
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 3 Issue 5, August 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD26731 | Volume – 3 | Issue – 5 | July - August 2019 Page 1985

Analysis of Allocation Algorithms in Memory Management
Lae Wah Htun1, Moh Moh Myint Kay1, Aye Aye Cho2

1Assistant Lecturer, 2Associate Professor
1,2University of Computer Studies, Hinthada, Myanmar

How to cite this paper: Lae Wah Htun |
Moh Moh Myint Kay | Aye Aye Cho
"Analysis of Allocation Algorithms in
Memory Management" Published in
International
Journal of Trend in
Scientific Research
and Development
(ijtsrd), ISSN: 2456-
6470, Volume-3 |
Issue-5, August
2019, pp.1985-
1987,
https://doi.org/10.31142/ijtsrd26731

Copyright © 2019 by author(s) and
International Journal of Trend in Scientific
Research and Development Journal. This
is an Open Access article distributed
under the terms of
the Creative
Commons Attribution
License (CC BY 4.0)
(http://creativecommons.org/licenses/by
/4.0)

ABSTRACT
Memory management is the process of controlling and coordinating computer
memory, assigning portions called blocks to various running programs to
optimize overall system performance and also known as memory allocation.
Placement algorithms are implemented to determine the slot that can be
allocated process amongst the available ones in the partitioned memory.
Memory slots allocated to processes might be too big when using the existing
placement algorithms hence losing a lot of space due to internal fragmentation.
In dynamic partitioning, external fragmentation occurs when there is a
sufficient amount of space in the memory to satisfy the memory request of a
process but the process’s memory request cannot be satisfied as the memory
available is in a non-contiguous manner. This paper describes how to resolve
external fragmentation using three allocation algorithms. These algorithms are
First-fit, Best-fit and Worst-fit. We will present the implementation of three
algorithms and compare their performance on generated virtual trace.

KEYWORDS: Best-fit, First-fit, Worst-fit, Performance, Memory Management

1. Introduction
Memory Management is the function responsible for allocating and managing
computer’s main Memory. Different memory allocation algorithms have been
devised to organize memory efficiently. Allocation algorithms are implemented
to determine the slot that can be allocated a process amongst the available ones
in the partitioned memory block. Allocating a single contiguous section of
memory to each process is the most primitive method of memory management,
usually called partitioning.

In partitioning, the simplest partitioning method is dividing
memory into several fixed-sized partitions in advance, called
fixed partitioning. Fixed partitioning is the oldest and
simplest technique used to put more than one processes in
the main memory. In fixed partitioning, there are two
methods: equal-sized partitioning and unequal-sized
partitioning. In equal-sized partitioning, any process whose
size is less than or equal to the partition size can be loaded
into any available partition. Fixed size partitions suffer from
two types of problems; they are overlays and internal
fragmentation.

If a process is larger than the size of the partition then it
suffers from overlaying problem in which only required
information will be kept in memory. Overlays are extremely
complex and time consuming task. When the memory
assigned to the process is slightly larger than the memory
requested by the process this creates free space in the
allocated causing internal fragmentation. It occurs when
fixed sized memory blocks are allocated to the processes.

In multiple queues, each process is assigned to the smallest
partition in which it fits and minimizes the internal
fragmentation problem. In single queue, the process is
assigned to the smallest available partition and the level of
multiprogramming is increased the size of each block in
fixed partition is varied where processes are assigned to the
blocks where it fits exactly: in other words, processes may be
queued to use the best available partition. In the unequal

size partition compared to equal size partition, memory
wastage is minimized, and may not give best throughput as
some partitions may be unused. The unequal size partitions
use two types of queues where processes are assigned to
memory blocks. They are multiple queue and single queue.
In multiple queues, each process is assigned to the smallest
partition in which it fits and minimizes the internal
fragmentation problem. In single queue, the process is
assigned to the smallest available partition and the level of
multiprogramming is increased. If process loaded is much
smaller than any partition either equal or unequal, then it
suffers from internal fragmentation in which memory is not
used efficiently. To overcome this problem, an approach
known as dynamic partitioning was developed. Partitioning
may be done dynamically, called dynamic partitioning. In
dynamic partitioning, external fragmentation occurs when
there is a sufficient amount of space in the memory to satisfy
the memory request of a process but the process’s memory
request cannot be satisfied as the memory available is in a
non-contiguous manner. A method for overcoming external
fragmentation is compaction. The difficulty with compaction
is that it is a time-consuming and requires relocation
capability. Therefore, different strategies may be taken as to
how space is allocated to processes: the common placement
algorithms are Firs-fit, Best-fit and Worst-fit.

2. Background of Theory
Modern operating systems provide efficient memory
management and still research is being conduct to improve

IJTSRD26731

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26731 | Volume – 3 | Issue – 5 | July - August 2019 Page 1986

the way the memory is allocated for applications because the
main problem faces by memory allocation algorithms is to
efficiently allocating the demanded memory blocks to the
demanding applications with the minimum response time
along with minimum memory loss in the shape of traditional
memory loss problem called the fragmentation of memory.
We will use the placement algorithm to efficiently allocate
the processes in the main memory.

A. First-fit
In First-fit, scan the memory from the beginning and allocate
the first available block that is large enough. It is one of the
fastest algorithms as it would search only as little as
possible. But, the remaining unused memory areas left after
allocations become waste if it is too smaller. Thus request for
large memory requirement cannot be accomplished. We will
prove that the following problem, which algorithm makes
the most efficient use of memory.
Implementation in First-fit:
1. Input memory blocks with size and processes with size.
2. Initialize all memory blocks as free.
3. Start by picking each process and check if it can be

assigned to current block.
4. If size-of-process <= size-of-block if yes then assign and

check for next process
5. If not then keep checking the further blocks.

For example: Given ten memory partitions of 500KB, 200KB,
800KB, 400KB, 100KB, 700KB, 300KB, 600KB, 1000KB,
900KB (in order), How would the First-fit, Best-fit, Worst- fit
algorithms place processes of 212KB, 150KB, 375KB, 950KB,
350KB, 632KB, 400KB, 717KB, 811KB (in order)? Which
algorithm makes the most efficient use of memory?

In First-fit:
212KB is put in 500KB partition
150KB is put in 288KB (new partition 288KB=500KB-
212KB)
375KB is put in 800KB partition
950KB is put in 1000KB partition
350KB is put in 425KB (new partition 425KB=800KB-375KB
632KB is put in 700KB partition
400KB is put in 400KB partition
717KB is put in 900KB partition
811 must wait

Figure1. First-fit Output results

B. Best-fit
In Best-fit, the entire list of blocks must be searched the
closest in size to the request and allocate this block. Memory
utilization is much better than First-fit as it searches the
smallest free partition first available. But, it is slower and
may even tend to fill up memory with tiny useless holes.

Implementation in Best-fit:
1. Input memory blocks with size and processes with size.
2. Initialize all memory blocks as free.
3. Start by picking each process and find the minimum

block size that can be assigned to current process i.e.,
find min(blockSize[1]),blockSize[2],………,blockSize[n] >
processSize[current] it found then assign it to the
current process.

4. If not then leave that process and keep checking the
further processes.

Calculation with Best-fit, above the problem describes in
First-fit
In Best-fit:
212KB is put in 300KB partition
150KB is put in 200KB partition
375KB is put in 400KB partition
950KB is put in 1000KB partition
350KB is put in 500KB partition
632KB is put in 700KB partition
400KB is put in 600KB partition
717KB is put in 800KB partition
811KB is put in 900KB partition

Figure2. Best-fit Output results

C. Worst-fit
In Worst-fit, the entire list of blocks must be searched the
largest block and allocate this block. Reduce the rate of
production of small gaps. In contrast, this strategy produces
the largest leftover block, which may be big enough to hold
another process. But, if a process requiring larger memory
arrives at a later stage then it cannot be accommodated as
the largest hole is already split and occupied.

Implementation in Worst-fit:
1. Input memory blocks with size and processes with size.
2. Initialize all memory blocks as free.
3. Start by picking each process and find the maximum

block size that can be assigned to current process i.e.,
find max (blockSize[1]), blockSize[2],……., blockSize[n] >
processSize[current] it found then assign it to the
current process.

4. If not then leave that process and keep checking the
further processes.

Calculation with Worst-fit, above the problem describes in
First-fit
In Worst-fit:
212KB is put in 1000KB partition
150KB is put in 900KB partition
375KB is put in 800KB partition
950KB must wait
350KB is put in 788KB (new partition 788KB=1000KB-
212KB)

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26731 | Volume – 3 | Issue – 5 | July - August 2019 Page 1987

632KB is put in 750KB (new partition 750KB=900KB-
150KB)
400KB is put in 700KB partition
717KB must wait
811KB must wait

Figure3. Worst-fit Output results

3. Experimental Results
In this paper, we have been seen that Best-fit algorithm is
the best among three placement algorithms. We are
explained with a problem, how to calculate this algorithm.
These algorithms cannot eliminate external fragmentation.
To overcome this problem, we must use compaction.

Figure4. Comparison of Three Allocation Algorithms for

Performance

4. Conclusion
Main memory management is very important in operating
system. Simulations have shown that both First-fit and Best-
fit are better than Worst-fit in terms of decreasing both time
and storage utilization. Neither First-fit nor Best-fit is clearly
better in terms of storage utilization but First-fit is generally
faster. Among three algorithms, Best-fit algorithm makes the
most efficient use of memory. In this paper, we also proved
that Best-fit algorithm is the best in memory utilization.

References
[1] Rachael Chikorrie, Okuthe P. Kogeda, Manoj Lall: “An

Optimized Main Memory Management Partitioning
Placement Algorithm”, Pan African conference on
Science, computing and Telecommunications (PACT)
Publisher, July 27-29, Kampala Uganda 2015.

[2] Abraham Silerschatz, Peter Beer Galvin, and Greg
Gange, “Operating System Concepts”, John Wiley &
Sons, INC., January 1, 2002.

[3] William Stallings, “Operating System Internals and
Design Principles”, March 20, 2017.

[4] Ledisi G. Kabari, TamunoomieS. Gogo, ”Efficiency of
Memory Allocation Algorithms Using Mathematical
Model”, International Journal of Emerging Engineering
Research and Technology Volume 3, Issue 9,
September, 2015, PP 55-67

[5] Muhammand Abfullh Awais, “Challenges and
Techniques for Algorithms in Relation with Today’s
Real Time Needs”, International journal of Multi-
Disciplinary Sciences and Engineering, vol.7, No.3,
March 2016.

