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ABSTRACT 
We study the error in the derivatives of an unknown function. We construct 
the discretized problem. The local truncation and global errors are discussed. 
The solution of discretized problem is constructed. The analytical and 
discretized solutions are compared. The two solution graphs are described by 
using MATLAB software. 
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1. INTRODUCTION 
1.1. Measuring Errors 
In order to discuss the accuracy of a numerical solution, it is necessary to 
choose a manner of measuring that error. It may seem obvious what is meant by 
the error, but as we will see there are often many different ways to measure the 
error which can sometimes gives quite different impressions as to the accuracy 
of an approximate solution. 
 

1.1.1. Errors in a Scalar Value 
First we consider a problem in which the answer is a single value Rz . 
Consider, for example, the scalar ODE 

 )0()),(()( utuftu      (1.1) 
 

and suppose we are trying to compute the solution at some particular time T, so 
z=u( T). Denote the computed solution by 
 

ẑ . Then the error in this computed solution is 
zzE  ˆ       (1.2) 

 
1.1.2. Absolute Error 
A natural measure of this error would be the absolute value 
of E, 

zzE  ˆ
      

(1.3) 

 
This is called the absolute error in the approximation. 
 
1.1.3. Relative Error 

The error defined by 
z

zz ˆ  is called relative error. 

 
1.1.4. “Big-oh” and “little-oh” notation 
In discussing the rate of convergence of a numerical method 
we use the notation )( pO  , the so-called “big-oh” notation. If 

)(f  and )(g  are two functions of   then we say that 

))(()(  gOf  as 0 . 
 

If there is some constant C such that C
g

f


)(

)(


  for all   

sufficiently small, or equivalently, if we can bound 
)()(  gCf   for all   sufficiently small. 

 
It is also sometimes convenient to use the “little-oh” 

notation ))(()(  gOf  as 0 . This means that 0
)(

)(





g

f as 

0 . This is slightly stronger than the previous statement, 
and means that )(f  decays to zero faster than )(g . If 

))(()(  gof   then ))(()(  gOf   though the converse may  
not be true. Saying that )1()( of   simply means that the 

0)( f as 0 . 

 
Examples 1.1.1 

)(2 23  O as 0 , since 12
2

2

3

 

  for all 

2

1
 . 

)(2 23  o as 0 , since 02   for all 
2

1
 . 

)()sin(  O as 0 ,since   ...
53

)sin(
53

 for all 

0 . 

)()sin(  o as 0 , since  
)(

)sin( 2



O

  . 

 
1.1.5. Taylor Expansion 
Each of the function values of u can be expanded in a Taylor 
series about the point x, as e.g., 

)()(
6

1
)(

2

1
)()()( 432  Oxuxuxuxuxu 

  
(1.4) 

 

)()(
6

1
)(

2

1
)()()( 432  Oxuxuxuxuxu 

  
(1.5) 

 
1.2. Finite Difference Approximations 
Our goal is to approximate solutions to differential equation, 
i.e. to find a function (or some discrete approximation to this 
function) which satisfies a given relationship between 
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various of its derivatives on some given region of space and/ 
or time along with some boundary conditions along the edges 
of this domain. A finite difference method proceeds by 
replacing the derivatives in the differential equations by finite 
difference approximations. This gives a large algebraic 
system of equations to be solve in place of the differential 
equation, something that is easily solved on a computer. 
 
We first consider the more basic question of how we can 
approximate the derivatives of a known function by finite 
difference formulas based only on values of the function itself 
at discrete points. Besides providing a basis for the later 
development of finite difference methods for solving 
differential equations, this allows us to investigate several 
key concepts such as the order of accuracy of an 
approximation in the simplest possible setting. 
 
Let u(x) represent a function of one variable that will always 
be assumed to be smooth, defined bounded function over an 
interval containing a particular point of interest x, 
 
1.2.1. First Derivatives 
Suppose we want to approximate )(xu by a finite difference 
approximation based only on values of u at a finite number of 
points near x. One choice would be to use 
 


 )()(

)(
xuxu

xu



 

 

 
)()(

2

1
)( 2 Oxuxu 

     
(1.6) 

 
for some small values of . It is known as forward 
difference approximation. 
 
Another one-sided approximation would be 
 


 )()(

)(



xuxu

xu
 

 

 
)()(

2

1
)( 2 Oxuxu 

     
(1.7) 

 
for two different points.It is known as backward difference 
approximation. 
 
Another possibility is to use the centered difference 
approximation 
 

 


2

)()(
)(0




xuxu
xu

 
 

 
)]()([

2

1
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)(

6

1
)( 42  Ouxu 

     
(1.8) 

 
1.2.2. Second Order Derivatives 
The standard second order centered approximation is 
given by 

2
2 )()(2)(

)(


 


xuxuxu
xu

   
(1.9) 

 
)()(

12

1
)( 42  Oxuxu 

 
 

 )()( 2Oxu   

 
1.2.3. Higher Order Derivatives 
Finite difference approximations to higher order derivatives 
can be obtained. 

)]()(3)(3)2([
1

)(
3

2 


  xuxuxuxuxu
  

(1.10) 

 

 
)()(

2

1
)( 2 Oxuxu 

 
 

 )()( Oxu   
 
The first one equation (1.10) is un-centered and first order 
accurate:  

)]2()(2)(2)2([
2

1
)( 30 


  xuxuxuxuxu

  
(1.11) 

 

 
)()(

4

1
)( 42  Oxuxu 

 
 

 )()( 2Oxu   
This second equation (1.12) is second order accurate. 
 
2. Comparison Of Analytical and Discretized Solution 

Of Heat Equation 
2.1 Solutions for the Heat Equation 
2.1.1. Finite Difference Method 
We will derive a finite difference approximation of the 
following initial boundary value problem: 

xxt uu 
 
for 0),1,0(  tx  

 
0),1(),0(  tutu  for 0t  (2.1) 

 
)()0,( xfxu   for )1,0(x  

 
Let 0n  be a given integer, and define the grid spacing in the 
x-direction by  

)1(

1




n
x 

 

 
The grid points in the x-direction are given by 

 j=x j  
for j=0,1,…,n+1. Similarly, we define tm=mh for 

 

 integers 0m , where th   denotes the time step. Then, we 

let 
 
 m

jv  denote an approximation of u(xj,tm). We have the 

following 
 approximations 
  

 )(
),(),(

),( hO
h

txuhtxu
txut 


     (2.2) 

 
 and 

)(
),(),(2),(

),( 2
2





O

txutxutxu
txuxx 


   (2.3) 

These approximations motivate the following scheme: 
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m
j

m
j

m
j

m
j

m
j vvv

h

vv 
 


  for j=1,…,n, 0m   

(2.4) 

 
By using the boundary conditions of (2.1), we have 

00 mv  and 01 
m
nv  , for all 0m . 

 
The scheme is initialized by 

)(0
jj xfv 

 , for j=1,…,n. 

Let 
2
h

r 
. Then the scheme can be rewritten in a more 

convenient form 
m
j

m
j

m
j

m
j rvvrrvv 11

1 )21( 
 

, j=1,…,n, 0m   (2.5) 
 
When the scheme is written in this form, we observe that the 
values on the time level tm+1 are computed using only the 
values on the previous time level tm and we have to solve a 
tridiagonal system of linear equations. 
 
2.1.2 Approximate Solution 
The first step in our discretized problem is to derive a family 
of particular solutions of the following problem: 
 

2

11
1 2



m
j

m
j

m
j

m
j

m
j vvv

h

vv 
 




 for j=1,…,n, 0m   (2.6) 
 
with the boundary conditions 

00 mv
 and 

01 
m
nv  , for all 0m .   (2.7) 

 
The initial data will be taken into account later. We seek 
particular solutions of the form 

mj
m
j TXv 

 for j=1,…,n, 0m     (2.8) 
 
Here X is a vector of n components, independent of m, while 

0}{ mmT  is a sequence of real numbers. By inserting (2.8) 
into (2.6), we get 

2

111 2


mjmjmjmjmj TXTXTX

h

TXTX  




 
 
Since we are looking only for nonzero solutions, we assume 

that 
0mjTX

 , and thus we obtain 

j

jjj

m

mm

X

XXX

hT

TT
2

111
2









. 
 
The left-hand side only depends on m and the right-hand side 
only depends on j. Consequently, both expressions must be 

equal to a common constant, say )(  , and we get the 
following two difference equations: 

j
jjj X

XXX





 
2

11 2

 , for j=1,…,n,   (2.9) 
 

m
mm T

h

TT


1

 for 0m .     (2.10) 
 
We also derive from the boundary condition (2.7) that 

010  nXX
     (2.11) 

 
We first consider the equation (2.10). We define T0=1 and 
consider the difference equation 

mm ThT )1(1   for 0m .    (2.12) 
 
Some iterations of (2.12) 
 

mm ThT )1(1   
 1

2)1(  mTh  
 . 
 . 
 . 

 0
1)1( Th m   

 
1)1(  mh  

 
Clearly indicate that the solution is  

m
m hT )1(   for 0m .     (2.13) 

 
This fact is easily verified by induction on m. Next we turn 
our attention to the problem (2.9) with boundary condition 
(2.11). In fact this is equivalent to the eigenvalue problem. 

Hence, we obtain that the n eigenvalues n ,...,, 21  are given 
by 
 

)cos(
22
22




 k
 

 

 
))cos(1(

2
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2
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2
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4 2
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 k
 for n,...,1    (2.14) 

 
and the corresponding eigenvectors 

,),...,,( ,2,1,
n

nk RXXXX    n,...,1  
 
have components given by  

 )sin(,  jX j    
 

 
)sin(, jj jxX  

, j=1,…,n. 
 
It can be easily verified that 
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jX ,  

Hence, we obtain particular solutions 
m

jv ,  of the form 
)sin()1(, j

mm
j xhv       (2.15) 

 

We have derived a family of particular solutions 
nv 1}{   with 

values 
m

jv ,  at the grid point (xj,tm). Next, we observe that 
any linear combination of particular solutions 





n

vv
1


 , (   is scalar) 

 
is also a solution of (2.6) and (2.7). Finally, we determine the 

coefficients {  } by using the initial condition 

)(0
jj xfv 

 , for j=1,…,n. 

Since  Xv   at t=0 , we want to determine {  } such that 

)(
1

, j

n

j xfX 



 , for j=1,…,n.    (2.16) 

 
Hence, it follows from 





n

jj xxf
1

)sin()(


 
 

 

h

n

jjhjsj xsxxfX 



1

sin,sin)(,


 
 

that 
 





n

j
jj Xxf

1
,)(2  

 for n,...,1  
 
2.1.3. Exact Solution 
To find a solution of the initial-boundary value problem (2.1), 
assume that  

)()(),( tTxXtxu        (2.17) 
 
Using boundary conditions we get 
  
 X(0) = X(1) = 0 
 
If we insert the (2.17) in the equation (2.1), we have 

)(

)(

)(

)(

tT

tT

xX

xX 




      (2.18) 
 
Now we observe that the left hand side is a function of x , 
while the right hand side just depends on t. Hence, both have 
to be equal to the same constant R . This yields the 
eigenvalue problem for x 

XX  , X(0) = X(1) = 0    (2.19) 
 

Nontrivial solutions only exist for special values of   
They are so-called the eigenfunctions. In this special case we 
have the eigenvalues 

2)(    for ,.....2,1     (2.20) 
 
with the eigenfunctions 

)sin()( xxX    for ,.....2,1    (2.21) 
 

Further, the solution of TT   is given by
tetT

2)()( 


  for 
,.....2,1       (2.22) 

 
Finally, we use the superposition principle to a solution to the 
initial-boundary value problem (2.1), and we get 
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)sin(),(
1

)( 2

xectxu t 










 

 
The unknown coefficients can be determined from the initial 
condition such that 

)sin()(
1

xcxf 








     (2.23) 

 
 The solution of the continuous problem is given by 

)sin(),(
1

xectxu t 











    (2.24) 

 

where 
2)(   fourier coefficient 


1

0

)sin()(2 dxxxfc 

     (2.25) 
 
2.2. Comparison of Analytical and Discretized Solution 
2.2.1. We want to compare this analytical solution with 

the discretized solution given by 





n

j
mm

j xhv
1

)sin()1(


 
    (2.26) 

 
where  









2
sin

4 2
2





     (2.27) 

 
and 





n

j
jj xxf

1

)sin()(2  

 for n,...,1    (2.28) 
 
In order to compare the analytical and discretized solution at 

a grid point (xj,tm), we define 
),( mj

m
j txuu 

, i.e, 
 

)sin(
1

j
tm

j xecu m 











     (2.29) 

 
Our aim is to prove 

m
j

m
j uv 

 
 
under appropriate conditions on the mesh parameters   and 
h. To avoid technicalities, we consider a fixed grid point 

(xj,tm) where 
ttm   for t >0 independent of the mesh 
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parameters. Furthermore, we assume that the initial function 
f is smooth and satisfies the boundary conditions, i.e. f(0) 
=f(1) =0. Finally we assume that the mesh parameters h and 
  are sufficiently small. 

In order to compare 
m
ju  and 

m
jv , we note that 

)sin(),(
1

j
t

mj xectxu m 
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Here we want to show that 
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     (2.30) 
 
Since f is smooth, it is also bounded and then the Fourier 

coefficients c  are bounded for all  . 
Obviously, we have 

1)sin( jx
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0 , for large value of n. 

Since we have verified (2.30) it follow that 
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     (2.31) 

 
Now we want to compare the finite sums (2.26) and (2.31): 
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Motivated by the derivation of the solutions, we try to 
compare the two sums term wise. Thus we keep   fixed, and 
we want to compare  

)sin( j
t xec m 




 and )sin()1( j
m xh    . 

 

Since the sine part here is identical, it remains to compare the 

Fourier coefficients c  and  , and the time-dependent terms 
mte 

 and 
mh )1(  . 

 

 2.2.2. Comparison of Fourier coefficient c  and 
coefficient    

We start by considering the Fourier coefficients, and note that 
  is a good approximation of c  because 
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)( 2O  , for f sufficiently smooth. 
 

2.2.3 Comparison of the Terms 
mh )1(   and 

mte 
 

We will compare the term 
mh )1(   approximates the term 

mte 
, we simplify the problem a bit by choosing a fixed time 

tm , say tm=1 and we assume that 2

2
h

. As a consequence, 
we want to compare the terms 
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Since both   and   are very small for large values of  , it 
is sufficient to compare them for small  . In order to 

compare   and   for small values of  , we start by 
recalling that 
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This shows that also the time dependent term 
mte 

 is well 

approximated by its discrete 
mh )1(  . 

 
2.3 Consistency 
Lemma 2.3.1. 
The finite difference scheme (2.6) is consistent of order (2,1). 
Proof: 
Local truncation error of the finite difference scheme (2.6) is 
given by 
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The finite difference scheme (2.6) is consistent of order 
(2,1). 
Example 2.3.1 
Solve the IVP 

xxt uu 
 for )1,0(x  , t > 0 

0),1(),0(  tutu  for 0t     (2.34) 
 

)()0,( xfxu   for )1,0(x . 
 
The exact solution is given by 

 xeu t  sin
2  

 
Approximate solution and exact solution are 

illustrated by 2.1. 

 
Figure2.1: Comparison of Exact and Approximate 

Solutions 
 

MATLAB codes for Figure 2.1 

N=100 ; x=zeros (N,1) ; 

g= zeros (N,1) ; 

v=zeros (N,N) ; 

%delta x=h, delta t=p 
 
%f (x)=cos (2*pi*x) ; 
H=1/(N+1) ; 
P=1/(N+1) ; 
 
for j = 1:N 
 x ( j )=j*h ; 
 
end 
%for m=1:N 
% t ( m )=m*p ; 
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%end 
%gamma k 
for k=1:N 
 
 sum=0 ; 
 for j=1:N 
 term=2*h*sin ( 2*pi*x ( j ))*sin (k*pi*x ( j )); 
 sum=sum+term ; 
 end 
 g ( k )=sum ; 
end 
%vk 
for k=1 : N 
 for j = 1 : N 
 v ( k , j )=p*(4/h^2)*(sin(k*pi*h/2))^2)*sin(k*pi*x(j)) ; 
 
 end 
 v ( k , : ) ; 
 
end 
sum 1 =0 ; 
for k= 1 : N 

 term1=g ( k ) . *v ( k , :) ; 
 sum1=sum1+term1 ; 
 s =sum1 ; 
end 
 
%%%Approximate solution 
plot ( x , s , ‘ – ‘) ; hold on 
%%%%%%Exact solution 
Plot ( x ,-exp (-*pi^2*0.01 )*sin(pi*x) ) ; 
 
3. CONCLUSION 
The aim of this research paper describe the Errors between 
Analytical solution and Discretized solution of Differential 
equations. 
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