with 
the 3’-half fragment of v-Myc as a probe [8,9]. Essentially 
similar results were obtained when a cloned fragment 
containing exon 1 of the rat c-Myc gene was used as a probe. 
As shown in Figure 1, the amount of the 2.5-kilobase 
transcript of c-Myc had already increased 30 min after the 
operation; it reached a maximum at 1-3 hours and then 
decreased. The bands were traced with ImageJ and 
quantified from their peak areas. Figure 2 compares these 
values with those of normal liver, together with the time 
course of incorporation of 3H-thymidine into the acid-
insoluble fraction of the liver, when injected 
intraperitoneally 1 hour before death. At 30 minutes, the 
amount of c-Myc transcript was 10-fold that in control liver, 
increased to a maximum of 10-15-fold at 1 hour and 
decreased after 4 hours. The decrease was rapid and c-Myc 
transcripts had returned to approximately normal levels 
after 8 hours, although DNA synthesis had not begun to 
increase. 
 
The expression of c-Myc gene was reportedly increased three 
to five-fold at 12-18 hours after partial hepatectomy. In our 
results over the same period, levels of c-Myc gene expression 
were also high, although they were never more than double 
that in normal liver. Examination of c-Myc gene expression at 
earlier stages of the regeneration revealed a conspicuous 
peak soon after partial hepatectomy, whereas the previous 
report did not determine the expression of c-Myc gene at 
that time. We also examined the expression of the Harvey ras 
(H-ras) gene during liver regeneration using the same filters 
as for analysis of the expression of c-Myc gene. In accordance 
with earlier reports, we observed an increase in the 
expression of H-ras gene, but this became evident after 8 
hours, and peaked at a level two to three times that in 
normal liver, at about 30 hours after partial hepatectomy 
[10-12]. In vitro stimulation of B lymphocytes, T 
lymphocytes or cultured fibroblasts with their respective 
specific mitogens is known to induce an immediate increase 
in the expression of c-Myc gene [13]. This increase is 
temporary, and the expression returns to the uninduced 
level by the time DNA replication starts. C-MYC induction is 
not blocked by inhibition of protein synthesis but is instead 
enhanced in mitogen-stimulated cells in vitro. 
 
The present findings show that the same is true for an in vivo 
system in which differentiated resting cells are stimulated to 
proliferate. We examined the effect of inhibition of protein 

synthesis on the expression of c-Myc gene in regenerating 
liver. We observed a 100-fold increase in c-Myc transcription 
in samples from rats treated with cycloheximide 1 hour 
before partial hepatectomy and killed 2 hours after the 
operation (CH). The amount of H-ras transcript was not 
significantly changed by cycloheximide treatment. Therefore, 
the increase in the amount of c-Myc transcript observed in 
cycloheximide treated liver is likely to be the result of 
enhanced synthesis rather than of stabilization of mRNA in 
general [9,14]. However, other possibilities such as specific 
stabilization of c-Myc mRNA cannot be excluded. 
Interestingly, a similar increase has also been found in a 
sample from a rat without partial hepatectomy treated 3 
hours previously with cycloheximide. This effect of 
cycloheximide alone was prolonged and was even increased 
by about 600-fold at 6 hours after treatment with and 
without partial hepatectomy. Thus, the mode of induction of 
C-MYC by cycloheximide seems to be different from that in 
regenerating liver, where the induction is temporary and the 
extent of induction is increased up to 10-15-fold. Enhanced 
induction by cycloheximide was also observed when 
treatment was preceded by partial hepatectomy. Hence, 
inhibition of protein synthesis seems to block the switch-off 
of c-Myc transcription observed at 4 hours or later after 
partial hepatectomy.  
 
To identify additional regulatory elements in the c-Myc locus, 
we performed DNase I hypersensitive site (HS) analyses of 
hepatocytes after partial hepatectomy. Examination of the C-
MYC chromatin in hepatocytes after partial hepatectomy 
would allow detecting potential tissue specific difference in 
DNase I hypersensitivity. DNA from DNase I treated nuclei of 
hepatocytes after partial hepatectomy was initially digested 
with Sac I and evaluated for location of HSs by Southern blot 
hybridization using probe pGEMmyc1 (Fig. 3). Similar 
studies of the c-Myc chromatin have so far been confined to 
the coding and immediate downstream region of the gene, 
which was digested with Hind III (Fig. 3). From the broad 
panel of different examined cell lines, we conclude that 
transcriptionally active c-Myc genes exhibit this pattern of 
DNase I HSs (Fig. 3). As shown in Figure 3, cleavage by 
DNase I created additional, smaller subfragments, 
corresponding to previously unidentified hypersensitive 
sites located within first exon and first intron. Following the 
nomenclature of the HSs in the promoter region and first 
intron of c-Myc gene, we designated the three most 
prominent HS sites I, II, and III in upstream region of c-Myc 
first exon and I*, II*, and III* in c-Myc first intron (Fig. 3).  
 
As shown here and in an earlier report, c-Myc transcription 
is increased immediately after the cells have been stimulated 
to proliferate, but this expression of c-Myc stops soon after it 
has reached a maximum. Because inhibition of protein 
synthesis enhances the induction of C-MYC, it seems likely 
that c-Myc gene is repressed by a short-lived protein that 
becomes abundant soon after the onset of the proliferative 
process. Based on observations in Burkitt’s lymphoma cells 
in which c-Myc genes were translocated to immunoglobulin 
gene loci, Leder et al. have elaborated several possible 
models concerning the regulatory mechanisms of c-Myc gene 
[15]. Among these, the auto regulatory model is the simplest, 
yet it is consistent with the facts that c-Myc gene is expressed 
transiently following inductive stimulation and that c-Myc 
mRNA is induced by the inhibition of protein synthesis. In 
Eschericha coli, analogous auto regulatory mechanisms have 
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been described for a stress protein, dnaK, and for a repressor 
protein in the SOS function, lexA, which becomes extensively 
but transiently expressed after inductive stimuli [16,17]. The 
induction following the proliferative signal can be explained 
by supposing that the signal activates a process, such as 
modification of C-MYC protein, thereby abolishing its 
repressor activity. Expression of C-MYC at a low but distinct 
level in various tissues is also consistent with auto regulation 
[18]. Another possibility is that expression of c-Myc gene is 
repressed by some other “early gene” products [19]. Such 
gene products are expressed transiently at an early stage in 
mitogen-stimulated fibroblasts and the levels of their mRNA 
are enhanced by inhibition of protein synthesis. 
 
We have found previously that in all chemically induced 
primary hepatomas examined, the level of c-Myc transcript 
was three to five times that in normal liver or normal liver 
tissue adjacent to the tumor [12]. Altered regulation of c-Myc 
gene in some B-cell lymphomas and in other tumor cells as a 
result of translocation, viral enhancer insertion or gene 
amplification are well established phenomena [20,21]. 
Recently, in normal fibroblasts, C-MYC was reportedly 
induced by growth stimulation, but that it was constitutive in 
two chemically transformed derivatives of fibroblasts 
[22,23]. These facts strongly suggest that altered regulation, 
and perhaps abnormal increase in the expression of C-MYC, 
might prevent the cells from entering the G0 phase and thus 
lea to their infinite growth. Further studies on the regulation 
of mutant C-MYC as well as normal C-MYC increase our 
understanding of the processes involved in the development 
of cancer (Fig. 4). 
 
C-MYC, oncogene as well as its paralogs MYCN and MYCL1, 
has been shown to play essential roles in cycling progenitor 
cells born from proliferating zones during embryonic 
development. After birth, MYC plays important roles in the 
proliferation of all cell types. MYC, MYCN, and MYCL1 
amplifications have all been described in malignancy 
associated with poor prognosis (Fig. 4). C-MYC represents 
one of the most sought-after drug targets in cancer. C-MYC 
transcription factor is an essential regulator of cell growth in 
most cancers. Over 40 years of research and drug 
development efforts did not yield a clinically useful C-MYC 
inhibitor [24,25]. Chronological development of small-
molecule MYC prototype inhibitors and corresponding 
binding sites are comprehensively reviewed and emphasis is 
placed on modern computational drug design methods. On 
the outlook, technological advancements may soon provide 
the so long-awaited MYC clinical candidate for precision 
medicine in cancer therapy. 
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Figure 1 Levels of rat c-Myc transcripts in the liver at various times after partial hepatectomy. 

 
Male Sprague-Dawley (SD) Rats (200-250 g, CHARLES RIVER LABORATORIES JAPAN, INC., Kanagawa, Japan) were partially 
hepatectomized under ether anaesthesia following the method [2]. The rats were killed at the indicated times after the 
operation and total RNA was extracted from the liver by guanidium thiocyanate hot phenol method [18]. The RNAs (10 g per 
one sample) were separated on 1.2% agarose gel containing 6% HCHO3, blotted onto a nitrocellulose membrane filter and 
hybridized to a nick-translated 3’-half SalI-Pst1 fragment of v-Myc, which was [-32P]dATP-labelled [4]. Each sample represents 
an RNA sample from one rat. After exposure, the probe was removed and the RNA was re-hybridized to [-32P]dATP-labelled v-
Ras and mouse rDNA sequences. These probes were insert fragments of plasmids BS9 (ref. 25) and p6.6 (ref. 26), respectively. 
The size of rat C-Myc trtanscript was estimated from the position of its bands relative to that of rRNA. 

 
Figure 2 Relationship between the appearance of C-Myc transcript and DNA synthesis in regenerating rat liver. 
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The Fuji imaging file shown in Fig.1 and the autoradiogram of rRNA of the same filter were scanned with a ImageJ. The amount 
of c-Myc transcript in each sample relative to that of 28S rRNA of the same lane was determined and expressed relative to the 
value for control liver. The RNAs to DNAs ratio did not change appreciably during the 19 hours of rat liver regeneration. 
Because rRNA represents the majority of the total RNA, the relative amount of c-Myc mRNA per DNA and therefore per cell in 
each samples, can be approximated by the relative ratio of c-myc transcript to 28S rRNA. DNA synthesis was measured as 
follows. Rats were injected intraperitoneally with 3H-thymidine (TdR) at 100 Ci per rat 1 hour before death. Their livers were 
homogenized in 20-fold excess of the PK buffer described by Favaloro et al. [21]. One hundred L of the homogenates were 
spotted onto a glass fiber filter and their acid-insoluble radio activities were counted. The points shown are the average of 
duplicates with the ranges indicated. 

 

 
Figure 3 Mapping of HSs of rat c-Myc locus. 

 
DNase I treated and Sac I or Hind III digested DNA samples were probed with pGEMmyc1. As shown here for hepatocytes from 
rats, which were killed 2 hours after partial hepatectomy, HSs located in upstream from C-Myc first exon and in C-Myc first 
intron were marked with roman numeral; I, II, III, I*, II*, and III*. 

 

 
Figure 4 Significance of C-MYC in cell cycle. 

 
Soon after the discovery of the MYC gene (C-MYC), it became clear that MYC expression levels tightly correlate to cell 
proliferation. The entry in cell cycle of quiescent cells upon MYC enforced expression has been described in many models. Also, 
the down regulation or inactivation of MYC results in the impairment of cell cycle progression. Given the frequent deregulation 
of MYC oncogene in human cancer it is important to dissect out the mechanisms underlying the role of MYC on cell cycle 
control. Activated mutant C-MYC dramatically induces epithelial transformation. 
 
 


