How to cite this paper: Wai Mar Lwin | Khang Khang Wai "Errors in the Discretized Solution of a Differential Equation" Published in International Journal of Trend in Scientific Research and Development (IJTSRD), ISSN: 2456-6470, Volume-3 | Issue-5, August 2019, pp.2266-2272, https://doi.org/10.31142/ijtsrd27937

ABSTRACT
We study the error in the derivatives of an unknown function. We construct the discretized problem. The local truncation and global errors are discussed. The solution of discretized problem is constructed. The analytical and discretized solutions are compared. The two solution graphs are described by using MATLAB software.

KEYWORDS: Differential Equations, MATLAB, Heat Equation

1. INTRODUCTION
1.1. Measuring Errors
In order to discuss the accuracy of a numerical solution, it is necessary to choose a manner of measuring that error. It may seem obvious what is meant by the error, but as we will see there are often many different ways to measure the error which can sometimes gives quite different impressions as to the accuracy of an approximate solution.

1.1.1. Errors in a Scalar Value
First we consider a problem in which the answer is a single value \(z \in \mathbb{R} \). Consider, for example, the scalar ODE

\[u'(t) = f(u(t)), u(0) = \eta \]

(1.1)

and suppose we are trying to compute the solution at some particular time \(T \), so \(z = u(T) \). Denote the computed solution by \(\hat{z} \). Then the error in this computed solution is

\[E = \hat{z} - z \]

(1.2)

This is slightly stronger than the previous statement, and means that \(f(\tau) \) decays to zero faster than \(g(\tau) \). If \(f(\tau) = o(g(\tau)) \) then \(f(\tau) = O(g(\tau)) \) though the converse may not be true. Saying that \(f(\tau) = o(1) \) simply means that the \(f(\tau) \to 0 \) as \(\tau \to 0 \).

Examples 1.1.1

\[2\tau^2 = O(\tau^2) \text{ as } \tau \to 0, \text{ since } \frac{2\tau^3}{\tau^2} = 2\tau < 1 \text{ for all } \tau < \frac{1}{2}. \]

\[2\tau^3 = O(\tau^2) \text{ as } \tau \to 0, \text{ since } 2\tau^2 \to 0 \text{ for all } \tau < \frac{1}{2}. \]

\[\sin(\tau) = O(\tau) \text{ as } \tau \to 0, \text{ since } \sin(\tau) = \tau - \frac{\tau^3}{3} + \frac{\tau^5}{5} + \ldots < \tau \text{ for all } \tau > 0. \]

\[\sin(\tau) = \tau + o(\tau) \text{ as } \tau \to 0, \text{ since } \frac{(\sin(\tau) - \tau)}{\tau} = O(\tau^2). \]

1.1.5. Taylor Expansion
Each of the function values of \(u \) can be expanded in a Taylor series about the point \(x \), as e.g.,

\[u(x + \tau) = u(x) + \frac{u(x)}{2!} \tau^2 + \frac{1}{6} \tau^4 u''(x) + O(\tau^4) \]

(1.4)

\[u(x - \tau) = u(x) - \frac{u(x)}{2} \tau^2 + \frac{1}{6} \tau^4 u''(x) + O(\tau^4) \]

(1.5)

1.2. Finite Difference Approximations
Our goal is to approximate solutions to differential equation, i.e. to find a function (or some discrete approximation to this function) which satisfies a given relationship between
various of its derivatives on some given region of space and/or time along with some boundary conditions along the edges of this domain. A finite difference method proceeds by replacing the derivatives in the differential equations by finite difference approximations. This gives a large algebraic system of equations to be solve in place of the differential equation, something that is easily solved on a computer.

We first consider the more basic question of how we can approximate the derivatives of a known function by finite difference formulas based only on values of the function itself at discrete points. Besides providing a basis for the later development of finite difference methods for solving differential equations, this allows us to investigate several key concepts such as the order of accuracy of an approximation in the simplest possible setting.

Let \(u(x) \) represent a function of one variable that will always be assumed to be smooth, defined bounded function over an interval containing a particular point of interest \(x \).

1.2.1. First Derivatives

Suppose we want to approximate \(u'(x) \) by a finite difference approximation based only on values of \(u \) at a finite number of points near \(x \). One choice would be to use

\[
\delta_x u(x) = \frac{u(x + \tau) - u(x)}{\tau}
\]

for some small values of \(\tau \). It is known as forward difference approximation.

Another one-sided approximation would be

\[
\delta_- u(x) = \frac{u(x) - u(x - \tau)}{\tau}
\]

for two different points. It is known as backward difference approximation.

Another possibility is to use the centered difference approximation

\[
\delta_0 u(x) = \frac{u(x + \tau) - u(x - \tau)}{2\tau}
\]

\[
= \frac{1}{2} \{ \delta_+ u(x) + \delta_- u(x) \}
\]

for \(\tau \) sufficiently small. It is known as the centered difference approximation.

1.2.2. Second Order Derivatives

The standard second order centered approximation is given by

\[
\delta^2_x u(x) = \frac{u(x - \tau) - 2u(x) + u(x + \tau)}{\tau^2}
\]

\[
= u''(x) + O(\tau^2)
\]

\[
= u''(x) + \frac{1}{12} \tau^2 u''''(x) + O(\tau^4)
\]

\[
= u''(x) + O(\tau^4)
\]

1.2.3. Higher Order Derivatives

Finite difference approximations to higher order derivatives can be obtained.

\[
\delta_x^2 u(x) = \frac{1}{\tau^2} [u(x + 2\tau) - 3u(x + \tau) + 3u(x) - u(x - \tau)]
\]

\[
= u'''(x) + \frac{1}{12} \tau^2 u'''''(x) + O(\tau^4)
\]

\[
= u'''(x) + O(\tau^4)
\]

The first equation (1.10) is un-centered and first order accurate:

\[
\delta_x^2, \delta_x^4, \delta_x^6 u(x) = \frac{1}{2\tau}[u(x + 2\tau) - 2u(x + \tau) + 2u(x - \tau) - u(x - 2\tau)]
\]

\[
= u''''(x) + \frac{1}{4} \tau^2 u'''''(x) + O(\tau^4)
\]

This second equation (1.12) is second order accurate.

2. **Comparison Of Analytical and Discretized Solution Of Heat Equation**

2.1 Solutions for the Heat Equation

2.1.1. Finite Difference Method

We will derive a finite difference approximation of the following initial boundary value problem:

\[
u_t = \delta_x^2 u(x, t)
\]

\[
u(0, t) = \nu(1, t) = 0 \quad \text{for} \quad t \geq 0
\]

\[
u(x, 0) = f(x) \quad \text{for} \quad x \in (0, 1)
\]

Let \(\Delta t = \tau \) be a given integer, and define the grid spacing in the \(x \)-direction by

\[
\Delta x = \frac{1}{n + 1}
\]

\[
\delta x = \frac{1}{m + 1}
\]

\[
\delta^2 x = \frac{1}{n + 1}
\]

The grid points in the \(x \)-direction are given by

\[
x_j = j\Delta x \text{ for } j = 0, 1, ..., n + 1.
\]

Similarly, we define \(\Delta t = \tau \) for integers \(m \geq 0 \), where \(h = \Delta t \) denotes the time step. Then, we let

\[
u^*_n
\]

denote an approximation of \(u(x, n\Delta t) \). We have the following approximations

\[
u_t = \frac{u(x, t + h) - u(x, t)}{h} + O(h)
\]

and

\[
u_{xx}(x, t) = \frac{u(x - \tau, t) - 2u(x, t) + u(x + \tau, t)}{\tau^2} + O(\tau^2)
\]

These approximations motivate the following scheme:
\[
\frac{v_{j}^{m+1} - v_{j}^{m}}{\tau} = \frac{v_{j+1}^{m} - 2v_{j}^{m} + v_{j-1}^{m}}{\tau^2} \quad \text{for } j = 1, \ldots, n, \quad m \geq 0 \quad (2.4)
\]

By using the boundary conditions of (2.1), we have
\[v_{0}^{m} = 0 \quad \text{and} \quad v_{m+1}^{m} = 0, \quad \text{for all } m \geq 0.
\]

The scheme is initialized by
\[v_{j}^{0} = f(x_{j}), \quad \text{for } j = 1, \ldots, n.
\]

Let \(r = \frac{h}{\tau^2}\). Then the scheme can be rewritten in a more convenient form
\[
v_{j}^{m+1} = rv_{j}^{m} + (1 - 2r)v_{j}^{m} + rv_{j+1}^{m}, \quad j = 1, \ldots, n, \quad m \geq 0 \quad (2.5)
\]

When the scheme is written in this form, we observe that the values on the time level \(tm+1\) are computed using only the values on the previous time level \(tm\) and we have to solve a tridiagonal system of linear equations.

2.1.2 Approximate Solution

The first step in our discretized problem is to derive a family of particular solutions of the following problem:

\[
\frac{v_{j}^{m+1} - v_{j}^{m}}{h} = \frac{\partial^2 v_{j}^{m}}{\tau^2} \quad \text{for } j = 1, \ldots, n, \quad m \geq 0
\]

with the boundary conditions
\[
v_{0}^{m} = 0 \quad \text{and} \quad v_{m+1}^{m} = 0, \quad \text{for all } m \geq 0.
\]

The initial data will be taken into account later. We seek particular solutions of the form
\[v_{j}^{m} = X_{j}T_{m} \quad \text{for } j = 1, \ldots, n, \quad m \geq 0 \quad (2.8)
\]

Here \(X\) is a vector of \(n\) components, independent of \(m\), while \(\{T_{m}\}_{m \geq 0}\) is a sequence of real numbers. By inserting (2.8) into (2.6), we get

\[
\frac{X_{j}^{m+1} - X_{j}^{m}}{h} = \frac{X_{j+1}^{m} - 2X_{j}^{m} + X_{j-1}^{m}}{\tau^2}T_{m} \quad (2.6)
\]

and the corresponding eigenvalues \(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\) are given by

\[
\mu_{k} = \frac{2}{\tau^2} \left(\cos(\kappa \pi \tau) - 1 \right) \quad (2.14)
\]

and the corresponding eigenvectors \(X_{k} = (X_{k,1}, X_{k,2}, \ldots, X_{k,n}) \in \mathbb{R}^{n}\), \(k = 1, \ldots, n\) have components given by

\[X_{k,j} = \sin(\kappa \pi j) \quad (2.13)
\]

It can be easily verified that
\[AX_{j} = -\frac{1}{\tau^2}X_{j-1} + \frac{2}{\tau^2}X_{j} - \frac{1}{\tau^2}X_{j+1} \quad (2.9)
\]

The left-hand side only depends on \(m\) and the right-hand side only depends on \(j\). Consequently, both expressions must be equal to a common constant, say \(-\mu\), and we get the following two difference equations:

\[
\frac{X_{j}^{m+1} - 2X_{j}^{m} + X_{j}^{m-1}}{\tau^2} = -\mu X_{j}^{m} \quad \text{for } j = 1, \ldots, n \quad (2.9)
\]

\[
\frac{T_{m+1} - T_{m}}{h} = -\mu T_{m} \quad \text{for } m \geq 0 \quad (2.10)
\]

We also derive from the boundary condition (2.7) that
\[X_{0} = X_{n+1}^{m} = 0 \quad (2.11)
\]

We first consider the equation (2.10). We define \(T_{0} = 1\) and consider the difference equation

\[
T_{m+1} = (1-h\mu)T_{m} \quad \text{for } m \geq 0 \quad (2.12)
\]

Some iterations of (2.12)

\[
T_{m+1} = (1-h\mu)T_{m} = (1-h\mu)^{2}T_{m-1} \quad
\]

Clearly indicates that the solution is
\[T_{m} = (1-h\mu)^{m} \quad \text{for } m \geq 0 \quad (2.13)
\]

This fact is easily verified by induction on \(m\). Next we turn our attention to the problem (2.9) with boundary condition (2.11). In fact this is equivalent to the eigenvalue problem.

Hence, we obtain that the \(n\) eigenvalues \(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\) are given by

\[
\mu_{k} = \frac{2}{\tau^2} \left(\cos(\kappa \pi \tau) - 1 \right) \quad (2.14)
\]

and the corresponding eigenvectors \(X_{k} = (X_{k,1}, X_{k,2}, \ldots, X_{k,n}) \in \mathbb{R}^{n}\), \(k = 1, \ldots, n\) have components given by

\[X_{k,j} = \sin(\kappa \pi j) \quad (2.13)
\]

It can be easily verified that
\[AX_{j} = -\frac{1}{\tau^2}X_{j-1} + \frac{2}{\tau^2}X_{j} - \frac{1}{\tau^2}X_{j+1} \quad (2.9)
\]

The left-hand side only depends on \(m\) and the right-hand side only depends on \(j\). Consequently, both expressions must be equal to a common constant, say \(-\mu\), and we get the following two difference equations:

\[
\frac{X_{j}^{m+1} - 2X_{j}^{m} + X_{j}^{m-1}}{\tau^2} = -\mu X_{j}^{m} \quad \text{for } j = 1, \ldots, n \quad (2.9)
\]

\[
\frac{T_{m+1} - T_{m}}{h} = -\mu T_{m} \quad \text{for } m \geq 0 \quad (2.10)
\]

We also derive from the boundary condition (2.7) that
\[X_{0} = X_{n+1}^{m} = 0 \quad (2.11)
\]

We first consider the equation (2.10). We define \(T_{0} = 1\) and consider the difference equation

\[
T_{m+1} = (1-h\mu)T_{m} \quad \text{for } m \geq 0 \quad (2.12)
\]

Some iterations of (2.12)

\[
T_{m+1} = (1-h\mu)T_{m} = (1-h\mu)^{2}T_{m-1} \quad
\]

Clearly indicates that the solution is
\[T_{m} = (1-h\mu)^{m} \quad \text{for } m \geq 0 \quad (2.13)
\]

This fact is easily verified by induction on \(m\). Next we turn our attention to the problem (2.9) with boundary condition (2.11). In fact this is equivalent to the eigenvalue problem.

Hence, we obtain that the \(n\) eigenvalues \(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\) are given by

\[
\mu_{k} = \frac{2}{\tau^2} \left(\cos(\kappa \pi \tau) - 1 \right) \quad (2.14)
\]

and the corresponding eigenvectors \(X_{k} = (X_{k,1}, X_{k,2}, \ldots, X_{k,n}) \in \mathbb{R}^{n}\), \(k = 1, \ldots, n\) have components given by

\[X_{k,j} = \sin(\kappa \pi j) \quad (2.13)
\]

It can be easily verified that
\[AX_{j} = -\frac{1}{\tau^2}X_{j-1} + \frac{2}{\tau^2}X_{j} - \frac{1}{\tau^2}X_{j+1} \quad (2.9)
\]
We have derived a family of particular solutions \(\{ \chi_{m,j} \} \) at the grid point \((x_j, t_m)\). Next, we observe that any linear combination of particular solutions

\[
\nu = \sum_{s=1}^{T} \gamma_s \chi_s, \quad (\gamma_s \text{ is scalar})
\]

is also a solution of (2.6) and (2.7). Finally, we determine the coefficients \(\{ \gamma_s \} \) by using the initial condition

\[

v_j^0 = f(x_j) \quad \text{for } j=1,...,n.

\]

Hence, it follows from

\[

\frac{D}{D_t} X_j = \sum_{s=1}^{T} \gamma_s \sin(k \pi x_j)
\]

that

\[

\gamma_s = 2\pi \sum_{j=1}^{n} f(x_j) X_j, \quad \text{for } k=1,...,n.
\]

2.1.3. Exact Solution

To find a solution of the initial-boundary value problem (2.1), we assume that

\[

u = X(x) T(t)
\]

Using boundary conditions we get

\[

X(0) = X(1) = 0
\]

If we insert the (2.17) in the equation (2.1), we have

\[

\frac{X(x)}{X(x)} = \frac{\lambda}{T(t)}
\]

Now we observe that the left hand side is a function of \(x \), while the right hand side just depends on \(t \). Hence, both have to be equal to the same constant \(-\lambda \in \mathbb{R} \). This yields the eigenvalue problem for \(x \)

\[

X'' = -\lambda X \quad \text{for } X(0) = X(1) = 0
\]

Nontrivial solutions only exist for special values of \(\lambda \). They are so-called the eigenfunctions. In this special case we have the eigenvalues

\[

\lambda_k = (k \pi)^2 \quad \text{for } k = 1, 2, ...
\]

with the eigenfunctions

\[

X_k(x) = \sin(k \pi x) \quad \text{for } k = 1, 2, ...
\]

Further, the solution of \(\mu \cdot T(t) \) is given by

\[

u(t) = \sum_{k=1}^{\infty} c_k e^{-\lambda_k t} \sin(k \pi x)
\]

Finally, we use the superposition principle to a solution to the initial-boundary value problem (2.1), and we get

\[

u(t) = \sum_{k=1}^{\infty} c_k e^{-\lambda_k t} \sin(k \pi x)
\]

where \(\lambda_k = (k \pi)^2 \) Fourier coefficient

\[

c_k = \frac{2}{\pi} \int_0^\pi f(x) \sin(k \pi x) dx
\]

2.2. Comparison of Analytical and Discretized Solution

2.2.1. We want to compare this analytical solution with the discretized solution given by

\[

v_j^m = \sum_{k=1}^{T} \gamma_k \sin(k \pi x_j)
\]

where

\[

\mu_k = \frac{4}{\pi^2} \sin^2 \left(\frac{k \pi x_j}{2} \right)
\]

and

\[

\gamma_k = 2\pi \sum_{j=1}^{n} f(x_j) \sin(k \pi x_j) \quad \text{for } k=1,...,n
\]

In order to compare the analytical and discretized solution at a grid point \((x_j, t_m)\), we define \(u_j^m = u(x_j, t_m) \), i.e.,

\[

u_j^m = \sum_{k=1}^{T} c_k e^{-\lambda_k t_m} \sin(k \pi x_j)
\]

Our aim is to prove

\[

v_j^m \approx u_j^m
\]

under appropriate conditions on the mesh parameters \(T \) and \(h \). To avoid technicalities, we consider a fixed grid point \((x_j, t_m)\) where \(t_m \geq T \) for \(T > 0 \) independent of the mesh.
parameters. Furthermore, we assume that the initial function f is smooth and satisfies the boundary conditions, i.e. $f(0) = f(1) = 0$. Finally we assume that the mesh parameters h and T are sufficiently small.

In order to compare U_j^n and V_j^n, we note that

$$u(x_j,t_m) = \sum_{k=1}^{\infty} c_k e^{-\lambda_k t_m} \sin(\kappa \pi x_j)$$

$$= \sum_{k=1}^{\infty} c_k e^{-\lambda_k t_m} \sin(\kappa \pi x_j) + \sum_{k=1}^{\infty} c_k e^{-\lambda_k t_m} \sin(\kappa \pi x_j)$$

Here we want to show that

$$\sum_{k=1}^{\infty} c_k e^{-\lambda_k t_m} \sin(\kappa \pi x_j) \approx 0$$

(2.30)

Since f is smooth, it is also bounded and then the Fourier coefficients c_k are bounded for all κ. Obviously, we have

$$|\sin(\kappa \pi x_j)| \leq 1$$

and

$$\left| \sum_{k=1}^{\infty} c_k e^{-\lambda_k t_m} \sin(\kappa \pi x_j) \right| \leq \sum_{k=1}^{\infty} c_k |\sin(\kappa \pi x_j)| \leq 1$$

$$\leq \max_k |\sin(\kappa \pi x_j)| x_{1-n}$$

$$\leq C \sum_{k=1}^{\infty} \left| e^{-\lambda_k t_m} \right|$$

$$= C \left[e^{-\lambda_1 t_m} + e^{-\lambda_2 t_m} + ... \right]$$

$$= C \left[e^{-\lambda_1 t_m} + e^{-\lambda_2 t_m} + ... \right]$$

$$= C \left[e^{-\lambda_1 t_m} + e^{-\lambda_2 t_m} + ... \right]$$

$$\approx 0,$$ for large value of n.

Since we have verified (2.30) it follow that

$$u_j^n \approx \sum_{k=1}^{\infty} c_k e^{-\lambda_k t_m} \sin(\kappa \pi x_j)$$

(2.31)

Now we want to compare the finite sums (2.26) and (2.31):

$$v_j^n = \sum_{k=1}^{\infty} \gamma_k (1 - h \mu_k)^n \sin(\kappa \pi x_j)$$

Motivated by the derivation of the solutions, we try to compare the two sums term wise. Thus we keep κ fixed, and we want to compare $c_k e^{-\lambda_k t_m} \sin(\kappa \pi x_j)$ and $\gamma_k (1 - h \mu_k)^n \sin(\kappa \pi x_j)$.

Since the sine part here is identical, it remains to compare the Fourier coefficients c_k and γ_k, and the time-dependent terms $e^{-\lambda_k t_m}$ and $(1 - h \mu_k)^n$.

2.2.2. Comparison of Fourier coefficient c_k and coefficient γ_k

We start by considering the Fourier coefficients, and note that γ_k is a good approximation of c_k because

$$2 \sum_{n=1}^{\infty} f(x) \sin(\kappa \pi x)$$

is the trapezoidal-rule approximation of

$$\int_0^1 f(x) \sin(\kappa \pi x) dx$$

In fact we have

$$\left| c_k - \gamma_k \right| = \left| 2 \int_0^1 f(x) \sin(\kappa \pi x) - 2 \sum_{n=1}^{\infty} f(x) \sin(\kappa \pi x) \right|$$

$$= 2 \sum_{n=1}^{\infty} \left[f(x) - f(x) \right] \sin(\kappa \pi x)$$

$$= 2 \sum_{n=1}^{\infty} \left[f(x) - f(x) \right] \sin(\kappa \pi x)$$

$$= O(n^2), \text{ for } f \text{ sufficiently smooth.}$$

2.2.3 Comparison of the Terms $(1 - h \mu_k)^n$ and $e^{-\lambda_k t_m}$

We will compare the term $(1 - h \mu_k)^n$ approximates the term $e^{-\lambda_k t_m}$, we simplify the problem a bit by choosing a fixed time tm, say $tm=1$ and we assume that $h = \frac{1}{2}$. As a consequence, we want to compare the terms

$$\gamma_k = e^{-\lambda_k}$$

(2.32)

and

$$\beta_k = \left(1 - h \mu_k \right) \frac{1}{2}$$

(2.33)

Since both α_k and β_k are very small for large values of κ, it is sufficient to compare them for small κ. In order to compare α_k and β_k for small values of κ, we start by recalling that

$$\sin(y) = y + O(y^3)$$

Thus, we get

$$2 \sin \left(\kappa \pi \frac{h}{2} \right) = 2 \left[\kappa \pi \left(\frac{h}{2} \right) + \frac{(\kappa \pi)^2}{6} \left(\frac{h}{2} \right) + \frac{(\kappa \pi)^4}{720} \left(\frac{h}{2} \right)^5 + ... \right]$$
The finite difference scheme (2.6) is consistent of order (2,1).

Example 2.3.1
Solve the IVP

\[u_t = u''' \text{ for } x \in (0,1), \ t > 0 \]
\[u(0,t) = u(1,t) = 0 \text{ for } t \geq 0 \]
\[u(x,0) = f(x) \text{ for } x \in (0,1). \]

The exact solution is given by

\[u = -e^{-x^2} \sin \pi x \]

Approximate solution and exact solution are illustrated by 2.1.

MATLAB codes for Figure 2.1

```matlab
N=100; x=zeros(N,1); 
g=zeros(N,1); v=zeros(N,N); 
if(abs(x(m)-p)<0.001)
    for j=1:N
        x(j)=j*h;
    end
    for m=1:N
        h2=0; 
        if t(m)<h
            h2=0;
        end
        end
        if t(m)<h
            h2=0;
        end
        if t(m)<h
            h2=0;
        end
        if t(m)<h
            h2=0;
        end
        if t(m)<h
            h2=0;
        end
    end
end
end
end
```

Figure 2.1: Comparison of Exact and Approximate Solutions
for k = 1:N
 sum = 0;
 for j = 1:N
 term = 2*h*sin(2*pi*x(j))*sin(k*pi*x(j));
 sum = sum + term;
 end
 g(k) = sum;
end

for k = 1:N
 for j = 1:N
 v(k,j) = p*(4/h^2)*(sin(k*pi*h/2))^2)*sin(k*pi*x(j));
 end
 v(k,:) =
end

sum1 = 0;
for k = 1:N
 term1 = g(k) .* v(k,:);
 sum1 = sum1 + term1;
end

%%Approximate solution
plot(x,s,’-’);

%%Exact solution
plot(x,-exp(-*pi^2*0.01)*sin(pi*x));

3. CONCLUSION
The aim of this research paper describe the Errors between Analytical solution and Discretized solution of Differential equations.

4. REFERENCES